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The desert riparian forests are susceptible tometeorological changes and contribute

significantly to the net ecosystem productivity (NEP) variations of arid ecosystems.

However, the responsive patterns of their NEP variations to the meteorological

variabilities remain inadequately comprehended. To address this gap, we utilized

seven years of eddy covariance fluxmeasurements in a representative desert riparian

forest to investigate the NEP variations and its response to changing meteorological

factors across diverse temporal scales. The results revealed significant periodic

variations in half-hourly NEP, with dominant cycles spanning from five hours to

one year, with a principal oscillation period of one day. Key meteorological factors

including global solar radiation (Rg), relative humidity (RH), air temperature (Ta), soil

temperature (Ts), and vapor pressure deficit (VPD) exhibited synchronization with

NEP on daily scales. This synchronization, coupled with the observed one-day

periodic NEP variations, provides robust evidence supporting the existence of a

circadian rhythm in the ecosystem carbon exchange of desert riparian forest

regulated by meteorological conditions. Seasonal patterns were significant in the

impact of Rg phase, Ta diurnal amplitude, and VPD diurnal amplitude on NEP diurnal

amplitude and phase. The NEP diurnal amplitude significantly, directly, and positively

affected daily NEP in both the dormant and growing seasons, whereas its phase

yielded significant negative effects (P< 0.05). The averages, amplitudes, and phases

of diurnal meteorological conditions controlled the daily NEP by regulating NEP

diurnal amplitude and phase. These findings provide evidence that the variability in

circadian rhythms, caused by the increase in diurnal Ta and VPD, significantly impact

the daily NEP at an ecosystem scale. This study enriches our comprehension of the

meteorological mechanisms governing diurnal and seasonal carbon uptake

dynamics within desert riparian forests, providing fresh insights into the direct and

indirect roles of climate change in shaping patterns of ecosystem carbon exchange.
KEYWORDS

arid ecosystem, eddy covariance, carbon flux, circadian regulation, structure
equation model
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1 Introduction

Net ecosystem productivity (NEP) measures the equilibrium

between carbon uptake through photosynthesis and carbon loss via

respiration, serving as a critical indicator of ecosystem carbon

sequestration and stability. Variations in NEP can reflect

ecosystem responses and adaptability to ongoing climate change.

Arid and semi-arid ecosystems constitute about 30% of the Earth’s

land area and play a substantial role in the interannual variability of

the global terrestrial NEP, accounting for 39% of this process

(Ahlstrom et al., 2015). The Earth’s land surface has experienced

significant warming and an increase in atmospheric vapor pressure

deficit (VPD) over the past century, particularly noting a greater rise

in daily minimum than maximum temperature in many regions

(Thorne et al., 2016; Yuan et al., 2019), and including the most of

arid and semi-arid lands. The pronounced trend underscores the

urgency for understanding the impact of climate change on NEP in

these vulnerable ecosystems. However, the mechanisms whereby

climate change impacts NEP in these ecosystems have not been

completely comprehended. Climate change alters meteorological

patterns at regional and global scales, which may significantly

impact the NEP (Reichstein et al., 2013; Franklin et al., 2016;

Tang et al., 2022). To comprehensively understand and accurately

predict the NEP’s response to climate change, an exigency exists to

investigate the impact of meteorological changes at varying time

scales on the NEP.

The elucidation of NEP from a meteorological perspective

begins with transformations in key driving factors governing the

carbon uptake process, including solar radiation, air temperature

(Ta), atmospheric humidity, VPD, and soil moisture (Law et al.,

2002; van Dijk et al., 2005; Yi et al., 2010). Previous investigations

have mainly focused on the direct impacts of meteorological factors

on NEP. For instance, excessive light during photosynthesis can

induce photoinhibition in plants (Chaves, 1991), and solar radiation

determined the NEP in deserts (Yu et al., 2023). Significant

depletion of humidity and soil moisture led to stomatal closure

and diminished photosynthetic activity (Reichstein et al., 2007;

Wolf et al., 2016). Half-hour photosynthesis and respiration

exhibited a nonlinear response to temperature changes (Baldocchi

et al., 2001; Way and Yamori, 2013). A synchronization mechanism

governed by light and temperature regulated the timing of

photosynthesis and stomatal aperture in plants (Masuda et al.,

2021). Although these outstanding scientific works support the

direct impact of meteorological factors, only a few studies have

explored their indirect impact on NEP changes, most of which

disregarded the influences of amplitude and phase of the

meteorology fluctuations. In contrast, these variations in

meteorology (such as light, temperature, and humidity) have been

suggested to affect the circadian rhythms of tree physiology (Way

and Montgomery, 2015; Singh et al., 2021). The circadian rhythms

of tree physiological processes, such as leaf stomatal conductance

and photoperiodic responses with a period of ∼24 h, were

important drivers of the photosynthesis and respiration in

ecosystems, although they required the passage of a few hours

(Resco de Dios and Gessler, 2018). Additionally, the amplitude of

diurnal NEP changes under constant environmental conditions was
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20% to 90% of that under variable environmental conditions (Dios

et al., 2012). The diel and seasonal dynamics of stem growth of trees

at the community level were significantly influenced by temperature

and VPD (Zhou et al., 2023). The diel patterns in carbon flux were

expected to be the key factors in understanding stem growth

(Steppe et al., 2015). On one hand, the control and manipulation

of meteorological conditions at the ecosystem level for direct tests of

circadian regulation response to short-term meteorological changes

pose a significant challenge. On the other hand, the variation in

NEP under variable conditions may be caused by several

endogenous and exogenous mechanisms. Up until now, however,

there has been a knowledge gap regarding how the amplitude and

phase of diurnal variations in meteorology affect the NEP of arid

and semi-arid ecosystems.

Desert riparian forests played a critical role in arid and semi-

arid ecosystems due to their remarkable ecosystem biodiversity and

carbon sequestration (DéCamps et al., 2004; Thevs et al., 2011).

Tugai forests (Populus euphratica forests) were widely distributed in

the natural oasis of the lower inland rivers and constitute the largest

types of natural desert riparian forests in arid regions (Feng and

Cheng, 1998). The area of these forests in China was approximately

6.49 × 105 hm2, constituting 92.3% of the entire desert riparian

forest area in the country (Ding et al., 2017; Wang et al., 2017; Fan

et al., 2018). Due to being subjected to the severe environmental

stress such as drought and salinity, Tugai forests were particularly

vulnerable to variations in the meteorological environment (Jiang

et al., 2022). However, their above-ground carbon density ranged

from 2.24 t/hm2 to 30.42 t/hm2, giving them a greater carbon sink

potential than other arid ecosystems such as grasslands and sparse

shrublands (Liu et al., 2016). Hence, Tugai forests are ideal for

studying the effects of changing meteorological conditions on the

NEP of desert riparian forest ecosystems.

Utilizing approximately seven years of eddy covariance flux

measurements in a representative Tugai forest, this study introduced

the amplitudes and phase of daily variations to examine the direct and

indirect response mechanisms of NEP to changing meteorological

conditions in both the growing and dormant seasons. The objectives of

this study are to explore the variation patterns of NEP and

meteorological conditions in the desert riparian forests at different

time scales, analyze the relationship between NEP and meteorological

conditions at various time scales, and investigate the direct and indirect

response mechanisms of NEP to the changes in meteorological

conditions at the daily scale. This study is expected offers insights

into understanding the processes of the forest ecosystems carbon cycle,

thereby enhancing predictions of carbon exchange within these

ecosystems under the ongoing context of climate change.
2 Materials and methods

2.1 Site description

The study was conducted at the Ebinur Lake Wetland National

Nature Reserve in northwestern Xinjiang, China, from January 1,

2012 to April 20, 2019. The study area (44°37′05″−45°10′35″N, 82°
30′47″−83°50′21″E) experiences a north temperate continental arid
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climate, characterized by hot summers, ample sunlight, low

precipitation, and cold winters. The distribution of annual

precipitation is uneven, with more in summer (~50 mm) and less

in winter (<10 mm). The long-term average precipitation is 105.17

mm, and the evaporation is 1315 mm (Li et al., 2022). The flux tower

was positioned approximately 100 m from the north bank of the

Aqikesu River (44°37′4.8″N, 83°33′59.4″E) within the nature reserve,

with a construction height of 33 m (Teng et al., 2021). There are over

30 species of plants in the study area (Zhang et al., 2015). Species such

as Populus euphratica, Haloxylon ammodendron and Phragmites

australis are dominant within investigated riparian vegetation and

represent over then 60% of total vegetation coverage in the studied

area. Additionally, there are a variety of halophytic shrubs, herbs, and

desert-specific short-growing plants, such as Halimodendron

halodendron, Halocnemum strobilaceum and Suaeda glauca, with

an average community canopy height of approximately 8.5 m (He

et al., 2014). The soil has high salinity and alkalinity, with an average

electrical conductivity of 5.41 mS/cm in shallow soil layer (0–10 cm)

and a pH value of 8.77. The average soil density is about 1.38 g/cm3

(Li et al., 2022). Throughout the observation period, the flux tower

was located in an area with an average annual temperature of 9°C,

with maximum temperatures reaching 43°C and minimum

temperatures dropping to −26°C. Groundwater served as the

primary water source for the plants in the Tugai forest ecosystem,

with a groundwater depth of 1.50-2.30 m (Yang et al., 2014).
2.2 Eddy covariance and
meteorological measurements

The eddy covariance (EC) observation systemwas positioned 15m

above the ground. It comprises a three-dimensional ultrasonic

anemometer (CSAT3, Campbell Scientific Ltd., Logan, UT, USA)

and an infrared CO2/H2O analyzer (EC150, Campbell Scientific Ltd.,

Logan, UT, USA). Global radiation was monitored using a 4-

component net radiometer (NR01, Campbell Scientific Ltd., Logan,

UT, USA) installed at a height of 9 m. Additionally, the meteorological

observation system includes air temperature and humidity sensors

(HMP155A-L, Campbell Scientific Ltd., Logan, UT, USA), wind speed

sensors (010C-1, Met One Instruments Inc., Grants Pass, OR, USA),

wind direction sensors (020C-1, Met One Instruments Inc., Grants

Pass, OR, USA), and an atmospheric pressure meter (CS100, Campbell

Scientific Ltd., Logan, UT, USA). These instruments are programmed

to automatically record routine meteorological data, such as average

wind speed, temperature, and air pressure every 30 minutes.
2.3 Flux calculations and data processing

2.3.1 Flux calculation
Assuming horizontal homogeneity, the net ecosystem CO2

exchange (NEE) in mmol m−2 s−1 can be estimated as follows

(Baldocchi, 2003; Wang et al., 2016):

NEE = Fc + Fs = rd · w0cc 0 │h +
Dcc · rd · h

Dt
: (1)
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In Equation 1, Fc represents the turbulent flux at the interface

between the atmosphere and the ecosystem. Fs corresponds to the

CO2 storage flux within the control volume. w stand for the vertical

wind speed. cc denotes the CO2 molar mixing ratio (mmol mol−1).

rd represents the dry air concentration (mol m−3). h is the flux

observation height (m); Dcc indicates the difference between the

pre- and post- CO2 molar mixing ratio measured at two adjacent

moments. Dt is the time interval between the first and second

measurements (30 min).

The turbulent fluxes (Fc) were calculated from high-frequency

measurements. Raw data files were processed using EddyPro

software (Version 6, LI-COR Inc., Lincoln, NE, USA) to calculate

the Fc on a half-hourly basis. The flux processing included two-

dimensional coordinate rotation, spectral corrections, frequency

response correction, and Webb-Pearman-Leuning correction for

the effect of air density fluctuations (Webb et al., 1980). The quality

assessment for Fc data were conducted a steady-state/developed

turbulence conditions test in 0-2 system (Mauder et al., 2006). The

CO2 storage (Fs) was estimated using the single-point method

(Hollinger et al., 1994).

2.3.2 Data processing
The NEP is analogous to net photosynthesis in leaves, and is

considered positive when the ecosystem exhibits net carbon uptake,

indicating a carbon sink. It is the opposite of NEE (Lovett et al.,

2006), that is NEP = −NEE. As ecosystem carbon exchange

processes are highly dependent on diurnal rhythms and

phenological laws, we identified the beginning and end of the day

and the beginning and end of the growing season. The solar

elevation angle was used to define the diurnal period as from

sunrise to sunset. As presented in Table 1, the start and end of

the growing season were determined based on the growing degree

days (GDDs), and the formula was as follows (McMaster and

Wilhelm, 1997):

GDD =
1
2
(Tmax + Tmin) − Tbase, (2)

In Equation 2, Tbase was 6°C in this study.

The gaps in carbon flux measurements amounted to 59,906

half-hour data (approximately 46.52% of the total), and these gaps

were primarily concentrated during the dormant season, especially

during nighttime hours. Surprisingly, the number of data gaps

during nighttime in the dormant season was more than twice as

much as during nighttime in the growing season. Conversely, the

high-quality data (Qc=0) accounted for 35,852 half-hour data

(approximately 27.84% of the total), and were predominantly

record during the daytime in the growing season. Remarkably,

the amount of high-quality flux data during nighttime in the

growing season was comparable to that during nighttime in the

dormant season (Table 2).

In this study, distinct frictional velocity (u*) thresholds and their

corresponding confidence intervals were estimated separately for

the growing and dormant seasons, considering various wind

direction intervals (30°). The carbon flux data underwent rigorous

screening based on the criteria outlined in Table 3, leading to the

exclusion of any data that failed to meet these conditions. Finally,
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the gap-filling procedure utilized the random forest model,

achieving an impressive R2 value of 0.81.
2.3.3 Amplitude and phase of the variations in
NEP and meteorological conditions

To comprehensively describe the diurnal variations in NEP and

meteorological factors, two key parameters were computed:

amplitude and phase. Circadian regulation is known to result in

time changing maximal and minimal potential values, as depicted in

Figure 1. Assuming that circadian effects have an additive

interaction with the mean value of the parameter of interest

(Resco de Dios and Gessler, 2018), the models for circadian

variations can be expressed as follows:

y = ym + yA sin (
2p t
24

+Fy) : (3)

In Equation 3: y represents NEP or meteorological factors; ym
denotes the mean value of y; t stands for time; and yA and Fy

represent the amplitude and phase of half-hourly NEP or

meteorological factors variations in a daily scale, respectively. The

variation in amplitude signifies the asymmetric changes in

meteorological factors and the differences in diurnal and

nocturnal variations in NEP (where daytime increases or

decreases differ in magnitude from nighttime). On the other

hand, the variation in phase denotes the changes in the timing of

daily maximum or minimum values. These two parameters offered

a clearer understanding of the daily patterns of carbon uptake and

meteorological changes in the ecosystem.
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2.4 Statistical analysis

2.4.1 Magnitude squared coherence and
transfer function

The Fourier transform was applied to the time series of NEP

and meteorological factors, and subsequently, the power spectrum

of the time series is calculated and analyzed in terms of magnitude-

squared coherence (MSC) and transfer function variation periods.

MSC, a signal processing tool that yields a real value ranging from

zero to one, is employed to identify significant frequency-domain

correlations between two time series (Dobie and Wilson, 1989). It

quantifies the degree to which two time-domain signals, x(t) and y

(t), exhibit similarity or match each other.

To estimate the synchronization of two time series, the linear

correlation in the spectral decomposition of x(t) and y(t) is followed

by calculating the MSCxy(f) values at different frequencies using the

equation:

MSCxy(f ) =
Pxy(f )
�
�

�
�2

Pxx(f )Pyy(f )
,   (4)

In Equation 4, Pxy is the cross power spectral density of x(t) and

y(t), and Pxx and Pyy are the associated power spectral densities.

In this study, Welch’s mean-corrected periodogram method is

utilized to calculate the power and mutual power spectral densities

between x(t) and y(t). This method involves dividing the two signals

into time windows with the same number of samples, calculating

the power spectral density for each window, and then averaging

them to obtain the final MSCxy(f) values at different frequencies.

A transfer function is a complex quantity whose magnitude and

phase are a function of frequency. Referred to as the system

function, it describes the transfer behavior of a linear system in

the frequency domain, with the output being represented by H(t)

and the input represented by the z-transform of the impulse

response H(z).

The transfer function is given by the equation:

H(z) =
Y(z)
X(z)

 , (5)

In Equation 5, Y(z) represents the output transformation and X

(z) represents the input transformation. The transfer function H(z)

captures the transfer characteristics of the system, as it multiplies

the input transformation X(z) to obtain the output transformation

Y(z). The transfer function can be derived from simple algebraic
TABLE 2 Statistics on half-hour carbon flux data.

Growing
season daytime

Growing
season nighttime

Dormant
season daytime

Dormant
season nighttime

Total

NA 13750 8817 15449 21890 59906

Qc=0 14765 6833 8221 6033 35852

Qc=1 4286 5416 4822 7807 22331

Qc=2 1728 2554 2225 4077 10584

Total 34529 23620 30817 39807 128773
fronti
TABLE 1 The starting and ending date of growing season at
observation stations.

Year Start (DOY) End (DOY) Duration (Day)

2012 113 283 171

2013 99 290 192

2014 120 279 160

2015 110 286 177

2016 119 283 165

2017 120 275 156

2018 99 284 186

2019 104
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operations that describe the differential equations of the system, or

it can be determined experimentally to understand the transfer

behavior of the system.

2.4.2 Structural equation model
Structural equation model (SEM), including path analysis,

confirmatory factor analysis, and latent growth curve models, is

primarily employed to examine multivariate interactions (McIntosh

et al., 1996). As a relatively complex statistical model, SEM requires

a sample size of at least 200 to yield reliable results (Fan et al., 1999).

This is due to the fact that more intricate models necessitate larger

samples to achieve statistical power. Furthermore, due to certain

mathematical restrictions that limit the complexity of the
Frontiers in Plant Science 05
multivariate model, a balance must be struck between model

complexity, precision, and interpretability when employing SEM.

We use path analysis to analyze the covariance between NEP and

observed variables, with the structure of the model being driven by

assumptions about causal relationships between multiple variables.

For all statistical analyses, we used R version 4.2.0 (R Core

Team, 2022).
3 Results

3.1 Environmental conditions and net
ecosystem production

During the study period, the dynamics of Tam, Tsm, VPDm,

and Rgm above the forest canopy exhibited a symmetrical pattern

between the growing and dormant seasons (Figure 2). Notably,

Rgm, VPDm, Tam, and Tsm showed significant seasonal variations,

with higher values recorded in the growing season and lower

values in the dormant season. During the dormant season, the

RHm was higher than compared to the growing season. The Tam
during the study period was 8.83°C, with a range of variation

from −28.04°C to 34.13°C; VPDm ranged from 0.02 kPa to 4.17

kPa, with the maximum and minimum values observed in July

and January, respectively.

The results of the spectral analysis performed on the NEP and

meteorological factor time series of the Tugai forest were presented in

Figure 3. It is evident that both NEP and meteorological factors

exhibit multiple periodicities, ranging from five hours to one year.

Except for Rg, the amplitudes of fluctuations in both NEP and

meteorological factors also increased when the period length

exceeded one day but remained less than 40 days. When the

periods of variability in NEP and meteorological factors were equal

to or less than one day, the amplitude of fluctuations tended to

become more pronounced with increasing period length. The NEP

variations exhibited the strongest correlation with meteorological

conditions in the one-day cycle. This observation implied that NEP in

the Tugai forest followed a circadian rhythm.
3.2 Interactions between net ecosystem
production and environmental variation

After conducting cross-spectral analysis of Rg, RH, Ta, Ts, and

VPD with NEP, it was evident that these five meteorological factors

exhibited a strong coherence with NEP (Figure 4). This coherence

was particularly pronounced for long periods of 12 hours, 1 day,

and 1 year, while it was relatively weaker for short periods. The

cross-spectral analysis of meteorological factors with NEP partially

explained the multiple periodic variation patterns of NEP. The

transfer function amplitudes of these meteorological factors and

NEP all displayed variation periods of 6 hours, 8 hours, 12 hours,

and 1 day. Additionally, the greatest magnitude of the MSC was

observed at the 1 d period. This implies that there is a strong

synchronous variation of NEP with meteorological factors,
TABLE 3 Quality control process of carbon flux data.

Procedure

Volume of data
Detailed

descriptionGrowing
season

Dormant
season

Quality
assessment

22567 37339

Based on the quality
assessment of flux data,
carbon flux data with null
values and Qc of 2
were rejected.

Weather
anomalies

36 152

Carbon flux data from
precipitation over the
observation period
were excluded.

Mutation
filtering

121 157
The mutation points in
continuous flux data were
detected and rejected.

Statistical
distribution
cleaning

360 468

Outliers in the flux data,
counted at different times
of the day,
were eliminated.

u*
threshold
filtering

3349 3575
Nighttime observations
below the u* thresholds
were excluded.
FIGURE 1

The regulation of NEP and meteorological conditions by amplitude
(yA) and phase (Fy) on a daily scale.
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especially at the daily scale. Therefore, the circadian rhythm of NEP

in the Tugai forest was regulated by meteorological conditions.

In order to investigate the response of CO2 uptake capacity in

the desert Tugai forest ecosystem to changes in the meteorological

conditions, we conducted an analysis of the relationship between

daily NEP and meteorological factors. Our findings suggested the

FNEP and FRg demonstrated negative correlations with daily NEP

both during the dormant and growing season (Figures 5A, 6B).
Frontiers in Plant Science 06
Conversely, the NEPA and Rgm significantly positively correlated

with daily NEP (Figures 5B, 6A). This indicated that the higher the

asymmetry in the diurnal changes of NEP, the higher the daily NEP

value, as a result of a higher peak in diurnal NEP.

We observed a weak negative correlation between the RHm and

daily NEP in the growing season (R2 = 0.147), but no significant

correlation was found in the dormant season (Figure 7A). In

contrast to RHm, Tam, Tsm, and VPDm exhibited weak positive
A

B

D

E

F

C

FIGURE 2

Variations of NEP and meteorological factors. (A) NEP: net ecosystem productivity; (B) Rgm: daily mean of Rg; (C) RHm: daily mean RH, RHR:
amplitude of diurnal RH; (D) Tam: daily mean Ta, TaR: amplitude of diurnal Ta; (E) Tsm: daily mean Ts, TsR: amplitude of diurnal Ts; (F) VPDm: daily
mean VPD, VPDR: amplitude of diurnal VPD. The grey region indicates the dormant season and the white indicates the growing season.
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correlations with NEP in the growing season, while weak negative

correlations were observed in the dormant season (Figures 8A–

10A). The RHA showed no significant correlation with NEP in both

the growing and dormant seasons (Figure 7B). The significant effect

of the VPDA changes on NEP during the growing season suggested

that asymmetric variations in diurnal VPD significantly affect the

carbon uptake of Tugai forest ecosystems (Figure 10B).

In this study, the analysis of seasonal differences in the correlation

between NEP and driving factors unveiled significant seasonal

variations in NEP’s response to meteorological factors (likelihood

ratio > 26 and P< 0.001, see Supplementary Material). The seasonal

difference in magnitude and direction of response were observed. This

implied that there were seasonal differences in the synchronization

between NEP and meteorological factors at the daily scale.
3.3 The impact of meteorological
variations on net ecosystem production

The results of the SEM demonstrating the influence of

meteorological factors on NEP during the dormant and growing
A B

D

E F

G

I

H

J

C

FIGURE 4

Magnitude squared coherence (MSC) and transfer function amplitude (TFA) between half-hourly NEP and (A, B) Rg, (C, D) RH, (E, F) Ta (G, H) Ts, and
(I, J) VPD.
FIGURE 3

Power spectrum densities of half-hourly NEP and meteorological
factors over the duration of monitoring.
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seasons were presented in Figure 11; Table 4. Through correlating

NEP with the influencing factors, the models were meticulously

fitted and tested to establish statistically significant direct and

indirect effects while gradually eliminating statistically

insignificant pathways. For the dormant season, the fitted R2 was

0.551, the RMSEA was 0.029 (P = 0.160), and the CFI was 1.000. In

the growing season, the corresponding values were 0.780, 0.021 (P =

0.222), and 1.000, respectively. Overall, the results indicated that

both models were suitable, with the structural equation model for

the growing season slightly outperforming that for the

dormant season.

In the SEM, during the dormant season, Tam, Rgm, RHm,

VPDm, and TaA had significant direct effects on FNEP. In

contrast, during the growing season, FRg, Rgm, and RHm had

significant direct effects on FNEP (P< 0.10, in descending order of

relative importance). For NEPA during the dormant season, Rgm,

Tsm, VPDm, VPDA, and Tam had significant direct effects, while

during the growing season, Tam, Rgm, VPDm, FNEP, TaA, and FRg

had significant direct effects (P< 0.10, in descending order of relative
Frontiers in Plant Science 08
importance). The TaA significantly influenced the FNEP in Tugai

forests during the growing season, with no notable impact on the

NEPA. However, this pattern may be inverted during the dormant

season, the TaA could affect NEPA without influencing FNEP.

Notably, both during the dormant and growing seasons, TsA had

no statistically significant direct effect on FNEP (P > 0.10), RHm had

no statistically significant direct effect on NEPA, and FRg had no

statistically significant direct effect on daily NEP. Rgm had

significant indirect effects on daily NEP through the NEPA and

FNEP during both the dormant and growing seasons (P< 0.10). This

underscored the critical roles that the amplitude and phase of

diurnal NEP played in regulating the light response of NEP.

In addition to the direct effects of FNEP on daily NEP during

both the dormant and growing seasons, the FNEP impacted daily

NEP by reducing the NEPA during the growing seasons, resulting in

significant negative total effects on NEP (P< 0.05). This suggested

that regulating the phase of ecosystem circadian rhythms reduced

the daily NEP by lowering its peak of net carbon uptake. It’s worth

noting that the total effects of FRg on daily NEP were not
A B

FIGURE 6

Relationship (A) between NEP and Rgm, and (B) between NEP and phase of Rg (FRg). DS and GS indicate the dormant and growing seasons, respectively.
A B

FIGURE 5

Relationship between (A) NEP and phase of NEP (FNEP), and (B) between NEP and NEPA. DS and GS indicate the dormant and growing seasons, respectively.
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statistically significant (P > 0.1). Seasonal differences were observed

in the effect directions of RHm on daily NEP, with direct effects

being predominant during both the dormant and growing seasons.

The effects of VPDm on daily NEP were primarily indirect during

the growing seasons. Reductions in the VPDA may lead to increased

daily NEP in Tugai forests during the growing season. Conversely,

this relationship may be reversed during the dormant season. The

VPDA exerted a negative indirect effect on daily NEP through NEPA
during both the dormant and growing seasons. This indirect effect

counterbalanced the positive direct effect of the changing amplitude

in water vapor on daily NEP during the dormant season but

intensified during the growing season. Daily NEP was more

sensitive to the changes in VPDA than to the variations in TaA.

This finding suggests that the daily-scale variation in VPD has a

more pronounced impact on the daily NEP within the ecosystem

than the daily-scale fluctuations in air temperature.

The results of the SEM analysis comparing the dormant and

growing seasons revealed that an increase in NEPA led to an
Frontiers in Plant Science 09
increase in daily NEP during both seasons. Conversely, an

increase in the FNEP contributed to a decrease in NEPA, resulting

in decreased daily NEP. Reductions in the TaA may lead to

decreased daily NEP in Tugai forests during both the growing

and dormant season. During the dormant season, an increase in

TaA indirectly led to an increase in daily NEP by negatively affecting

FNEP, while during the growing season, the increase in VPDA

caused a decrease in NEP. This suggested that regulated the daily

NEP during the dormant season, while water availability limited the

daily NEP during the growing season. The variation in the indirect

and direct effects of daily changes in meteorological factors

highlighted the seasonal differences in the mechanisms by which

the NEP of Tugai forests influenced meteorological conditions, as

well as differences in the response to various meteorological factors.

The indirect effects of daily changes in meteorological factors

through NEPA and FNEP on daily NEP indicated that the diurnal

variability in meteorological conditions influenced the daily NEP of

Tugai forests by regulating the circadian rhythm of this ecosystem.
A B

FIGURE 8

Relationship (A) between NEP) and Tam, and (B) between NEP and TaA. DS and GS indicate the dormant and growing seasons, respectively.
A B

FIGURE 7

Relationship (A) between NEP and RHm, and (B) between NEP and RHA. DS and GS indicate the dormant and growing seasons, respectively.
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4 Discussion

4.1 Response of NEP to variations in
meteorological conditions at different
time scales

Ecosystem carbon exchange has been reported to exhibit daily,

weekly, and monthly cycles of variability (Baldocchi et al., 2001;

Stoy et al., 2005). Consistent with these established findings, our

own observations similarly revealed periodic variations in NEP

(Figure 3). The diurnal NEP fluctuations are likely attributable to

the photoperiod resultant from the Earth’s rotation. The discerned

11-day and 14-day NEP periodic variations might potentially find

explanation in the seiches of Ebinur Lake, as analogous courses of

variation were evident in the meteorological factors, particularly in

RH (Figure 3). The periodic variations in NEP and meteorological

factors highlight the complex interactions between lake dynamics

and meteorological conditions in shaping the carbon exchange

dynamics of the desert riparian forest ecosystems. Remarkably,
Frontiers in Plant Science 10
this phenomenon has been identified for the first time in our study.

Consequently, we advocate for an integrated approach in

investigations of ecosystem carbon exchange within regions

influenced by lakes, necessitating the incorporation of the lakes’

impact on local climate.

Within the Tugai forest, we have observed a striking and

significant synchronization between NEP and meteorological

conditions, underscoring the prominent influence of these

conditions on ecosystem carbon exchange. The MSC and TFA

between NEP and meteorological factors in the Tugai forest

suggested that NEP has the robust synchronization with

meteorological conditions on the daily scale. The findings

suggested a close alignment with the light response of ecosystem

carbon exchange at daily scale (Figure 4). It’s worth noting that

prior studies have illuminated the presence of a desert-oasis effect in

the desert riparian forests (Li et al., 2016; Teng et al., 2021), which

significantly influences the daily variability of meteorological

conditions. This effect further bolsters the synchronization

observed between NEP and meteorological factors on a daily
A B

FIGURE 10

Relationship (A) between NEP and VPDm, and (B) between NEP and VPDA. DS and GS indicate the dormant and growing seasons, respectively.
A B

FIGURE 9

Relationship (A) between NEP and Tsm, and (B) between NEP and TsA. DS and GS indicate the dormant and growing seasons, respectively.
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scale. Similarly, there was high synchronization between NEP

and temperature at daily scale. In addition, there was a significant

response of NEP in Tugai forest to mean daily temperature and

its daily variation during both growing and dormant seasons.

The reason is that temperature plays a crucial role in ecosystem

carbon exchange as it significantly influences metabolism

(Anderson-Teixeira et al., 2011). In arid and hot regions, high

temperatures intensify evaporation and reduce water availability for

plants, impairing carbon sequestration of trees by reducing

photosynthesis and increasing respiration (Adams et al., 2009).

Additionally, sustained elevation in high temperatures accelerates

respiration rate and causes enzyme denaturation, further hindering

the carbon sequestration capacity of plants (Banbury Morgan

et al., 2021).

The response of NEP to meteorological conditions is intricate

due to the differential sensitivities of plant leaves, roots, and soil

microorganisms. Leaves exhibit increased photosynthesis with
Frontiers in Plant Science 11
rising temperature, while respiration is regulated by stomatal

conductance, resulting in a dynamic and adaptive response.

During the dormant season, we observed weak correlations

between NEP and daily average meteorological factors. However,

during the growing season, NEP in the Tugai forest exhibited high

sensitivity to daily variations in RH (Figure 7). This sensitivity arises

from short-term changes in canopy RH that often coincide with

thickening cloud cover or rainfall, leading to reduce solar radiation

availability and, subsequently, decreased net CO2 uptake. These

findings suggest that there were significant differences in response

mechanisms of the Tugai forest ecosystem carbon exchange to

changing meteorological conditions at various time scales.

In this study, we observed significantly diurnal variations in

meteorological conditions and NEP of the desert riparian forest.

The diurnal variations in light, temperature, and humidity regulate

the circadian rhythms of plant physiological processes and

rhizosphere microbial communities, leading to synchronous
A

B

FIGURE 11

Structural equation model representing connections between net ecosystem productivity and meteorological factors during (A) the dormant and
(B) growing season. FNEP: phase of diurnal NEP, NEPA: amplitude of diurnal NEP, Tsm: daily mean Ts, Tam: daily mean Ta, TaA: amplitude of diurnal
Ta, Rgm: daily mean Rg, FRg: phase of diurnal Rg, RHm: daily mean RH, VPDm: daily mean VPD, VPDA: amplitude of diurnal VPD. *P<0.10, **P<0.05,
and ***P<0.01.
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changes in photosynthesis and respiration, which in turn strongly

correlate with NEP at the daily scale (Gil and Park, 2019). Thus, we

conclude that meteorological factors remained the primary drivers

of ecosystem carbon exchange of the desert riparian forest at short

time scales, both half-hourly and daily, which is consistent with

previous studies (López-Blanco et al., 2017; Ma et al., 2017). It

should be noted that the synchronization of meteorological factors

with NEP does not follow a linear pattern across various time scales

(Figure 3). Overall, the findings contribute to understanding the

meteorological influences on NEP in the desert riparian forest

ecosystem, highlighting the significance of light, temperature, and

humidity dynamics at different time scales.
4.2 The effects of meteorological
conditions on NEP at daily scale

Ecosystem carbon exchange is composed of two fundamental

components: photosynthesis and ecosystem respiration. It’s

important to note that forest canopy photosynthesis does not

adhere to a linear relationship with absorbed effective solar

radiation. Moreover, its sensitivity to solar radiation is recognized

to be influenced by the proportion of diffuse radiation. As a result,

exercising caution becomes imperative when attempting to employ

uncomplicated linear light-response models to replicate

photosynthesis across both temporal and spatial scales (Running

et al., 1999; Heinsch et al., 2006). Daily integration of the

independent and dependent variables on a daily basis can

effectively linearize the complex relationship between half-hourly

photosynthesis and light (Leuning et al., 1995). This process of

linearization significantly bolsters the SEM model of NEP response

to meteorological factors that has been constructed within the

framework of this study.

As a temperate desert riparian forest, the ecosystem respiration

and photosynthesis exhibited significant variations in response to

temperature fluctuations. Moreover, the NEP in the Tugai forest

was dominated by gross primary productivity (GPP) during the

growing season and by ecosystem respiration (Reco) during the

dormant season, leading to notable seasonal variations in NEP with

temperature. When the daily Ta rises and the TaA decreases, the

increase in nighttime Ta was greater than the increase in daytime Ta

(Thorne et al., 2016). This asymmetric warming leads to increasing

soil microbial activity, soil organic carbon decomposition, and

ecosystem carbon emissions, resulting in a decrease in NEP (Xia

et al., 2014). This is consistent with the response of NEP to

temperature in this study. The inverse relationships between

temperature (including atmospheric and soil temperature) and

NEP in different seasons (Figures 8, 9) further demonstrated the

seasonal variations in carbon exchange processes in the Tugai forest

ecosystem. The direct effect of atmospheric temperature on NEP

was seasonally distinct (dormant season was larger than growing

season), but both exhibited a significant negative effect; whereas the

indirect effect was not only seasonally disparate (dormant season

was larger than growing season), but also displayed an opposite

pattern (Table 4). The main reason for the differences in NEP

response to temperature under different seasons is the different
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ecosystem processes that dominate CO2 exchange. During the

dormant season, CO2 exchange in the Tugai forest ecosystem was

primarily driven by carbon emissions from ecosystem respiration.

During the growing season, when the temperature increases, soil

respiration in the Tugai forest ecosystem was augmented along with

ecosystem photosynthesis. Due to the Kok effect, the respiration

rate of plant leaves decreased during the daytime, resulting in an

increase in NEP (Kok, 1948, Kok, 1949; Yin et al., 2020).

Ecosystem-scale indirect meteorological forcings play a crucial

role in shaping the NEP over the long term. One of the key factors

contributing to this indirect effect is the sensitivity of the NEP to

diurnal fluctuations in temperature and humidity, especially when

plants are exposed to diverse temperature and humidity regimes. In

this study, we identified temperature as the main limiting factor for

NEP in the Tugai forest during the dormant season. Increasing

temperatures enhanced ecosystem respiration, resulting in a

decrease in ecosystem carbon uptake. Conversely, during the

growing season, VPD emerged as the primary limiting factor for

NEP. Although VPD had no direct significant effect on NEP in this

study, it exerted an indirect significant influence (Table 4). The Tugai

forest, located near riverbanks within an arid desert zone, experiences

a warm growing season, often exceeding the optimal temperature for

photosynthesis. Simultaneously, VPD levels typically surpass the

optimal threshold, thereby regulating leaf stomata and inhibiting

carbon uptake. On one hand, under favorable environmental

conditions characterized by stability and less variability in

meteorological factors, plants allocate more resources to growth

and carbon assimilation, leading to an increase in net carbon

uptake. On the other hand, unfavorable environmental conditions

with unstable and highly variable meteorological factors can pose

challenges to plants. In such conditions, plants may experience

temperature stress and limited water availability, resulting in a

higher rate of forward and reverse biochemical reactions

(McDowell et al., 2008). These conditions can even lead to the

denaturation of enzymes, ultimately reducing carbon uptake.

The intricate interplay between alterations in plant physiology

and fluctuations in diurnal Ta and VPD contributes to the observed

indirect effects on NEP. A comprehensive understanding of these

complex interactions involving Ta and VPD is pivotal for

comprehending the responses of ecosystem carbon exchange to

environmental drivers. This study emphasizes the importance of

accounting for the indirect effects of rising diurnal Ta and VPD

when analyzing the seasonal variation of NEP in the desert

riparian forest.
4.3 The uncertainty analysis and
future prospects

In this study, we measured the NEP using the open path eddy

covariance system. It is well known that the sensor-path heat

exchange (SPHE) and analyzer temperature sensitivity reduce the

ability of the open path eddy covariance system to characterize the

response of ecosystem carbon exchange to radiative forcing (Burba

et al., 2008). The effect of SPHE cannot be completely eliminated

using current correction methods, such as the WPL correction,
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especially during the growing season (Deventer et al., 2021).

Therefore, despite the use of the WPL correction in this study,

the effect of SPHE may have a potential impact on the response of

forest NEP to the changing solar radiation, during both the growing

and dormant seasons. Notably, due to stable atmospheric

conditions or non-stationary high-frequency time series, gaps in

EC- flux measurements are unavoidable and require gap filling.

Current gap filling methods are all based on the changing

characteristics of the time series of flux measurements and its

response mechanism to meteorological factors. This study

employed a fully data-based machine learning method to gap

filling, preserving as much as possible the changing pattern of the

flux data and its response to meteorological factors. These aspects

are beyond the scope of this study and will be investigated in

future studies.

Forest NEP is subject to synergistic or antagonistic effects of

several factors, such as microclimate, stand age, understory species

composition, phenology, and disturbance patterns. The principal

factor determining the seasonal variation of all CO2 exchange fluxes

(NEP, GPP, and Reco) is the phenology of the understory vegetation,

and plant community structure also plays a major role in the

variation of CO2 exchange fluxes. Vegetation phenology regulates

leaf development, and the larger the leaf area, the higher the light

absorption capacity. Consequently, the CO2 uptake by

photosynthesis is also increased. Ecosystem respiration has a

strong correlation with GPP, and studies have confirmed the

strong influence of vegetation productivity on Reco (Janssens

et al., 2001). As ecosystems alter structurally and functionally

over time, possibly in response to disturbances, predicting

changes in ecosystem function will become increasingly

important (Richardson et al., 2007). Forests are more productive

and susceptible to natural and anthropogenic disturbances (e.g.,

deforestation, fire, grazing, etc.), whereas the Ebinur Lake watershed

is relatively pristine and has existed for thousands of years in its
Frontiers in Plant Science 13
present undisturbed oasis form. Tugai forests in the Ebinur Lake

basin may have evolved self-regulatory mechanisms that have

contributed to their endurance through various meteorological

regimes over time (including seasonal and interannual variability

in the area of Ebinur Lake waters) (Yang et al., 2014; Wang et al.,

2019). It also benefits from the protective policy implemented

within the national nature reserve, which ensures that the

groundwater depth of our site in the Ebinur Lake basin is

consistently maintained at less than 3 m (Yang et al., 2014).

Notably, if the groundwater depth surpasses 6 m, the Tugai

forests face a heightened risk of decline due to the impacts of

climate change (Zhou et al., 2020). If functional changes in

ecosystem responses result from adjustments to long-term

exposure to specific average meteorological conditions, then in

the short term such as 1–5 years, the direct effects of

meteorological changes can dominate changes in CO2 fluxes

(Teklemariam et al., 2010). As the protection of the Ebinur Lake

watershed is enhanced and the lake area expands, the functional

type of plants across the Ebinur Lake watershed may alter in the

future, with an increased prevalence of shrubs and trees, which will

change the CO2 fluxes in the area.

The potential for climate- or weather-induced changes in

ecosystem response functions underscores the need to interpret

measured NEP models through more than just parallel comparisons

with driving meteorological conditions. This is because such an

analysis would only capture transient dependencies between

variables (Teklemariam et al., 2010). This point is supported by

the correlation analysis between NEP and meteorological factors for

different seasons, which indicates that NEP measured during the

growing season exhibits the strongest correlation with the

meteorological conditions at the time of flux measurements

(Figure 11). Therefore, it is essential to also consider the

environmental and ecological history of the site, including the

adaptations that have taken place over time.
TABLE 4 Direct and indirect effects of meteorological factors on NEP during the dormant and growing season.

Factors

Dormant season Growing season

Direct effect Indirect effect Total
effect

Direct effect Indirect effect Total
effect

FNEP −0.182*** 0.003 −0.179*** −0.034 −0.081*** −0.116***

NEPA 0.408*** 0.408*** 0.785*** 0.785***

Tsm 0.164** −0.315*** −0.151*** 0.192*** 0.047 0.239***

Tam −0.320*** −0.142*** −0.457*** −0.136** 0.610*** 0.474***

TaA 0.049 0.040* 0.090** 0.166*** −0.073* 0.093*

Rgm 0.394*** 0.401*** 0.795*** 0.208*** 0.365*** 0.573***

FRg −0.027 0.025* −0.002 0.020 0.021 0.041

RHm 0.407*** 0.059** 0.466*** −0.118*** −0.061* −0.179***

VPDm −0.324** 0.281*** −0.043 −0.178*** −0.243*** −0.421***

VPDA 0.235** −0.111** 0.124 −0.086 −0.069 −0.155**
FNEP, phase of diurnal NEP; NEPA, amplitude of diurnal NEP; Tsm, daily mean Ts; Tam, daily mean Ta; TaA, amplitude of diurnal Ta; Rgm, daily mean Rg; FRg, phase of diurnal Rg; RHm, daily
mean RH; VPDm, daily mean VPD; VPDA, amplitude of diurnal VPD. *P<0.10; **P<0.05; and ***P<0.01.
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5 Conclusions

This study aimed to investigate the variations in NEP of a

representative desert riparian forest ecosystem across multiple

temporal scales, elucidating its relationship with meteorological

conditions. Utilizing approximately seven years of eddy covariance

flux measurements, we conducted a comprehensive examination of

the cycles exhibited by the NEP and meteorological conditions.

These cycles spanned various lengths, ranging from five hours to

one year. The NEP variations exhibited a robust correlation and

synchronization with meteorological conditions across diverse

temporal scales, with the most significant fluctuations occurring

in one-day cycle. Over the seven-year duration of our research,

these findings also revealed significant seasonal differences in the

direct and indirect responses of the NEP to the averages,

amplitudes, and phases of diurnally changing meteorological

factors at a daily scale. These variations included the differences

in the magnitude of response and even a reversal of the response

directions. The amplitude of diurnal air temperature significantly

influenced the phase of diurnal NEP in Tugai forests during the

growing season, with no notable impact on the amplitude of diurnal

NEP. However, this pattern may be inverted during the dormant

season. These findings underscore the substantial impact of

circadian rhythms induced by meteorological conditions on the

NEP of desert riparian forests at an ecosystem scale. Given the

significance of both the direct and indirect effects, as well as the

amplitude of periodic meteorological factors variations, careful

consideration is essential when assessing the ecosystem carbon

exchange of desert riparian forests. The extended time frame

allows for a more comprehensive analysis of dynamics and

strengthens the robustness of our conclusions. These findings

provide valuable insights into the complex responses of desert

riparian forests to climate change, thereby contributing to the

advancement of our scientific understanding of carbon exchange

pattern within arid and semi-arid ecosystems.
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Glossary

EC eddy covariance

GDD growing degree day

IMF intrinsic mode function

NEE net ecosystem CO2 exchange

NEP net ecosystem productivity

NEPA amplitude of diurnal net ecosystem productivity

MSC magnitude-squared coherence

Rg global solar radiation

Rgm daily average of global solar radiation

RH relative humidity

RHm daily average of relative humidity

RHA amplitude of diurnal relative humidity

SEM structural equation model

Ta air temperature

Tam daily average of air temperature

TaA amplitude of diurnal air temperature

TFA transfer function amplitude

Ts soil temperature

Tsm daily average of soil temperature

TsA amplitude of diurnal soil temperature

VPD vapor pressure deficit

VPDm daily average of vapor pressure deficit

VPDA amplitude of diurnal vapor pressure deficit

FNEP phase of diurnal net ecosystem productivity

FRg phase of diurnal Rg
F
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