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The K+ uptake permease/high-affinity K+/K+ transporter (KUP/HAK/KT) family is

the most prominent group of potassium (K+) transporters, playing a key role in K+

uptake, transport, plant growth and development, and stress tolerance. However,

the presence and functions of the KUP/HAK/KT family in Moso bamboo

(Phyllostachys edulis (Carriere) J. Houzeau), the fastest-growing plant, have

not been studied. In this study, we identified 41 KUP/HAK/KT genes (PeHAKs)

distributed across 18 chromosomal scaffolds of the Moso bamboo genome.

PeHAK is a typical membrane protein with a conserved structural domain and

motifs. Phylogenetic tree analysis classified PeHAKs into four distinct clusters,

while collinearity analysis revealed gene duplications resulting from purifying

selection, including both tandem and segmental duplications. Enrichment

analysis of promoter cis-acting elements suggested their plausible role in

abiotic stress response and hormone induction. Transcriptomic data and STEM

analyses indicated that PeHAKs were involved in tissue and organ development,

rapid growth, and responded to different abiotic stress conditions. Subcellular

localization analysis demonstrated that PeHAKs are predominantly expressed at

the cell membrane. In-situ PCR experiments confirmed that PeHAK was mainly

expressed in the lateral root primordia. Furthermore, the involvement of PeHAKs

in potassium ion transport was confirmed by studying the potassium ion

transport properties of a yeast mutant. Additionally, through homology

modeling, we revealed the structural properties of HAK as a transmembrane

protein associated with potassium ion transport. This research provides a solid

basis for understanding the classification, characterization, and functional

analysis of the PeHAK family in Moso bamboo.
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Introduction

Potassium (K+) is the second most crucial macronutrient for

plant growth, following nitrogen (N), and contributes up to 10% of

the total plant biomass (Ahammed et al., 2022). K+ transportation

in plants primarily occurs through potassium transporter and ion

channel protein families (Castillo et al., 2015; Li et al., 2018).

Among these transporter protein families, the KUP/HAK/KT

family (abbreviated as HAK) is the largest and plays a crucial role

in mediating intracellular K+ accumulation for maintaining plant

growth and development (Ahn et al., 2004; Véry et al., 2014). HAK

operates as a K+/H+ symporter, enhancing K+ uptake in plants by

coupling high-affinity potassium translocation with H+ currents

(Santa-Marıá et al., 2018; Sze and Chanroj, 2018) and typically

consist of 10-14 transmembrane domains (TM) with a long loop in

the second to third transmembrane region. Both the C- and N-

terminal ends of HAK proteins are located inside the cell, with the

C-terminus being longer than the N-terminus. These terminal ends

are critical for ion recognition, binding, and regulating the rate of

potassium ion transport and ion homeostasis inside and outside the

cell (Li et al., 2018; Santa-Marıá et al., 2018).

HAK are responsible for K+ uptake and transport in various

plant species (Mäser et al., 2001; Yang et al., 2009; Zhang et al.,

2012; Cai et al., 2021)and mediate K+ translocation in different

tissues (Martinez-Cordero et al., 2004; Boscari et al., 2009; Yang

et al., 2014; Chen et al., 2015, 2019). For example, in Arabidopsis,

AtHAK5 and AtKT1 are the primary members and responsible for

K+ uptake in the root system. AtHAK5 is involved in high-affinity

K+ uptake, especially in external low potassium (<10 µM), and it

maintains high expression levels even after one week of K+

starvation treatment (Gierth et al., 2005; Rubio et al., 2008; Ragel

et al., 2015), suggesting that AtHAK5 promotes K+ uptake by

Arabidopsis roots. On the other hand, AtKT1 mediates K+ uptake

under low K+ conditions (Quintero and Blatt, 1997). OsHAK1 is

pivotal in mediating K+ uptake and translocation across both K+

uptake systems, accounting for approximately 50-55% of K+ uptake

at external K+ concentrations of 0.05-0.1 mM, and about 30% at 1

mM (Chen et al., 2015). OsHAK5, prominently expressed in the

root epidermis, mesocotyls, and vascular tissues, is integral not only

to K+ acquisition but also to the transfer of K+ from roots to shoots,

especially under conditions of low external K+ (Yang et al., 2014). In

barley, HvHAK4 is involved in K+ uptake and translocation to

leaves, where it ensures a higher concentration of chloroplastic K+

compared to that in the epidermis (Boscari et al., 2009; Cuin et al.,

2011). A recent study has shown that rice phloem K+ loading and

transport is dependent on OsHAK18, which mediates both

potassium and sodium cycling and sugar transport in rice (Peng

et al., 2023).

The sensing of changes in external or internal K+

concentrations is key to regulating K+ homeostatic balance

(Adams and Shin, 2014). In the K+ starvation signaling pathway,

reactive oxygen species (ROS), Ca2+, and phytohormones are

known regulatory signals (Shin and Schachtman, 2004; Amtmann

and Armengaud, 2007; Li et al., 2018). In Arabidopsis, AtHAK5

expression is modulated by ethylene signaling, which enhances ROS

production, leading to increased AtHAK5 expression and K+
Frontiers in Plant Science 02
accumulation under low-potassium conditions, thus elevating the

K+/Na+ ratio (Jung et al., 2009; Kim et al., 2010). Furthermore, ROS

production is regulated by various oxidative enzymes and

peroxidases. For instance, the peroxidase RCI3 (rare cold

inducible gene 3) regulates ROS production in the absence of K+,

affecting AtHAK5 expression (Kim et al., 2010). Further studies

have revealed that the GCC-box site in the AtHAK5 promoter binds

to the transcription factor AP2/ERF (Kim et al., 2012). This factor’s

expression is influenced by ROS, ethylene, and low potassium levels,

playing a role in root growth and K+ uptake (Kim et al., 2012; Li

et al., 2018). Similar to the inwardly rectifying potassium channel

AKT1, AtHAK5 is co-regulated by the calcium-regulated signal CBL

(Ca2+ sensors calcineurin B-like) and the protein kinase CIPK

(CBL-interacting protein kinase), which are involved in high-

affinity K+ uptake in Arabidopsis roots (Ragel et al., 2015;

Scherzer et al., 2015). Additionally, the C-terminus of AtKUP6 is

influenced by ABA (abscisic acid) signaling. It is phosphorylated by

SRK2E (SNF1-related protein kinases 2E), a protein kinase from the

PYR (pyrabactin resistance) family of ABA signaling receptors,

playing a role in ABA-mediated stomatal closure under water stress

(Osakabe et al., 2013). This intricate network of signaling pathways

and molecular interactions underscores the complexity of

maintaining K+ uptake and transport in plants.

In addition to their involvement in K+ uptake, transport, and

translocation, stress-induced HAK expression also regulates stress

tolerance, and plant growth and development (Li et al., 2018; Huang

et al., 2019; Yang et al., 2020; Ankit et al., 2022). Despite the

inhibitory effect of high Na+ concentrations on HAK expression

(Nieves-Cordones et al., 2008), AtHAK5 in Arabidopsis can still

uptake K+ even at high Na+ concentrations (Gobert et al., 2006;

Rubio et al., 2008). Other HAK members, such as AtKUP6,

AtKUP11, SlHAK20, OsHAK1, OsHAK5, and OsHAK21 (Gobert

et al., 2006; Rubio et al., 2008; Wang et al., 2020), play a crucial role

in maintaining K+/Na+ homeostasis and enhancing stress tolerance

in plants (Yang et al., 2014; Chen et al., 2015; Shen et al., 2015;

Wang et al., 2020). AtKUP4 is essential for correctly positioning the

PIN1 protein at the root tip, with mutations in AtKUP4 disrupting

growth hormone distribution and efflux rates (Rigas et al., 2013;

Daras et al., 2015). It is believed that AtKUP4 acts as a vital link

between root hair development and environmental/hormonal

signaling, crucial for maintaining growth hormone balance during

environmental adaptation in plants (Ahn et al., 2004; Rigas et al.,

2013; Daras et al., 2015; Li et al., 2018). Additionally, mutations in

OsHAK1, OsHAK5, OsHAK16, AtHAK5, and SiHAK1 have been

observed to adversely affect root development, characterized by

delayed root growth, growth inhibition, and reduced germination

rates (Yang et al., 2014; Zhang et al., 2018; Feng et al., 2019).

Although the essential functions of HAK genes have been

characterized in several plant species, the mechanisms governing

HAK regulation remain poorly understood.

Moso bamboo, a large and rapidly-growing woody bamboo

species, is widely distributed in East and Southeast Asia (Song et al.,

2020). This species holds significant cultural, ecological value,

industrial, and economic value (Pan et al., 2017; Chen et al.,

2022). Due to its high productivity, strength, and abundance of

resources, Moso bamboo finds extensive applications in renewable
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energy, construction, food, and medicine (Ramakrishnan et al.,

2020). However, the HAK gene family of Moso bamboo

remains unexplored.

Considering the vital functions of HAK in plant growth and

development, this study focused on identifying putative PeHAKs at

the genome-wide level and analyzed their chromosomal locations,

phylogenetic relationships, gene structures, conserved domains,

motifs, cis-elements, and synteny. Additionally, we investigated

the subcellular and tissue localization of these genes, performed

protein homology modeling, and explored the potential K+ pore

section. Furthermore, we examined the expression profiles of

PeHAKs in different tissues, under various plant hormone

treatments, and in response to diverse abiotic stresses. Notably,

our findings suggested the direct involvement of HAK in rapid

growth and shoot development. This work provides valuable

insights into PeHAK gene functions related to tissue growth and

organ development in Moso bamboo.
Materials and methods

Identification and physicochemical
properties of the HAK gene family

The genome files for the Moso bamboo genome were

downloaded from public databases. The Hidden Markov Model

(HMM) of the K-Trans protein signature structural domain

(PF02705) of the HAK gene family was downloaded from the

Pfam database (http://pfam.xfam.org/). The local-protein database

(E ≤ 10-20) was searched using HMMER3 (http://hmmer.org/)

(Finn et al., 2011), and the protein structural domains were

validated using CCD (https://www.ncbi.nlm.nih.gov/cdd) (Finn

et al., 2016).

Additionally, transmembrane structures were predicted using

TMHMM-2.0 (https://services.healthtech.dtu.dk/services/TMHMM-

2.0/). Genes that did not exhibit the characteristic features of the

HAK family, primarily due to the presence of atypical or residual

transmembrane structural domains, were excluded. This process

resulted in the identification of candidate gene families more

representative of typical HAK family characteristics (Cai et al.,

2021). The basic information of the candidate gene family, such as

protein length, molecular weight, isoelectric point, and instability

coefficient, was predicted by ProtParam(https://web.expasy.org/

protparam/), and the signal peptide and subcellular localization

were predicted using SignalP 4.1 online software server and WoLF

PSORT(https://www.genscript.com/tools/wolf-psort), respectively

(Gasteiger et al., 2005).
Phylogenetic analysis of the HAK
gene family

Twenty-seven amino acid sequences of HAK from rice and 13

amino acid sequences of HAK from Arabidopsis were obtained from

the rice genome database RGAP (http://rice.plantbiology.msu.edu/)

and the Arabidopsis database TAIR (https://www.arabidopsis.org/),
Frontiers in Plant Science 03
respectively. These sequences were aligned with Moso bamboo

sequences using ClustalX2.1 software, and the sequence alignment

results were used to construct a phylogenetic tree using MEGA11

software with the Maximum likelihood (ML) method and 1000

bootstrap replicates for evaluation.
Analysis of conserved structural domains,
motifs, and gene structures

The conserved structural domains and motifs of HAK family

members were predicted using online resources, including NCBI

(Marchler-Bauer et al., 2005) and MEME (Bailey et al., 2006). Gene

structures were created using TBtool software by annotating the

moso bamboo genome files downloaded from GigaDB (https://

ngdc.cncb.ac.cn/databasecommons/database/id/4151) (Ma et al.,

2018; Huang et al., 2021).
Analysis of cis-acting elements in
PeHAK promoters

The promoter sequence of each PeHAK gene, consisting of a

1500 bp upstream nucleotide sequence, was retrieved. To identify

cis-acting elements within the promoter regions, the PlantCARE

online database (https://bioinformatics.psb.ugent.be/webtools/

plantcare/html/) was used. The results were sorted, enriched

through screening, and visualized accordingly (Yang et al., 2020;

Cai et al., 2021).
Chromosome distribution, collinearity
analysis, and Ka/Ks ratio

The positional information and chromosome lengths of HAK

gene members from P. edulis, O. sativa, Z. mays, and B. distachyon

were obtained from MG2Cv.2 (http://mg2c.iask.in/MG2C_v2.0/)

(Chao et al., 2015; Yang et al., 2023). These data were compared and

visualized through covariance analysis using the Multiple Co-linear

Scanning Toolkit (MCScanX) (Wang et al., 2012). In Moso

bamboo, 17 homologous gene pairs were identified through

intraspecific covariance BLAST. Subsequently, the identified gene

pairs underwent Ka/Ks analysis. To calculate synonymous

substitution rates (Ks), non-synonymous substitution rates, and

Ka/Ks ratios for the HAK genes, the Moso bamboo-specific

differentiation time equation T = Ks/2l was employed, where l
represents 6.5 × 10^-9, the estimated evolutionary differentiation

time for Moso bamboo (Li et al., 1987; Peng et al., 2013). The

KaKs_Calculator2 tool was used for the computation of these rates

and ratios (Chen et al., 2023).
Expression analysis of PeHAK genes

Gene expression datasets of roots, rhizomes, panicles, and

leaves of Moso bamboo were acquired from the EMBL database
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(PRJEB2956). Transcriptome data of the shoot tissues at 0.5, 1, 2, 3,

5, 6, and 7 meters were downloaded from the NCBI-SRA database

(PRJNA414226). Additionally, transcriptome data of the seedling

root tissues treated with 5 mM gibberellin (GA) and 5 mM
naphthalene acetic acid (NAA) were obtained from the NCBI-

SRA database (PRJNA413166). These datasets were used to

calculate the expression abundance of PeHAKs separately,

measured as transcripts per million reads (TPM) values

(Supplementary Table 3). For statistical convenience, each

expression TPM value was log2 (TPM+1) transformed, and TBtools

was used to create a gene expression heatmap (Lama et al., 2020).

Furthermore, trend analysis of PeHAKs gene expression during the

rapid growth of Moso bamboo shoots was performed using the

STEM (Short Time-series Expression Miner) clustering method

(Ernst and Bar-Joseph, 2006).
Plant material, RNA extraction, and qRT-
PCR analysis of genes

Moso bamboo seeds were harvested from Guilin, Guangxi,

China, and seedlings were cultured in a greenhouse for one

month with a 16 h light/8 h dark photoperiod and an average

temperature of 22°C.One-month-old healthy Moso bamboo

seedlings were selected to analyze the expression pattern of

PeHAK genes under abiotic stress treatments. To mimic drought

and salt stress conditions, we introduced 30% PEG6000 and 200

mM NaCl into the hydroponic nutrient solution for Moso bamboo,

respectively (Zhang et al., 2022). Additionally, for high and low-

temperature treatments, seedlings were placed in a light incubator

at 42°C and 4°C for 0 h, 3 h, 6 h, 12 h, and 24 h, respectively.

Three biological replicates were collected for each treatment and

control. The samples were immediately frozen in liquid nitrogen and

stored at -80°C for further analysis. Total RNA was extracted from

each sample using the FastPure Plant Total RNA Extraction Kit

(Vazyme Company, China). The first-strand cDNA was synthesized

using the HiScript® III 1st Strand cDNA Synthesis Kit (+gDNAwiper)

(Vazyme Company, China), where the gDNA wiper was utilized to

eliminate DNA contamination. Specific primers were designed using

Beacon Designer 7.0, and all primer sequences are listed in

Supplementary Table 2. We selected PeNTB, a gene exhibiting stable

expression across various Moso bamboo tissues, as our preferred

internal reference gene for the study (Fan et al., 2013), and qRT-PCR

analysis was performed on three replicates of each sample using a

CFX-96 Real-Time system (Bio-Rad, United States). Relative gene

expression was calculated using the 2(-DDCT) method (Livak and

Schmittgen, 2001) and expressed as the mean ± standard deviation

(SD). The significance of differences was assessed using ANOVA (one-

way analysis of variance) and visualized using GraphPad Prism 7.
Gene ontology enrichment analysis

Gene ontology (GO) is used to fully characterize the properties

and products of genes in an organism. GO encompasses three

different ontologies, describing the molecular function, cellular
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component, and biological process of genes (Harris et al., 2004).

To investigate the involvement of PeHAKs in biological processes,

GO enrichment prediction was performed using online software

(https://cloud.majorbio.com/) (Thomson et al., 2019).
Subcellular and tissue localization analysis

The subcellular localization of PeHAKmembers was predicted to

be at the cell membrane. To validate this localization, the full-length

CDS sequence was amplified using a seamless PCR cloning technique.

The resulting fragment was then ligated into the pCAMBIA1300-35S-

GFP vector containing the green fluorescent protein (EGFP) reporter

gene and driven by the 35S promoter, using NovoRec® plus One step

PCR Cloning Kit(No:NR005) (Novoprotein, Shanghai, China). After

successful cloning, the recombinant vector was transformed into

Agrobacterium tumefaciens GV3101 and injected into 5-week-old

Nicotiana benthamiana leaves (Ma et al., 2021). The green

fluorescence was observed using a confocal laser microscope

(Olympus, Tokyo, Japan).

For tissue localization analysis, root tip sections of one-month-

old Moso bamboo seedlings were collected. The sections were

embedded and fixed in 5% agarose and then cut into 50-mm-thick

sections using a microtome. The tissue sections were collected in

200mL tubes and subjected to DNase I enzyme treatment (37°C,

45min). Afterward, reverse transcription and PCR were carried out

using an in-situ PCR system, and the resulting cDNAs were

amplified with gene-specific primers (Supplementary Table 4).

Subsequently, the samples were washed and incubated with

alkaline phosphatase-conjugated anti-digoxin Fab fragments. Color

development using the BM purple AP substrate was performed in

the dark. Positive controls were conducted using PeACT, while

negative controls omitted the reverse transcription step (RT).
Validation of potassium ion
transport properties

To validate the potassium transport activity of HAK, we

selected the highly expressed PeHAK37 and the lowly expressed

PeHAK04 genes in abiotic stress experiments for yeast-deficient

complementation experiments. The complete coding sequences of

PeHAK04 and PeHAK37 were amplified by PCR, and the P416

expression vector was successfully constructed and ligated through

double digestion (Supplementary Table 4). The PeHAK04-P416

and PeHAK37-P416 plasmids were extracted and transformed into

the K+ uptake-deficient strain R5421 of Saccharomyces cerevisiae

(Zhang et al., 2020). Positive clones were selected along with yeast

transformants carrying the empty vector and recombinant plasmid,

based on consistent growth. These transformants were then

incubated overnight in -Ura liquid medium at 28°C and 200rpm

until they reached an OD600 value of 0.5. Subsequently, they were

incubated on different solid AP media with varying concentrations

of K+ (1 mM, 10 mM, and 100 mM) at both 28°C and a high

temperature of 37°C. Similarly, they were also incubated on AP

medium (5 mM) with different concentrations of Na+ (10 mM,
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50 mM, 250 mM, 500 mM) at 28°C. Colony growth was observed,

and photographs were taken (Liu et al., 2019).
Protein tertiary structure analysis

HAK proteins are integral in facilitating the transmembrane

transport of substances. Within this protein family, PeHAK25

stands out as a potential candidate due to its characteristic

transmembrane structure. To further characterize its properties,

we selected PeHAK25 for comprehensive analyses, including

tertiary structure modeling and functional prediction. To predict

and analyze the protein’s surface hydrophilicity and electrostatic

potential distribution, Discovery Studio (https://www.3ds.com/)

was employed. Additionally, PoreWalker software (https://

www.ebi.ac.uk/thornton-srv/software/PoreWalker/) (Pellegrini-

Calace et al., 2009) was utilized to predict the pore morphology.
Results

Identification of the HAK gene family

The HMM was used to search for potential family members,

resulting in the identification of 55 candidates. The subsequent

screening revealed the presence of 41 PeHAK family members

(Table 1). Gene names ranging from PeHAK1 to PeHAK41 were

assigned based on their chromosomal position. The corresponding

amino acid sequences were subjected to bioinformatics analysis,

including an assessment of their physicochemical properties. The

results showed that PeHAK lengths ranged from 390 to 1252 amino

acids (aa). The largest protein had a molecular weight of 137.99 kD,

while the smallest protein weighed 58.22 kD, with an average

molecular weight of 85.95 kD. The lengths of the amino acid

sequences ranged from 83 to 403 aa. The isoelectric points of the

proteins fell within the range of 6.95 to 9.13. Among the family

members, 39 proteins were classified as basic (theoretical isoelectric

points > 7), while 2 were considered acidic (theoretical isoelectric

points < 7). The analysis indicated that the majority of Moso

bamboo HAK family members encoded basic proteins.

Furthermore, the assessment of aliphatic amino acid indices

revealed that the proteins in this family exhibited thermal stability

ranging from 98.45 to 117.03, indicating relatively high thermal protein

stability. Signal peptide analysis of the 41members identified PeHAK18

as the only protein with a signal peptide. All 41 proteins were found to

possess predicted transmembrane segments (ranging from 9 to 14),

suggesting their localization at the cytoplasmic membrane or in the

vacuole. This localization pattern is consistent with the transmembrane

transport function performed by HAK proteins.
Classification and phylogenetic analysis of
the HAK gene family

Phylogenetic analysis was conducted using the full-length

sequences of HAK proteins from Arabidopsis (13 proteins), rice
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(27 proteins), and Moso bamboo (41 proteins) (Figure 1). The

analysis revealed four major clusters, each further divided into

subclusters A and B. Among the PeHAKs, cluster I contained 14

members (IA, and IB), cluster II contained 16 members (IIA, and

IIB), cluster III contained 5 members (IIIA, and IIIB), and cluster

IV contained 6 members (IVA, and IVB). These members exhibited

an uneven distribution between monocotyledons and dicotyledons.

Notably, cluster I and cluster II had the highest representation

among Moso bamboo HAK proteins, accounting for 73.17% of

all PeHAKs.

In the IA branch of the evolutionary tree, PeHAK40, PeHAK39,

PeHAK38, PeHAK30, PeHAK3 and PeHAK25 clustered with the

identified plant high-affinity potassium transporter genes AtHAK5,

OsHAK01 and OsHAK05, and it is speculated that they may have

similar functions in moso bamboo. Interestingly, Arabidopsis HAK

genes did not cluster in the IV cluster, whereas four rice genes

(OsHAK04, OsHAK06, OsHAK17, and OsHAK26) and six Moso

bamboo genes (PeHAK16, PeHAK17, PeHAK18, PeHAK20,

PeHAK27, and PeHAK35) were grouped in the IV cluster.
Conserved structural domain, motifs, and
gene structure

To gain a deeper understanding of the classification and

structural composition of PeHAKs, we analyzed their motifs,

domains, and gene structures. Based on the conserved motifs and

structural domains in PeHAK protein sequences, PeHAKs were

classified into four clusters (Figure 2A), which aligned well with the

results of the phylogenetic analysis. We identified ten conserved

motifs in PeHAK sequences, and all members exhibited these motifs

except for PeHAK34, PeHAK13, PeHAK03, PeHAK36, and

PeHAK16, which exhibited partial deletions of the conserved

motifs (Figure 2B). Additionally, we observed that all PeHAKs

possess a motif known as the K_trans superfamily (Figure 2B),

except for PeHAK12, which contains a PLN03081 superfamily

motif at the C-terminal. These findings indicate a high degree of

conservation in PeHAK motifs and domains. However, the gene

structure of PeHAKs exhibits significant variability, with 1-10 exons

and 2-10 introns (Figure 2C).
Chromosomal localization and duplications
of the PeHAK genes

The distribution of PeHAK genes in Moso bamboo showed an

uneven presence across 18 out of the 24 chromosome scaffolds.

Scaffold13 and scaffold24 exhibited the highest number of

occurrences, while PeHAK genes were absent in scaffold1,

scaffold2, scaffold11, and scaffold12. Notably, scaffold13,

scaffold21, and scaffold24 contained clusters of three or four

genes (Figure 3A). Gene duplication events play a crucial role in

the emergence of novel functional genes and species evolution. In

this study, we employed MCScanX genomic co-linear analysis and

identified 17 gene pairs resulting from fragment duplication and 22

PeHAK whole genome duplications (WGDs), accounting for 53.7%
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TABLE 1 Information on HAK family genes in the moso bamboo.

Gene name Gene ID Chromosomal locus
MW
(kDa)

PI AI GRAVY SP TMS PL

PeHAK01 PH02Gene16473.t1 s3:90593551:90599713:+ 85.73 8.21 106.65 0.341 No 13 Va

PeHAK02 PH02Gene36140.t1 s3:2050573:2066804:+ 88.03 8.7 108.5 0.363 No 13 Va

PeHAK03 PH02Gene37387.t1 s3:1831590:1834426:+ 58.22 8.66 108.85 0.397 No 9 CM. Va.

PeHAK04 PH02Gene17972.t1 s4:2129298:2133056:+ 87.23 7.6 110.13 0.34 No 11 Va

PeHAK05 PH02Gene21781.t1 s4:2943291:2957241:+ 87.10 8.88 108.18 0.422 No 12 Va

PeHAK06 PH02Gene47873.t1 s4:59157646:59163271:+ 97.42 8.87 103.44 0.243 No 11 Va

PeHAK07 PH02Gene05312.t1 s6:22303148:22308774:- 84.93 8.32 108.39 0.357 No 12 Va

PeHAK08 PH02Gene34335.t1 s6:31283470:31295353:- 83.01 8.93 108.24 0.41 No 12 CM. Va

PeHAK09 PH02Gene40368.t1 s6:38250843:38255664:+ 89.29 8.55 104.58 0.321 No 11 Va

PeHAK10 PH02Gene17438.t1 s8:72047466:72069902:+ 93.12 8.84 105.26 0.299 No 12 CM. Va

PeHAK11 PH02Gene32783.t1 s8:27305838:27310995:- 84.93 8.03 109.4 0.366 No 12 Va

PeHAK12 PH02Gene43347.t1 s8:62953070:62958858:- 137.99 8.65 98.45 0.235 No 10 Va

PeHAK13 PH02Gene03090.t1 s9:23799715:23801479:- 43.33 9.1 122.38 0.781 No 9 Va

PeHAK14 PH02Gene47801.t1 s10:55908562:55916991:- 98.11 8.78 106.49 0.288 No 12 Va

PeHAK15 PH02Gene16598.t1 s13:46032872:46037359:+ 88.50 8.32 108.78 0.39 No 14 Va

PeHAK16 PH02Gene37003.t1 s13:60323255:60325485:- 71.96 8.78 111.3 0.43 No 10 CM. Va

PeHAK17 PH02Gene37200.t1 s13:53227805:53234548:- 82.38 8.4 107.63 0.395 No 12 CM. Va

PeHAK18 PH02Gene47464.t1 s13:60460057:60463029:- 79.07 9.05 109.47 0.405 Yes 9 CM. Va

PeHAK19 PH02Gene09194.t1 s14:83247886:83254170:+ 87.51 9.13 108.53 0.414 No 13 CM. Va

PeHAK20 PH02Gene14233.t1 s14:82647983:82650945:- 76.76 8.55 101.67 0.393 No 10 CM. Va

PeHAK21 PH02Gene28171.t1 s14:15526314:15530403:- 81.21 7.64 104.73 0.389 No 11 Va

PeHAK22 PH02Gene26505.t1 s15:44319072:44325299:- 87.85 6.73 108.27 0.335 No 11 CM. Va

PeHAK23 PH02Gene40424.t1 s15:20355020:20369994:+ 90.10 8.87 108.65 0.302 No 11 CM. Va

PeHAK24 PH02Gene47195.t1 s15:19165715:19170114:+ 90.87 8.78 108.86 0.305 No 11 Va

PeHAK25 PH02Gene12083.t2 s16:5992929:5998273:- 87.22 8.84 106.69 0.297 No 12 CM. Va

PeHAK26 PH02Gene08121.t2 s17:14661448:14667154:- 85.68 8.35 108.91 0.383 No 13 Va

PeHAK27 PH02Gene16414.t1 s18:39130195:39152028:- 79.26 8.98 106.6 0.381 No 11 CM. Va

PeHAK28 PH02Gene17639.t1 s19:23944880:23950239:- 87.10 8.57 107.43 0.404 No 13 Va

PeHAK29 PH02Gene19068.t1 s19:26122442:26126331:- 87.09 8.34 111.88 0.352 No 11 Va

PeHAK30 PH02Gene48788.t1 s20:2051844:2055146:- 83.30 8.57 103.59 0.339 No 12 CM. Va

PeHAK31 PH02Gene12427.t1 s21:69969721:69976204:- 87.31 6.95 109.12 0.365 No 12 Va

PeHAK32 PH02Gene40148.t1 s21:44584712:44589587:+ 94.33 9.04 110.58 0.332 No 12 CM. Va

PeHAK33 PH02Gene41444.t1 s21:44224269:44230516:- 90.14 8.49 111.78 0.313 No 10 CM. Va

PeHAK34 PH02Gene41445.t1 s21:44072677:44077215:- 83.92 8.76 109.15 0.385 No 11 CM. Va

PeHAK35 PH02Gene15453.t1 s22:8538417:8545286:- 82.63 8.19 106.57 0.399 No 12 CM. Va

PeHAK36 PH02Gene01748.t4 s23:11534415:11538274:+ 82.90 9.03 117.03 0.56 No 12 CM. Va

PeHAK37 PH02Gene01771.t1 s23:11000240:11008737:+ 88.39 7.83 111 0.379 No 13 CM. Va

PeHAK38 PH02Gene29364.t1 s23:43326384:43329523:- 86.73 9.09 105.99 0.271 No 13 Va

(Continued)
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of the total (Figure 3A). Genome synteny analysis of moso bamboo

and three graminaceous model plants revealed that 50, 44, and 31

moso bamboo HAK genes were homologous to HAK genes of O.

sativa, Z. mays, and B. distachyon. Interestingly, among the three

graminaceous species, homologs of HAK genes in Z. mays and B.

distachyon were found in different scaffolds from moso bamboo,

except for O. sativa chromosomes 9-12(Figures 3B-D).

To examine the evolution limits and the selection effects on

PeHAK genes, we calculated Ka, Ks, and Ka/Ks values for 17

homologous PeHAK gene pairs (Supplementary Table 2). The

synonymous substitution rate (Ks) represents the background

base substitution rate and can be used to predict genome-wide

duplication events. The Ks values of PeHAK gene pairs ranged from

0.0169 to 0.1111, suggesting that large-scale gene duplication events

occurred as early as 54.903 million years ago and as recently as
Frontiers in Plant Science 07
8.0480 million years ago. Furthermore, all the Ka/Ks values for the

gene pairs were below 1.0, which implies that these HAK genes

underwent strong purifying selection during their evolution.
Promoter characterization of PeHAKs

To analyze the cis-acting elements present in the 1500 bp

upstream sequence of each PeHAK gene, they were categorized

into five categories (Figure 4). The most abundant category was the

promoter/enhancer element (52%), followed by stress (14%),

hormone response (14%), development/tissue specificity (12%),

and light responsiveness (8%) (Figure 4A). Within the Promoter/

enhancer element category, two prevalent elements responsible for

transcriptional efficiency were identified in PeHAKs: RNA
TABLE 1 Continued

Gene name Gene ID Chromosomal locus
MW
(kDa)

PI AI GRAVY SP TMS PL

PeHAK39 PH02Gene08938.t1 s24:30574668:30584952:+ 88.75 8.88 109.86 0.29 No 11 Va

PeHAK40 PH02Gene08939.t1 s24:30530041:30533157:+ 86.37 8.93 103.76 0.277 No 12 CM. Va

PeHAK41 PH02Gene22019.t1 s24:62929248:62935856:- 88.30 7.25 111.13 0.394 No 13 Va
front
MW,molecular weight; PI, isoelectric point; AI, aliphatic index; GRAVY, grand average of hydropathicity score; SP, signal peptide; TMS, transmembrane domain; PL, predicted location; CM, cell
membrane; Va, vacuole.
FIGURE 1

Phylogenetic analysis of HAK family proteins from rice (O. sativa), Moso bamboo (P. edulis), and A. thaliana. The HAK family proteins were classified
into four clusters, denoted by different colors. Cluster I, II, III, and IV are represented by yellow, purple, green, and, red clusters, respectively.
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polymerase binding sites and CAAT-boxes (53%), followed by

TATA-boxes (41%). These elements play a crucial role in

controlling the initiation and expression levels of PeHAK. Among

the light responsiveness elements, the promoter G-box (49%) was

widely distributed and commonly found in light-controlled genes

and those regulated by environmental factors. It was followed by

Box4 (14%) and Sp1 (14%). PeHAK promoters were found to

contain hormone response cis-elements, including ABRE (36%),

as-1 (19%), CGTCA motifs (18%), and TGACG motifs (18%),

which are involved in abscisic acid (ABA), salicylic acid (SA), and

methyl jasmonate (MeJA) responses, respectively (Figures 4B, C).

Among the development/tissue specificity elements, Myb was the

most abundant. Interestingly, all members of PeHAK contain Myb

elements, suggesting that Myb is extensively involved in growth and

development regulated by PeHAK (Dubos et al., 2010).
Transcription profiles of PeHAK genes

The expression patterns of PeHAK genes in various tissues of

Moso bamboo were investigated based on published transcriptome

data. The results revealed significant differential expression of
Frontiers in Plant Science 08
PeHAKs across different tissues (Figure 5A). More than half of

the genes exhibited expression in Moso bamboo tissues. Specifically,

PeHAK01, PeHAK02, PeHAK04, PeHAK19, PeHAK28, and

PeHAK40 remained highly expressed in different tissues.

Conversely, PeHAK15 and PeHAK22 showed lower expression in

Moso bamboo panicles but the higher expression in other tissues.

PeHAK09, PeHAK19, and PeHAK31 exhibited lower expression in

roots compared to other tissues. Notably, PeHAK04 and PeHAK37

were highly expressed in Moso bamboo roots, suggesting their

potential involvement in tissue development and nutrient uptake.

Only a small proportion of PeHAK genes showed no expression or

low expression in Moso bamboo leaves.

Further analysis of gene expression during different

germination stages (Figure 5B) revealed dynamic expression

patterns of many PeHAK genes. They displayed low expression in

0.2m shoots, higher expression in 0.5m shoots, and intermediate

expression in 1m shoots. As the shoots grew beyond 1m, an

increasing number of PeHAK genes exhibited high expression

levels. However, PeHAK04, PeHAK22, and PeHAK29 showed a

down-regulation trend in shoots of different heights. These findings

indicate that these specific PeHAKs are expressed during the rapid

growth phase of shoots, suggesting their important roles during this
A B C

FIGURE 2

Phylogenetic relationship and sequence characteristics of PeHAK proteins. (A) Phylogenetic analysis of PeHAK proteins. (B) Conserved motifs and
domains of PeHAK proteins. Conserved domains and motifs are indicated on the upper side and lower side of protein sequences, respectively. (C)
PeHAK gene structures. Introns and exons are represented by black lines and green boxes, respectively.
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period. In terms of hormone treatments, the response of PeHAK

genes to gibberellic acid (GA) treatment was investigated.

PeHAK03, PeHAK04, PeHAK05, PeHAK09, PeHAK11, PeHAK14,

PeHAK19, and PeHAK37 were down-regulated compared to the

control (Figure 5C), indicating that their expression was inhibited

by GA treatment. Conversely, PeHAK01, PeHAK28, and PeHAK40

were up-regulated with GA treatment (Figure 5C), but down-

regulated with naphthalene acetic acid (NAA) treatment

(Figure 5D), suggesting individual variations in the expression of

PeHAK genes in response to different hormones.
The analysis of short time-series
expression miner

The gene expression data was analyzed using STEM, a tool that

clusters, compares, and visualizes gene expression patterns across

different time points. The analysis revealed 10 distinct gene

expression profiles (Figure 6A). Interestingly, two groups of

expression profiles showed contrasting patterns. Profile 0
Frontiers in Plant Science 09
consisted of seven PeHAK genes, all of which displayed a negative

correlation with shoot height (Figure 6B). On the other hand,

profile 9 comprised five PeHAK genes that exhibited a positive

association with the height of Moso bamboo shoots (Figure 6C).
Expression patterns of PeHAK in response
to abiotic stresses

To determine the impact of different abiotic stress conditions on

PeHAK gene expression, we investigated the effects of high

temperature (42°C), low temperature (4°C), drought stress (30%

PEG6000), and salt stress (200 mM NaCl) on PeHAK gene

expression. All four abiotic stresses influenced PeHAK gene

expression to varying extents. High-temperature treatment

significantly increased the expression of PeHAK22 and PeHAK37

(Figure 7A), while it had no discernible effect on the expression of

the other genes. Under low-temperature treatment, except for

PeHAK04, the expression of PeHAK09, PeHAK19, PeHAK22,

PeHAK31, and PeHAK37 was down-regulated (Figure 7B).
A B

DC

FIGURE 3

Synteny analysis of the PeHAK genes. (A) Chromosome distribution and inter-chromosomal relationships of the PeHAK genes. Tandem duplicated
genes are set off by a red background. Scale bars represent the number of DNA bases in Mb. (B–D) Synteny analysis of PeHAK genes in P. edulis and
three other model plants (O. sativa, Z. mays, and B. distachyon). Gray lines represent aligned blocks between the paired genomes, blue, orange and
purple lines indicate syntenic HAK gene pairs. Pe, P. edulis. Os, Oryza sativa. Zm, Z. mays. Bd, (B) distachyon.
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However, there was an initial induction of expression at 3 h and 6 h,

followed by down-regulation, indicating a pattern of induction

followed by inhibition. In response to drought treatment,

PeHAK09 and PeHAK19 were up-regulated, particularly after

24 h of treatment (Figure 7C). On the other hand, PeHAK31 and

PeHAK37 showed varying degrees of down-regulation in expression

following drought treatment. Further analysis revealed that the

expression of the other four genes was up-regulated following

exposure to salt stress for 12 and 24 h (Figure 7D). Among them,

PeHAK37 exhibited significantly higher expression compared to the

control, while PeHAK09 showed only a slight difference in

expression. PeHAK04 demonstrated an expression pattern of

induction followed by suppression. These results indicate that

different stress conditions affect PeHAK gene expression in Moso

bamboo, with each stress condition eliciting unique expression

patterns for specific genes.
GO enrichment analysis

To gain insights into the biological roles of the 41 PeHAK genes,

we performed GO annotation and enrichment analysis. The top 20
Frontiers in Plant Science 10
GO terms are shown in Figure 8. The results of the GO enrichment

analysis showed that PeHAKs are predominantly involved in

potassium ion transmembrane transport, potassium ion

transmembrane transporter activity, and potassium ion transport.

This suggests that the main function of PeHAK genes is related to

potassium ion transport. Additionally, we observed that the term

“transport” occurs frequently in the functional module, indicating

the involvement of several genes from the HAK family in ion

transport. Notably, some of these genes were associated with

sodium ion transporter activity, consistent with previous studies

highlighting the role of PeHAKs in sodium ion transport (Li

et al., 2018).
Subcellular localization of PeHAK proteins

To confirm the subcellular localization of PeHAK proteins in

Moso bamboo, we randomly selected PeHAK28 for investigation.

We constructed a recombinant expression vector, MAS-PeHAK28-

GFP (Figure 9A). The subcellular localization of the PeHAK28

protein was determined by observing the green fluorescence signal

of GFP. The results revealed that the expressed fusion protein, 35S-
A B

C

FIGURE 4

Cis-acting elements in PeHAK promoters. (A) The intensity of the red color indicates the number of different cis-acting elements in each PeHAK
gene, and the five color categories on the heatmap, each representing a different functional type of cis-acting element. (B) The colored histograms
indicate the number of different cis-acting elements in five categories. (C) The proportions of the different cis-acting elements in each category.
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PeHAK28-GFP, specifically localized to the cell membrane, whereas

the GFP fluorescence signal was diffuse in the control cells of the

tobacco sample (Figure 9B). This confirms that PeHAK28 is

predominantly localized in the cell membrane.
Tissue localization analysis of PeHAK

The root system plays a crucial role in potassium uptake in

plants. To gain insight into the tissue localization of the HAK in

Moso bamboo roots, we conducted an in-situ PCR analysis of

PeHAK37 (Figure 10). The aim was to investigate the specific

regions within the roots where PeHAK37 is expressed. The results

shown in the figure indicate that, based on the microscopic cross-

section of Moso bamboo root tips, the staining patterns of the

antisense strand revealed widespread expression of PeHAK37

in different regions of the root tips compared to the control

(negative control) represented by the sense strand. The major

sites of expression were observed in the lateral root primordia,

while weaker expression was detected in the central cylinder

and cortex.
Frontiers in Plant Science 11
Validation of potassium ion
transport properties

To validate the HAK transporter activity, we used the K+ uptake

defective mutant yeast strain R5421 (MATa, D trk 1, trk 2:: pCK 64,

his 3, leu 2, ura 3, trp 1 and ade 2) for complementary validation. The

results showed little difference in growth between strain R5421

(control) transformed by the P416 vector and yeast transformed

with PeHAK04 or PeHAK37when grown on APmedium at 100 mM

K+ (Figure 11A). In fact, the growth of the control performed slightly

better than with PeHAK04 or PeHAK37. When the AP medium K+

concentration was reduced to 10 mM, PeHAK04 or PeHAK37

outperformed the control for better growth compared to the

control. Notably, neither the empty vector control nor PeHAK04

grew when the concentration was reduced to 1 mM K+, but

expression of PeHAK37 rescued the growth defect of yeast mutant

R5421, suggesting that PeHAK37 conferred significant potassium

uptake and growth in yeast at low K+ concentrations. In contrast,

there was no significant growth difference between PeHAK04 and

PeHAK37 at 100 mM K+ concentration compared to the control in

AP medium at high temperature (37°C) (Figure 11B). However,
A B

DC

FIGURE 5

Heat map of PeHAK gene expression (log2(TPM+1)) in each tissue, and the shoots of Moso bamboo at different heights and in response to hormone
treatments. (A) Expression in roots, rhizomes, panicles, and leaves. (B) Expression in young Moso bamboo shoots at different heights. (C) Expression
under GA treatment. (D) Expression under NAA treatment. Relative expression levels are indicated by a color scale, with a change from blue to red
indicating low to high expression.
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when the concentration was reduced to 10 mM K+ and 1 mM K+,

PeHAK04 showed no significant growth difference from the control,

while PeHAK37 performed slightly better. In addition, PeHAK37

showed better growth than the control at 37°C at high temperature

and low potassium, further supporting its transporter function.

K+ uptake defective strain R5421 showed Na+ hypersensitivity,

a property that can be used to determine whether exogenous genes

are involved in K+ uptake and salt tolerance in yeast cells, and we

added different concentrations of NaCl (10 mM, 50 mM, 250 mM)

to 5 mM AP medium. It was found that at 10 mM Na+, only

PeHAK37 grew slightly better compared to the control

(Figure 11C). However, at other concentrations, the growth of
Frontiers in Plant Science 12
PeHAK04, PeHAK37 and the control showed no significant

difference and was hindered by salt stress. Further studies in

other AP solid media with different Na+ concentrations showed

no differences between PeHAK04, PeHAK37 and the control. It is

therefore hypothesized that PeHAK37-mediated K+ transport

enhances salt tolerance in R5421 cells by a small amount.
Analysis of protein tertiary structures

AlphaFold revealed that the tertiary structures of PeHAK25

protein contain a tightly arranged transmembrane structural
A

B

C

FIGURE 6

The analysis of Short Time-series Expression Miner (STEM) of PeHAK genes. (A) Trend analysis graphs produced by the STEM algorithm. Shades of
blue to red color indicate different significant levels of gene expression. All 10 profiles are drawn with profile numbers denoted at the top left. The
dashed line indicates the trend of expression over time, and the value in the lower-left corner is the P-value for its corresponding significance level.
The right panel shows the performance of profiles 0 and profiles 9 significantly expressed genes. (B) Expression changes of the six genes in profile 0.
(C) Expression changes of the six genes in profile 9.
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domain consisting of 12 a-helices (Figure 12A). Additionally, the

PeHAK25 structure has a cytoplasmic loop comprising two a-helices
between the second and third transmembrane domains. The N- and

C-termini are situated on the inner side of the cell membrane, where

the C-terminus is longer and contains multiple a-helices and b-folds.
Frontiers in Plant Science 13
This structure includes 12 TM residues, and the transmembrane

region forms a narrow pathway through the membrane, consistent

with the HAK structure (Figure 12B). Further prediction revealed

that the pores within the TMs traverse the cell membrane

(Figure 12C). The binding region between the cell membrane and
A

B

D

C

FIGURE 7

Six PeHAK expression profiles in Moso bamboo seedlings in response to different abiotic stress. PeHAK expression profiles under high temperature
stress (42°C) (A), under low temperature stress (4°C) (B), under drought stress (30%PEG6000) (C), and under 200 mM NaCl stress (D). qRT-PCR was
performed using three biological replicates and three technical replicates of the moso bamboo sample type. Asterisks indicate statistically significant
differences between control (0h) and different treatment times (∗P ≤ 0.05, ∗∗P ≤ 0.001).
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FIGURE 8

The 20 most enriched GO terms of PeHAK genes. The horizontal axis indicates the enrichment factor, and the size of the circle indicates the
number of genes annotated with a given GO term.
A

B

FIGURE 9

Subcellular localization of GFP-fused PeHAK28 protein. (A) Schematic representation of PeHAK28 vector map for subcellular localization. (B)
Subcellular localization of PeHAK28 in tobacco cells. The fusion protein 35S-PeHAK28-GFP and the control vector were transiently expressed in
tobacco leaves and then observed by fluorescence microscopy. The scale bar represents 30 mm.
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the external environment contains several atoms and residues, with

the pore center reaching its maximum size. The protein surface is

hydrophobic, with the TMs serving as hydrophobic cores

(Figure 12D). The distribution of electrostatic potential further

demonstrates that the TMs have a significantly decreased

electrostatic force (Figure 12E), with numerous charged regions at

both ends of the TMs, particularly negatively charged regions

towards the inner side of the cell membrane. This suggests that the

distinctive structural characteristics of HAK greatly enhance the

cation transport capabilities of PeHAK.
Discussion

Several studies have shown that HAK gene family is associated

with transmembrane transport of K+ and potassium supply in

plants (Ahmad and Maathuis, 2014; Li et al., 2018). However, no

study has investigated the structure and functional relationship of

HAK in Moso bamboo. Moso bamboo is a globally cultivated

species and an important crop plant known for its remarkably
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fast-growing shoots. Therefore, studying the molecular network and

regulatory mechanisms underlying the rapid growth of bamboo

shoots may provide valuable insights for cultivation and breeding

(Chen et al., 2022).

In this study, several HAK gene family members (41) were

identified in Moso bamboo compared with other plants such as

rice (27), Arabidopsis (13), maize (27), tea tree (21), and wheat (56)

(Ankit et al., 2022). Notably, the number of HAK genes is not

significantly correlated with genome size (Santa-Marıá et al., 2018).

For instance, Moso bamboo has a genome size (2051 Mb) similar to

its close relative maize (2066 Mb), but with a significantly higher

number of HAK genes. Meanwhile, wheat has a genome size almost

seven times that of Moso bamboo (14454 Mb) but with only 15 more

HAK genes than Moso bamboo. This suggests that the evolution of a

species is more closely linked to the number of gene families rather

than the genome size. Herein, an intra-genomic covariance analysis

of PeHAK was conducted to further understand the evolutionary

patterns of HAK genes in Moso bamboo. Twenty pairs of duplicated

HAK genes, including 17 tandem repeats and 3 fragment repeats,

were detected in Moso bamboo genome. These repeats can promote
FIGURE 10

Tissue localization of PeHAK37 using in-situ PCR. All samples were analyzed with BM in purple. The blue color indicates the presence of digoxigenin
(DIG) labeled cDNA. ACT serves as a positive control, while no reverse transcription (RT) was included as a negative control. Scale bars = 200mm.
A B C

FIGURE 11

Validation of the potassium transport function of PeHAK04 and PeHAK37 using a yeast heterologous expression system. (A) Normal culture in AP
medium with different K+ concentrations. (B) Incubation in AP medium containing different K+ concentrations at high temperature (37°C). (C) AP
medium (5 mM K+) with different Na+ concentrations. From left to right indicates yeast transformed via a 10-fold dilution.
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HAK gene expansion and functions. Gramineae-based covariance

analyses revealed a large number of homologous genes in Z. mays, O.

sativa, and significantly fewer in B. distachyon. than in the other two

species, which is consistent with previous studies in which Z. mays,O.

sativa confirmed the occurrence of a genome-wide duplication event

in Maso bamboo as well as a tetraploid origin (Figure 3).

Additionally, the Ka/Ks values were consistent with previously

reported large-scale replication events (7-15 million years ago) in

the entire genome of Moso bamboo (Zhang et al., 2022). The Ka/Ks

ratios were less than 1, indicating that purifying selection is significant

in the evolution of PeHAK genes (Cvijovic et al., 2018). Duplication

events have caused the expansion of gene family members in plants,

and in addition, mutations in upstream regulatory regions and coding

regions cause changes in the expression pattern and function of new

members (Hashemipetroudi et al., 2023; Yaghobi and Heidari, 2023).

The evolutionary relationships among species are partially

reflected in the species evolution tree (Nieves-Cordones et al.,

2016). In this study, HAK genes from Moso bamboo,

Arabidopsis, and rice were classified into four clusters (I, II, III,

and IV), with HAKs present in all branches except for Arabidopsis

HAKs in cluster IV where Moso bamboo had six HAK genes, while

rice had four. This branch may be a new class of HAK members

generated through gene expansion of monocot HAK family genes
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during the evolutionary process. Nonetheless, subsequent research

should assess the function of this class ofHAK genes. These findings

indicate that the number and function of HAK gene family

members are relatively conserved across different species,

exhibiting similar functional characteristics.

Protein families exhibiting functional diversity among their

members provide insights into the structural factors that govern

protein function and their evolutionary relationships (Harms and

Thornton, 2010). The crucial structural features of HAK proteins,

such as the transmembrane, N-terminal, and C-terminal domains,

play a significant role in determining their ability to transport and

uptake K+ (Tascon et al., 2020). This study focused on the structural

analysis of PeHAK, a membrane protein with 9-14 transmembrane

structures. The pore structure, surface electrostatic potential, and

surface hydrophobicity were also evaluated to understand the

functional characteristics of PeHAK at the tertiary structural level.

Notably, the presence of transmembrane structural domains (TMs)

is crucial for predicting the functional structure of PeHAK.

Interestingly, the analysis of pore structure combined with the

electrostatic potential on the protein surface revealed several

negatively charged residues within the PeHAK cell membrane,

which aligned with the pore structure distribution. Previous

studies have indicated that the localization of charged residues
A B

D EC

FIGURE 12

The tertiary structures of PeHAK25 protein. (A) Representation of PeHAK25 crystal structure. (B) Analysis of the distribution of transmembrane
structure positions in PeHAK25 stereo structure. (C) Visualization of a pore section showing the pore-lining residues and the pore centers at 3A˚
steps: The red sphere represents the center of the hole at the 3A˚ step, and its size is proportional to the diameter of the hole at that point. Orange
and blue represent pore-lining atoms and residues, respectively. (D) Mapping of the electrostatic potential onto the molecular surface. Blue and red
represent positively and negatively charged regions, respectively. (E) Mapping of the hydrophobic group onto the molecular surface. Brown and blue
represent hydrophilic and hydrophobic areas, respectively.
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plays a crucial role in transmembrane proteins (Zhou and Pang,

2018). Besides, surface electrostatic potential is closely related to ion

transport rates (Busschaert et al., 2017). For instance, KUP protein

(KimA) binds to negatively charged amino acid groups in the K+

binding site, facilitating K+ transport (Tascon et al., 2020). These

results indicate that the transport of K+ in PeHAK relies on

transmembrane channels formed by the membrane structural

domain (TM) and the negative charge distribution on the cell

membrane. However, further comprehensive studies should assess

the transmembrane transport mechanism of PeHAK.

Plant growth and development are closely associated with

potassium nutritional status (Amtmann et al., 2008). About 40-90%

of K+ in plants is acquired through the root system and is transported

from the subsurface to the aboveground parts via the root cycle (Lu

et al., 2005). Herein, GO enrichment analysis showed that PeHAKs

proteins are primarily associated with potassium ion transport across

the cell membrane. Furthermore, an in-situ PCR analysis was

conducted using Moso bamboo root tips to investigate PeHAK

expression patterns (Figure 10). PeHAK37 is mainly expressed in

the lateral root primordia, with weaker expression in the middle

column and cortex. OsHAK5 plays a key role in K+ transport from

roots to the above-ground parts of plants. It is highly expressed in the

xylem’s thin-walled tissues and the phloem of root vascular tissues.

Inactivation ofOsHAK5 leads to a reduced K+ concentration in xylem

sap and a lower rate of K+ export (Li et al., 2018). Similarly,

knockdown of AtKUP7 results in decreased K+ uptake in the root

system and reduced K+ concentration in the xylem sap, indicating

that AtKUP7 is involved in both the uptake and translocation of K+

(Han et al., 2016).This suggests that PeHAK37 participates in long-

distance K+ transport by utilizing the transporting tissues of the

middle column, facilitated by the uptake of soil K+ by lateral roots.

Moreover, yeast complementation experiments were performed to

further confirm PeHAK37 function in potassium ion transport. These

experiments confirmed that PeHAK37 is involved in potassium ion

transport in Moso bamboo. Growth hormones influence cell

expansion and division by altering ionic currents, including those

of potassium (K+). Studies have demonstrated that HAK transporters

respond to exogenous growth hormones, facilitating lateral root

formation and root growth (Philippar et al., 2004; Braun et al.,

2008). In addition, HAK activity is regulated by a variety of

substances, including naphthalene acetic acid and gibberellins,

especially for potassium signaling in low potassium environments

(Santa-Marıá et al., 2018). In Moreover, STEM expression analysis

(Figure 6) showed different expression patterns, and it was

hypothesized that these genes might play key roles in the sprouting

and growth of moso bamboo and might be key regulators of the K+

signaling process. Overall, these results suggest that PeHAKs,

including PeHAK37, are involved in potassium ion transport and

growth and development of Moso bamboo, especially long-distance

transport, and promotion of shoot height.

Environmental factors play a crucial role in plant growth and

development (Lobell and Gourdji, 2012). Plant stress tolerance is

closely associated with the expression of specific genes, such as HAK.

HAK plays a key role in plant stress response (Ankit et al., 2022). For

example,HAK genes are involved in plant response to abiotic stresses,

such as drought and salt (Li et al., 2018; Yang et al., 2020). Cis-acting
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elements are DNA sequences that interact with structural genes and

serve as binding sites for transcription factors. These elements

regulate gene expression in plants by binding to transcription

factors and controlling the timing and efficiency of gene

transcription (Hernandez-Garcia and Finer, 2014). In this study,

the potential role of PeHAKs in stress response was evaluated by

examining PeHAK promoter regions and predicting the presence of

various cis-acting elements associated with different abiotic stress

(Figure 4). These elements included Myb elements (Martin and Paz-

Ares, 1997; Dubos et al., 2010), a cluster of G-boxes (Menkens et al.,

1995), and ABRE elements (Fujita et al., 2013) associated with

hormone responses. Furthermore, qRT-PCR analysis was

performed under high temperature, low temperature, drought, and

salt stresses to determine PeHAK expression patterns (Figure 7). Most

HAK gene family members of the Mao bamboo responded to at least

two abiotic stresses, indicating that HAK genes regulate responses to

environmental stress.

Furthermore, HAK gene family members participate in the

crosstalk between hormone signals, such as ABA and IAA (Yang

et al., 2020; Cai et al., 2021). Herein, transcriptome data showed that

PeHAK was up-regulated under NAA and GA treatments compared

with the controls (Figure 5). However, some members, including

PeHAK01, PeHAK04, PeHAK09, PeHAK11, PeHAK38, and PeHAK40,

were down-regulated in NAA treatment, while PeHAK03, PeHAK05,

PeHAK09, and PeHAK15 were down-regulated in GA treatment

(Supplementary Table 3). Previous studies have found that HAK is

involved in potassium transport in response to various signaling

stimuli, such as the ABA signaling pathway under drought stress (Li

et al., 2018). In addition, several transcription factors were identified,

including RAP2.11 (related to AP2.11), bHLH121 (basic helix-loop-

helix121), and others that bind to the HAK promoter in response to

the absence of K+ and activate the expression of HAK, and the

overexpression of these transcription factors can increase root growth

in the absence of K+ (Kim et al., 2012; Santa-Marıá et al., 2018). These

findings suggest that the external environment stimulates certain

PeHAKs, thus enhancing potassium content and Moso bamboo

resistance. In summary, PeHAK genes play a crucial role in plant

stress response to abiotic stresses and hormone crosstalk. Notably,

PeHAK genes enhance the resistance of Moso bamboo to

environmental stresses by modulating potassium content.
Conclusion

This is the first study related to genome-wide identification and

comprehensive analysis of HAK genes in Moso bamboo. In this

study, the expression profiles of PeHAKs and their role in the rapid

growth of bamboo shoots were evaluated. In addition, the role of

HAK in potassium ion transport was evaluated based on yeast

mutant experiments. Moreover, the underlying mechanism of

transmembrane transport was analyzed by studying the spatial

structure of the protein. Therefore, this research provides valuable

insights into the evolution and functions of PeHAKs in the

development of various plant organs. PeHAKs are promising

candidate genes for further exploration and innovation in

transgenic breeding programs involving graminaceous plants.
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Santa-Marıá, G. E., Oliferuk, S., and Moriconi, J. I. (2018). KT-HAK-KUP
transporters in major terrestrial photosynthetic organisms: A twenty years tale.
J. Plant Physiol. 226, 77–90. doi: 10.1016/j.jplph.2018.04.008

Scherzer, S., Böhm, J., Krol, E., Shabala, L., Kreuzer, I., Larisch, C., et al.
(2015). Calcium sensor kinase activates potassium uptake systems in gland cells of
Venus flytraps. Proc. Natl. Acad. Sci. U.S.A. 112, 7309–7314. doi: 10.1073/
pnas.1507810112

Shen, Y., Shen, L., Shen, Z., Jing, W., Ge, H., Zhao, J., et al. (2015). The potassium
transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance
to salt stress in rice. Plant Cell Environ. 38, 2766–2779. doi: 10.1111/pce.12586

Shin, R., and Schachtman, D. P. (2004). Hydrogen peroxide mediates plant root cell
response to nutrient deprivation. Proc. Natl. Acad. Sci. U.S.A. 101, 8827–8832.
doi: 10.1073/pnas.0401707101

Song, X., Peng, C., Ciais, P., Li, Q., Xiang, W., Xiao, W., et al. (2020). Nitrogen
addition increased CO(2) uptake more than non-CO(2) greenhouse gases emissions in
a Moso bamboo forest. Sci. Adv. 6, eaaw5790. doi: 10.1126/sciadv.aaw5790

Sze, H., and Chanroj, S. (2018). Plant endomembrane dynamics: studies of K(+)/H
(+) antiporters provide insights on the effects of pH and ion homeostasis. Plant Physiol.
177, 875–895. doi: 10.1104/pp.18.00142
Frontiers in Plant Science 20
Tascon, I., Sousa, J. S., Corey, R. A., Mills, D. J., Griwatz, D., Aumuller, N., et al.
(2020). Structural basis of proton-coupled potassium transport in the KUP family. Nat.
Commun. 11, 626. doi: 10.1038/s41467-020-14441-7

Thomson, G. J., Hernon, C., Austriaco, N., Shapiro, R. S., Belenky, P., and Bennett, R.
J. (2019). Metabolism-induced oxidative stress and DNA damage selectively trigger
genome instability in polyploid fungal cells. EMBO J. 38, e101597. doi: 10.15252/
embj.2019101597
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