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Lipid droplets (LDs) are lipid storage organelles in plant leaves and seeds. Seed LD

proteins are well known, and their functions in lipid metabolism have been

characterized; however, many leaf LD proteins remain to be identified. We

therefore isolated LDs from leaves of the leaf LD–overaccumulating mutant

high sterol ester 1 (hise1) of Arabidopsis thaliana by centrifugation or co-

immunoprecipitation. We then performed LD proteomics by mass spectrometry

and identified 3,206 candidate leaf LD proteins. In this study, we selected 31

candidate proteins for transient expression assays using a construct encoding the

candidate protein fused with green fluorescent protein (GFP). Fluorescence

microscopy showed that MYOSIN BINDING PROTEIN14 (MYOB14) and two

uncharacterized proteins localized to LDs labeled with the LD marker.

Subcellular localization analysis of MYOB family members revealed that MYOB1,

MYOB2, MYOB3, and MYOB5 localized to LDs. LDs moved along actin filaments

together with the endoplasmic reticulum. Co-immunoprecipitation of myosin XIK

with MYOB2-GFP or MYOB14-GFP suggested that LD-localized MYOBs are

involved in association with the myosin XIK–LDs. The two uncharacterized

proteins were highly similar to enzymes for furan fatty acid biosynthesis in the

photosynthetic bacterium Cereibacter sphaeroides, suggesting a relationship

between LDs and furan fatty acid biosynthesis. Our findings thus reveal potential

molecular functions of LDs and provide a valuable resource for further studies of

the leaf LD proteome.
KEYWORDS

lipid droplet proteomics, myosin-binding protein, enzymes for furan-containing fatty
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Introduction

Lipids are important as energy sources, membrane components,

and signal transducers in plants. Excess lipids are converted to neutral

lipids, including triacylglycerols and sterol esters, and are stored in

lipid droplets (LDs) (Grimberg et al., 2015; Shimada et al., 2019). LDs

are formed on the endoplasmic reticulum (ER). In plants,

triacylglycerols are produced by acyl-CoA:diacylglycerol

acyltransferase (DGAT) or phosphatidylcholine:diacylglycerol

acyltransferase (PDAT), which are localized on the ER (Shockey

et al., 2006; Kim et al., 2011). Sterol esters are produced by

phospholipid:sterol acyltransferase (PSAT) or acyl-CoA:sterol

acyltransferase (ASAT), which are also localized on the ER (Lara

et al., 2018; Shimada et al., 2019). InArabidopsis thaliana, deficiency of

DGAT, PDAT, or PSAT inhibits LD formation (Shimada et al., 2019;

Bose et al., 2021). LDs are abundant in seed cells of oilseed plants but

are also present in leaf cells. Leaf LD formation can be induced by heat

stress, cold stress, and phosphate starvation (Shimojima et al., 2015;

Gidda et al., 2016). In addition, certain mutants and transformants

overaccumulate LDs in leaves (James et al., 2010; Shimada et al., 2019;

Vanhercke et al., 2019). For instance, HISE1 down-regulates the

content of 3-hydroxy-3-methylglutaryl-coenzyme A reductase

(HMGR), a rate-limiting enzyme in sterol biosynthesis (Shimada

et al., 2019), and leaves of the A. thaliana mutant high sterol ester 1

(hise1) overaccumulate LDs that mainly contain sterol esters (Shimada

et al., 2019). Such LD-overaccumulating lines can facilitate the

characterization and isolation of LDs.

It was previously assumed that LDs serve only for carbon

storage; however, recent studies have revealed LD-localized

proteins with unique functions. Members of three protein

families, oleosins, caleosins, and steroleosins, have been identified

as seed LD proteins (Chapman et al., 2012). Oleosins have an

important role in inhibiting LD fusion (Siloto et al., 2006),

contributing to freezing tolerance of seeds and facilitating normal

germination (Shimada et al., 2008). Leaf LD proteins, including

caleosin 3 and a-dioxygenase 1 (a-DOX1), have recently been

identified by LD proteomics in A. thaliana leaves (Yang et al., 2012;

Shimada et al., 2014; Brocard et al., 2017; Fernandez-Santos et al.,

2020; Kretzschmar et al., 2020). Caleosin 3 and a-DOX1 are

involved in the production of 2-hydroxy-octadecatrienoic acid,

which has antifungal activity against members of the genus

Colletotrichum (Shimada et al., 2014), suggesting that leaf LDs

contribute to the defense response against fungi. LD-associated

proteins (LDAPs), including LDAP3, are highly similar to small

rubber particle proteins identified in Hevea brasiliensis and are

found in leaf LDs of plants (Gidda et al., 2013; Horn et al., 2013).

LDAPs mediate LD size and contribute to drought tolerance (Gidda

et al., 2016; Kim et al., 2016). LDAPs of A. thaliana interact

with LDAP-INTERACTING PROTEIN (LDIP), which is also a

leaf LD protein (Pyc et al., 2017). In addition, some lipases,

GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE4 (GPAT4),

GPAT8, and CYCLOARTENOL SYNTHASE1 are localized in

leaf LDs (Fernandez-Santos et al., 2020). These findings suggest

that leaf LDs contain various proteins with important functions;

however, few leaf LD proteins have been identified and

characterized. To resolve the molecular and physiological
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functions of leaf LDs, identification of additional leaf LD proteins

is necessary.

Previous leaf LD proteomics efforts have used leaf LDs induced

by senescence or pathogen infection (Shimada et al., 2014);

however, the LD yield from these approaches is low. Here, we

used A. thaliana hise1 mutant leaves, which stably accumulate high

levels of LDs that are easy to isolate. We performed leaf LD

proteomics by mass spectrometry analysis and identified many

candidate leaf LD proteins. These included five myosin-binding

proteins (MYOBs) and two putative enzymes for furan-containing

fatty acid biosynthesis. MYOBs are closely related to myosin and its

function, and their localization in LDs represents a breakthrough in

elucidating LD movement by myosin. In addition, identification of

putative enzymes for furan-containing fatty acid biosynthesis

provides insight into plant lipid metabolism by leaf LDs.
Materials and methods

Plant materials and growth conditions

A. thaliana accession Columbia (Col-0) was used as the wild type.

The A. thaliana T-DNAmutant hise1-2 (Shimada et al., 2019), plants

containing Lifeact–Venus driven by the cauliflower mosaic virus 35S

promoter (Era et al., 2009), and plants containing myosin XIK fused

with yellow fluorescent protein (YFP) driven by the myosin XIK

promoter (XIK-YFP plants) (Peremyslov et al., 2012) were in the

Col-0 background. Transgenic A. thaliana expressing cytosolic

GFP was used as a negative control in the Co-IP experiment

(Mano et al., 2002). Seeds were surface sterilized with 70% (v/v)

ethanol, dried, and sown on Murashige and Skoog (MS) agar plates

(Wako, Tokyo, Japan) containing 1% (w/v) sucrose. The plates were

incubated at 23°C under continuous light (100 µE s–1 m–2) for

4 weeks. Seedlings were transplanted to vermiculite and grown

at 23°C under continuous light (100 µE s–1 m–2) for 8 weeks.
Vector construction

Vectors were constructed using Gateway Technology (Invitrogen,

Carlsbad, CA) with the destination vectors pGWB404m (Nakagawa

et al., 2007; Segami et al., 2014), pGWB405m (Nakagawa et al., 2007;

Segami et al., 2014), and pGWB406m (Nakagawa et al., 2007;

Segami et al., 2014).

The LDAP3 genomic DNA fragment (nucleotides –1,799

to +1,263) was PCR amplified from A. thaliana cDNA (template)

using the primer set 5′-CACCAGAAGATGAGTCACTTGAATT-
3′ and 5′-ATCAAGTGGATGGAACTCCAA-3′. The PCR product

was cloned into pENTR/D-TOPO (Invitrogen) via TOPO cloning

to produce the subcloning vector pENTR-proLDAP3:LDAP3. The

vector pENTR-proLDAP3:LDAP3 was transferred into the

destination vector pGWB404m through an LR recombination

reaction (Invitrogen) to create the vector pGWB404m-

proLDAP3:LDAP3.

At1g19310 (+1 to +687 bp, where +1 bp refers to the

transcription start site) without the stop codon was amplified by
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PCR from A. thaliana cDNA using the primer set 5′-CACCAT
GTCTGATGTCCCTTCTTG-3′ and 5′-GCTCAAGAAGA

GAGAAAACA-3′. The PCR product was cloned into pENTR/D-

TOPO (Invitrogen) via TOPO cloning to produce the subcloning

vector pENTR-19310. The pENTR-19310 vector was digested with

the restriction enzymes AscI and NotI. The digested DNA fragment

(2,555 bp, pENTR-CUT) was purified and used for subcloning.

MYOB genes, AT3G23510, AT1G30130, AT4G33110, the

globular tail domain of myosin XIK (XIKGTD), and other

constructs (described in Supplementary Figure S1) were PCR

amplified using primer sets (FWD and REV) provided in

Supplementary Table S4. To produce entry clones, the PCR

products were ligated into pENTR-CUT using an In-Fusion

Cloning Kit (Takara, Shiga, Japan). The entry clones were cloned

into the destination vector pGWB405m (for C-terminal fusion with

mGFP) or pGWB406m (for N-terminal fusion with mGFP) using

LR Clonase II (Invitrogen) to create expression vectors for

cellular localization.
Transient expression assay using Nicotiana
benthamiana leaves

Transient expression assays were performed as described

previously (Shimada et al., 2019). The expression vectors were

independently transformed into Agrobacterium (Agrobacterium

tumefaciens) strain GV3101, and the transformed Agrobacterium

was infiltrated into the leaves of 3-week-old N. benthamiana plants.

The expression vector containing a-DOX1-GFP or a-DOX1-RFP
was used as a LD marker (Shimada et al., 2019). One day post-

infiltration, leaves were soaked in 3 mM mevalonate solution for 1

day to induce LDs. Two days post-infiltration, the leaves were

observed under a fluorescence microscope (BZ-X800; Keyence,

Osaka, Japan). GFP fluorescence was examined with a GFP filter

(excitation: 450–490 nm; emission: 500–550 nm), and RFP

fluorescence was examined with a TRITC filter (excitation: 520–

570 nm; emission: 570–640 nm).
Observation of organelle movements

Two-week-old Lifeact–Venus plants (wild-type background)

were soaked in 3 mM mevalonate solution for 1 day to induce

LDs. LDs in the epidermal cells of true leaves were stained with 5

µg/mL BODIPY 493/503 (Thermo Fisher Scientific, Waltham, MA)

(Fernandez-Santos et al., 2020) and observed under a fluorescence

microscope (BZ-X800). The fluorescent signals of Lifeact–Venus

and BODIPY 493/503 were examined with a GFP filter (excitation:

450–490 nm; emission: 500–550 nm). Punctate structures emitting

fluorescence were defined as LDs, and filament structures were

defined as actin filaments.

Expression vectors containing a-DOX1-RFP (Shimada et al.,

2014) and mCherry-HDEL (Nelson et al., 2007) were used as LD

and ER markers, respectively. Agrobacterium containing the

respective constructs was infiltrated into the leaves of 3-week-old

N. benthamiana plants. One day post-infiltration, leaves were
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Two days post-infiltration, the epidermal cells of true leaves were

observed under a fluorescence microscope (BZ-X800). Fluorescent

signals of RFP and mCherry were examined with a TRITC filter

(excitation: 520–570 nm; emission: 570–640 nm). Punctate

structures emitting fluorescence were defined as LDs, while

network structures were defined as ER.
Stable transformation of A. thaliana plants

The vector pGWB404m-proLDAP3:LDAP3 was introduced into

hise1-2 A. thaliana plants via Agrobacterium-mediated

transformation (strain GV3101) using the floral dip method

(Clough and Bent, 1998) to express the LDAP3-GFP fusion

protein under the control of the LDAP3 promoter (pLDAP3:

LDAP3-GFP plants).

Expression vectors containing MYOB2 or MYOB14 in

pGWB405m (named pGWB405m-MYOB2 and pGWB405m-

MYOB14, respectively) were introduced into wild-type A. thaliana

plants via Agrobacterium-mediated transformation (strain GV3101)

using the floral dip method (Clough and Bent, 1998) to express the

MYOB2-GFP and MYOB14-GFP fusion proteins, respectively. True

leaves of 2-week-old plants were treated with 3 mM mevalonate

treatment for 1 day, and then the epidermal cells were observed under

a fluorescence microscope (BZ-X800).
Centrifuge method for LD isolation

To isolate LDs from A. thaliana leaves, 3.5 g of leaves from 4-

week-old plants (wild type or hise1-2) was homogenized in 5 mL G-

20 buffer (100 mM Tris-HCl pH 7.5, 10 mM KCl, 1 mM EDTA, and

20% [w/v] sucrose) using a pestle and mortar. The homogenates were

filtered through two layers of cheese cloth and centrifuged for 10 min

at 10,000 g at 4°C. Supernatants (1.5 mL) were collected in fresh 2-mL

tubes. The resuspensions were covered with 0.2 mL of G-15 buffer

(100 mMTris-HCl pH 7.5, 10 mMKCl, 1 mMEDTA, and 15% [w/v]

sucrose) and 0.4 mL of G-5 buffer (100 mMTris-HCl pH 7.5, 10 mM

KCl, 1 mM EDTA, and 5% [w/v] sucrose) and centrifuged for 10 min

at 20,000 g at 4°C. Floating lipid pads (0.3 mL) were collected in fresh

2-mL tubes. The resuspensions were covered with 0.4 mL of G-0

buffer (100 mMTris-HCl pH 7.5, 10 mMKCl, and 1mMEDTA) and

centrifuged for 10 min at 20,000 g at 4°C. Floating lipid pads (0.1 mL)

were collected in fresh 2-mL tubes and defined as isolated LDs. The

isolated LDs were stained with 5 µg/mL BODIPY 493/503 (Thermo

Fisher Scientific). Fluorescence was examined under a fluorescence

microscope (BZ-X800) with a GFP filter (excitation: 450–490 nm;

emission: 500–550 nm).
Co-immunoprecipitation method for
LD isolation

The Co-IP LD isolation method was performed using a mMACS

GFP-tagged protein isolation kit (Miltenyi Biotec, Gladbach,
frontiersin.org
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Germany) following the method of a previous study (Shimada et al.,

2014). Four-week-old hise1-2/pLDAP3:LDAP3-GFP plants (0.5 g

fresh weight) and wild-type plants expressing cytosolic GFP alone

were ground with 1.5 mL extraction buffer containing 20 mM Tris-

HCl (pH 7.5), 150 mMNaCl, 1 mMCaCl2, and 1 mMMgCl2 using a

pestle and mortar. The extracts were centrifuged at 1,000 g for 5 min

at 4°C followed by 8,000 g for 10 min at 4°C. The supernatants (1 mL

each) were subjected to immunoprecipitation with 50 mL of anti-GFP
microbeads (mMACS GFP-tagged protein isolation kit). The samples

were incubated at 4°C for 30 min and applied to a m column (Miltenyi

Biotec). The column was washed with 1 mL of the extraction buffer.

Pure immunoprecipitates were eluted with 50 mL of sample buffer

(100 mM Tris-HCl pH 6.8, 4% [w/v] SDS, 12% [v/v] 2-

mercaptoethanol, and 20% [v/v] glycerol) and defined as

isolated LDs.
Mass spectrometry analysis of isolated LDs

Immunoprecipitated samples were dissolved in sample buffer

and resolved (~2 cm) using SDS-PAGE. Each lane was divided into

six pieces. In-gel digestion was performed according to a method

described previously (Kano et al., 2023). The digested peptides were

analyzed by nano-flow reverse-phase LC followed by tandem MS

using a Q-Exactive hybrid mass spectrometer (Thermo Fisher

Scientific). The capillary reverse-phase HPLC–MS/MS system

comprised a Dionex U3000 gradient pump equipped with a VICI

CHEMINERT valve. The Q-Exactive mass spectrometer was

equipped with a nano-electrospray ionization (NSI) source (AMR,

Tokyo, Japan). The desalted peptides were loaded into a separation

capillary C18 reverse-phase column (NTCC-360/100–3–125, 125 ×

0.1 mm, Nikkyo Technos). Peptide spectra over a mass range of m/z

350–1,800 were recorded using an Xcalibur 3.0.63 system (Thermo

Fisher Scientific). MS spectra were subsequently recorded followed

by 10 data-dependent high-energy collisional dissociation (HCD)

MS/MS spectra generated from the 10 highest intensity precursor

ions. MS/MS spectra were interpreted and peak lists were generated

using Proteome Discoverer 2.2.0.388 (Thermo Fisher Scientific).

Searches were performed using SEQUEST (Thermo Fisher

Scientific) against the TAIR10 and cRAP for contaminant

databases. Search parameters were set as follows: enzymes

selected with a maximum of two missing cleavage sites, a mass

tolerance of 10 ppm for peptide tolerance, 0.02 Da for MS/MS

tolerance, fixed modification of carbamidomethyl (C), and variable

modification of oxidation (M). Peptide identifications were based

on significant Xcorr values (high confidence filter). Peptide

identification and modification information returned from

SEQUEST were manually inspected and filtered to obtain

confirmed peptide identification and modification lists from HCD

MS/MS.
LD staining with MDH in plants

A. thaliana leaves of 4-week-old hise1-2/pLDAP3:LDAP3-GFP

plants were immersed into 2 µM monodansylpentane (MDH;
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AUTODOT Visualization Dye, Abcepta, San Diego, CA) for 1

min. Fluorescence was examined under a fluorescence microscope

(BZ-X800) with a DAPI filter (excitation: 340–380 nm; emission:

435–485 nm). The fluorescent signal from LDAP3-GFP was

examined using a GFP filter (excitation: 450–490 nm; emission:

500–550 nm).

The hypocotyls of 4-day-old A. thaliana XIK-YFP plants were

soaked in 3 mM mevalonate solution for 1 day to induce LD

formation. Fluorescence was examined under a fluorescence

microscope (BZ-X800) with a DAPI filter (excitation: 340–380

nm; emission: 435–485 nm). The fluorescent signal from XIK-

YFP was examined using a GFP filter (excitation: 450–490 nm;

emission: 500–550 nm).
Co-immunoprecipitation using MYOB2-
GFP and MYOB14-GFP plants

Co-IP assays were performed using a mMACS GFP-tagged

protein isolation kit (Miltenyi Biotec). Three-week-old A. thaliana

plants (0.5 g fresh weight) expressing MYOB2-GFP or MYOB14-

GFP were ground in 1 mL of lysis buffer (150 mM NaCl, 1% [v/v]

Ecosurf EH-9, and 50 mM Tris-HCl pH 8.0). The extracts were

centrifuged at 1,000 × g for 1 min at 4°C. This was followed by

centrifugation of the supernatants at 15,000 × g for 10 min at 4°C. A

1-mL aliquot of each supernatant was subjected to Co-IP with 50 mL
of anti-GFP microbeads. Samples were incubated at 4°C for 30 min

and applied to a m column (Miltenyi Biotec). The column was

washed with 1 mL of lysis buffer and 0.2 mL of 20 mMTris-HCl, pH

7.5. Pure immunoprecipitates were eluted with 50 mL of sample

buffer (100 mM Tris-HCl pH 6.8, 4% [w/v] SDS, 12% [v/v] 2-

mercaptoethanol, and 20% [v/v] glycerol).
Mass spectrometry analysis of pure
immunoprecipitate samples from MYOB2-
GFP and MYOB14-GFP plants

Mass spectrometry analysis was outsourced to BGI (Shenzhen,

China). To identify proteins in the pure immunoprecipitates from

MYOB2-GFP and MYOB14-GFP plants, the samples were separated

by gel electrophoresis. Proteins in the samples were digested using

trypsin and separated by Thermo UltiMate 3000 UHPLC. The

separated peptides were ionized using a nanoESI source and

analyzed by a Q-Exactive HF X tandem mass spectrometer

(Thermo Fisher Scientific) in data-dependent acquisition mode.

The ion source voltage was set to 1.9 kV, MS1 scanning range was

350–1,500 m/z, resolution was set to 60,000, MS2 starting m/z was

fixed at 100, and resolution was 15,000. The UniProt protein database

(https://www.uniprot.org/) was used for protein profiling.
Silver staining

Immunoprecipitates were subjected to SDS-PAGE on a 5–20%

acrylamide-gradient gel (SuperSep Ace, Fuji film, Tokyo, Japan).
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Silver staining was performed using a Silver Stain MS Kit (Wako,

Tokyo, Japan).
Immunoblotting

Immunoprecipitates were subjected to SDS-PAGE on a 5–20%

acrylamide-gradient gel (SuperSep Ace). The proteins were

electrophoretically transferred from the gel onto a polyvinylidene

difluoride membrane (PVDF; GE Healthcare, Chicago, IL). The

membrane was treated with blocking solution (5% [w/v] skim milk,

Tris-HCl pH 7.5, and 0.1% [v/v] Triton X) for 30 min and treated

with anti-GFP antibody (1:10,000; JL-8, Takara, Shiga, Japan) at 4°C

for 24 h. Horseradish peroxidase–conjugated anti-mouse IgG

(1:2,000) was used as the secondary antibody. Immunodetection

was performed with a chemiluminescent system using ImmunoStar

LD (Wako) and a C-DiGit blot scanner (LI-COR, Lincoln, NE).
Accession numbers

The plant genes mentioned in this study can be found in the

GenBank/EMBL databases under the following accession numbers:

LDAP3 (AT3G05500), AtUFAMD1 (AT3G23510), AtUFAO1

(AT1G30130), AtFUFM1/LIME1 (AT4G33110), MYOB1

(AT1G08800), MYOB2 (AT1G70750), MYOB3 (AT5G16720),

MYOB4 (AT2G30690), MYOB5 (AT1G18990), MYOB6

(AT1G74830), MYOB7 (AT5G06560), MYOB8 (AT3G11850),

MYOB9 (AT3G54740), MYOB10 (AT3G30830), MYOB12

(AT5G57830), MYOB13 (AT4G13630), MYOB14 (AT4G13160),

MYOB15 (AT1G04890), MYOB16 (AT1G18265), and myosin XIK

(AT5G20490). The proteins of C. sphaeroides mentioned in this

study can be found in UniProt (The UniProt, 2017) under the

following accession numbers: UfaO (Q3IYV8), FufM (Q6NBA4),

UfaM (Q3J4I7), and UfaD (Q3IYV7).
Results

Proteomic analysis of LDs isolated from
hise1 mutant leaves

To perform leaf LD proteomics, we isolated LDs from leaves of the

A. thaliana hise1-2 mutant via a centrifuge method and a co-

immunoprecipitation (Co-IP) method. LDs rise to the top during

centrifugation (Shimada et al., 2008), so we centrifuged leaf extracts

from wild-type or hise1-2 plants and collected the top fraction.

Microscopy observation showed that the top fraction from the hise1-

2mutant contained LDs (Figure 1A). By contrast, we could not collect

the top fraction from wild-type leaves (used as a negative control),

which have few LDs. We labeled the fraction from the hise1mutant as

isolated leaf LDs. For Co-IP analysis with anti-GFP antibodies, we used

a transgenic A. thaliana hise1-2 mutant expressing a LDAP3-GFP
Frontiers in Plant Science 05
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FIGURE 1

Isolation of leaf LDs from A thaliana leaves using centrifuge and
co-immunoprecipitation (Co-IP) methods. (A) BODIPY
fluorescence and brightfield images of LDs isolated from the wild
type and hise1-2 mutant using a centrifuge method and stained
with BODIPY 493/503. (B) Fluorescence images of LDAP3-GFP
and MDH (LDs) in epidermal cells of hise1-2/pLDAP3:LDAP3-GFP
plants. (C) Immunoblot analysis of the co-immunoprecipitants of
hise1-2/pLDAP3:LDAP3-GFP plants, and wild-type plants
expressing cytosolic GFP alone, with anti-GFP antibody.
(D, E) Silver staining of the co-immunoprecipitants from the
centrifuge method (D) and the Co-IP method (E).
frontiersin.org

https://doi.org/10.3389/fpls.2024.1331479
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Omata et al. 10.3389/fpls.2024.1331479
fusion under control of the LDAP3 promoter (hise1-2/pLDAP3:

LDAP3-GFP plants). Fluorescence microscopy revealed that LDAP3-

GFP was localized to LDs in epidermal cells of hise1-2 leaves

(Figure 1B). Transformants expressing cytosolic GFP (Mano et al.,

2002) were used as a negative control because cytosolic GFP does not

fuse with LDs. Because we detected LDAP3-GFP in the co-

immunoprecipitants from hise1-2/pLDAP3:LDAP3-GFP plants

(Figure 1C), we labeled the co-immunoprecipitants as isolated leaf

LDs. Silver staining revealed that the isolated leaf LDs contained a lot of

protein (Figures 1D, E). We detected 3,206 proteins in the isolated LDs,

but not in the negative controls, using mass spectrometry

(Supplementary Table S1). We defined these as candidate leaf LD

proteins (Supplementary Table S1, LD candidates = Yes).
Subcellular localization of 31 candidate leaf
LD proteins

We selected 31 proteins related to lipid metabolism or ER function

from the leaf LD protein candidates. To investigate their subcellular

localization, we transiently expressed each candidate protein fused with

GFP or red fluorescent protein (RFP) in leaves of Nicotiana

benthamiana. We induced leaves to form LDs with mevalonate

treatment and visualized them using a-DOX1-RFP or BODIPY 493/

503 staining. MYOB14-GFP fluorescence was associated with punctate

structures (Figure 2A). The punctate structures co-localized with a-
DOX1-RFP (Figure 2A), indicating that MYOB14-GFP was localized

to LDs. Two uncharacterized proteins (encoded by AT3G23510 and

AT1G30130) also co-localized with a-DOX1-RFP, indicating LD

localization (Figures 2B, C). A domain search using InterProScan
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(Paysan-Lafosse et al., 2023) revealed that AT3G23510 encodes a

protein classified as cyclopropane-fatty-acyl-phospholipid synthase,

and AT1G30130 encodes a protein that contains domain of

unknown function 1365 (DUF1365). To our knowledge, this is the

first report describing LD localization of these three proteins. The other

28 proteins were not localized to LDs (Supplementary Figure S1).
Subcellular localization of 14 MYOBs,
including 5 LD-localized MYOBs

MYOBs interact with myosin through the DUF593 domain

(Peremyslov et al., 2013). A. thaliana contains 16 MYOBs

(Peremyslov et al., 2013; Perico et al., 2021), but their LD localization

is unknown. To investigate the LD localization of A. thalianaMYOBs,

we fused each of the 14 MYOBs with GFP and transiently expressed

them in N. benthamiana leaves. The fluorescence of MYOB1-GFP,

MYOB2-GFP, MYOB3-GFP, and MYOB5-GFP co-localized with that

of a-DOX1-RFP (Figure 3A), while the other MYOBs did not appear

to localize to LDs (Figure 3B). Our results indicate that MYOB1,

MYOB2, MYOB3, and MYOB5 also localize to LDs.
Leaf LDs move along actin filaments
together with the ER

Myosin functions in the movement of organelles in association

with actin filaments. MYOBs work together with myosin to regulate

organelle movement (Peremyslov et al., 2015; Perico et al., 2021). To

determine if there is a relationship between LDmovement and actin
A

B

C

FIGURE 2

Subcellular localization of MYOB14, AT3G23510, and AT1G30130. (A–C) Fluorescence images of N. benthamiana leaves transiently expressing
MYOB14-GFP (A), AT3G23510-GFP (B), or AT1G30130-GFP (C) along with a-DOX1-RFP (LD marker).
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filaments, we used A. thaliana plants (wild-type background)

producing Lifeact–Venus, which localizes to actin filaments (Era

et al., 2009). After inducing LDs through treatment with mevalonic

acid, we co-visualized LDs and actin filaments in the epidermal cells

of true leaves stained with BODIPY 493/503. LDs moved along

actin filaments and sometimes paused (Figure 4A; Supplementary

Movie S1).

ER morphology is involved in actin filament organization (Ueda

et al., 2010). To observe the relationship between LDmovement and

the ER, we co-visualized LDs and the ER in epidermal cells of true

leaves of N. benthamiana carrying the LD marker a-DOX1-RFP
and the ER marker mCherry-HDEL, after induction of LDs using

mevalonic acid. LDs moved together with the ER and sometimes

paused, similar to their movement on actin filaments (Figure 4B;

Supplementary Movie S2). In addition, we co-visualized LDs and

the ER in epidermal cells of true leaves of N. benthamiana carrying

the LD marker a-DOX1-GFP and the ER marker mCherry-HDEL,
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after induction of LDs with mevalonic acid. Almost all LDs co-

localized with the ER (Supplementary Figure S2). These results

suggest that LDs move along actin filaments together with the ER.
LD-localized MYOBs interact with
myosin XIK

Myosin XIK is a major myosin XI in A. thaliana and interacts

with MYOB1, MYOB2, andMYOB3 (Peremyslov et al., 2013; Kurth

et al., 2017); the DUF593 domain of MYOBs binds to the globular

tail domain of myosin. However, the proteins interacting with

MYOB14 are unclear, and there are no interactome data using

LD-localized MYOBs. We therefore performed Co-IP using

MYOB2 or MYOB14 fused with GFP (MYOB2-GFP and

MYOB14-GFP). We generated transgenic A. thaliana plants

expressing MYOB2-GFP or MYOB14-GFP (Supplementary
A

B

FIGURE 3

Subcellular localization of MYOB1, MYOB2, MYOB3, and MYOB5. (A) Fluorescence images of N. benthamiana leaves transiently expressing MYOB1-
GFP, MYOB2-GFP, MYOB3-GFP, or MYOB5-GFP along with a-DOX1-RFP. (B) Fluorescence images of N. benthamiana leaves transiently co-
expressing a-DOX1-RFP and the other MYOB proteins tested in this study.
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Figures S3A, B). Co-immunoprecipitants were prepared from leaves

of the transgenic A. thaliana plants using anti-GFP antibodies

(Supplementary Figures S3C, D). We performed mass

spectrometry analysis of the co-immunoprecipitants and

identified candidate proteins that interact with MYOB2 and

MYOB14, including myosin XIK (Supplementary Tables S2, S3).

In addition, we identified some candidates of interactors with

MYOB2 of MYOB14, suggesting that MYOB2 and MYOB14

interact with myosin XIK and other proteins.

To investigate whether myosin XIK localizes to LDs, we co-

expressed the GTD domain of myosin XIK (XIKGTD) fused with

GFP and the LD marker a-DOX1-RFP in N. benthamiana. We then

observed fluorescence of GFP-XIKGTD and a-DOX1-RFP in
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epidermal cells of true leaves after induction of LDs with mevalonic

acid. GFP-XIKGTD fluorescence was observed in the cytosol and did

not co-localize with LDs (Supplementary Figure S4A). In addition, we

observed hypocotyls of A. thaliana XIK-YFP plants (Peremyslov

et al., 2012) following the induction of LD formation with mevalonic

acid. This YFP-tagged myosin XIK is previously shown to be a

functional myosin (Peremyslov et al., 2012; Okamoto et al., 2015).

Fluorescence microscopy showed XIK-YFP signals in a filamentous

pattern (Supplementary Figure S4B), as previously observed

(Peremyslov et al., 2012). The LDs co-localized with the

filamentous XIK-YFP signals. Notably, however, the XIK-YFP

fluorescence signals did not resemble LD-like punctate structures

(Supplementary Figure S4B), although MYOB1, MYOB2, MYOB3,
A

B

FIGURE 4

LD movement on actin filaments and the ER captured by time-lapse imaging. (A) Fluorescence images of epidermal cells of true leaves of 2-week-
old A thaliana plants expressing Lifeact–Venus and stained with BODIPY 493/503 after inducing LDs with mevalonic acid. Lifeact–Venus, actin
filament (filamented structures); BODIPY 493/503, LDs (punctate structures). Arrowheads show LDs (same numbers indicate same LDs).
(B) Fluorescence images of epidermal cells of true leaves of N. benthamiana transiently co-expressing a-DOX1-RFP (LDs, punctate structures) and
mCherry-HDEL (ER, network structures). Arrowheads show LDs (same numbers indicate same LDs).
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and MYOB5 localized to LDs (Figures 2A, 3A). These results suggest

that binding between myosin XIK and LD-localized MYOBs may

occur only at the contact sites between LDs and actin filaments.
Enzymes involved in biosynthesis of
furan-containing fatty acids localize to LDs

There are currently no reports on the functions of the two proteins

encoded by AT3G23510 and AT1G30130. To characterize their
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functions, we performed homology searches using the Basic Local

Alignment Search Tool (BLAST) at the National Center for

Biotechnology Information (NCBI). Our similarity searches revealed

that amino acid sequences of the two proteins were highly similar to

those of enzymes involved in furan-containing fatty acid (FU-FA)

biosynthesis (Figure 5A) in the photosynthetic bacterium Cereibacter

sphaeroides (Lemke et al., 2020). The amino acid sequence identity of

AT3G23510 and UfaM was 34.26%, that of AT3G23510 and UfaD

was 38.50%, and that of AT1G30130 and UfaO was 26.42% using

UniProt (The Uniprot, 2017) (Figures 5B–D). Additionally, our
A

B

D E

C

FIGURE 5

Homology search of LD-associated proteins AT3G23510, AT1G30130, and AT4G33110. (A) A furan-containing fatty acid biosynthesis pathway.
(B–E) Amino acid sequence alignments between A. thaliana and C. sphaeroides: AT3G23510 and UfaM (B); AT3G23510 and UfaD (C); AT1G30130
and UfaO (D); and AT4G33110 and FufM (E).
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similarity searches revealed that the amino acid sequence of FufM was

highly similar to that of AT4G33110, with 37.87% amino acid

sequence identity (The Uniprot, 2017) (Figure 5E). AT4G33110

(named LD METHYLTRANSFERASE1, LIME1) is classified as an

S-adenosyl-L-methionine-dependent methyltransferase superfamily

protein and localizes to LDs (Kretzschmar et al., 2020). We

confirmed that LIME1-GFP localized to LDs (Supplementary Figure

S5). These results suggest that the enzymes for FU-FA biosynthesis

exist in A. thaliana and localize to LDs. We named AT3G23510,

AT1G30130, and AT4G33110 as AtUFAMD1, AtUFAO1, and

AtFUFM1/LIME1, respectively.
Discussion

In this study, we performed LD proteomics to identify leaf LD

proteins. Among 3,206 candidate leaf LD proteins, we identified

MYOB14, AT3G23510, and AT1G30130, which localize to LDs.

Since LD localization of MYOB14, AT3G23510, and AT1G30130

has not been reported previously, our proteome data may include

many unidentified LD-associated proteins. Our LD proteomics

method and the resulting data are therefore useful for investigating

leaf LD proteins.

LD movement is mediated by myosin in animals and plants

(Pfisterer et al., 2017; Veerabagu et al., 2020; Han et al., 2023).

MYOBs have a plant-specific DUF593 (Holding et al., 2007) and are

involved in the movement of organelles in plant cells (Peremyslov

et al., 2013; Peremyslov et al., 2015; Perico et al., 2021). However, the

LD localization of MYOBs is unknown. MYOB1 and MYOB2 were

previously reported to localize to motile vesicles (Peremyslov et al.,

2013), and MYOB14 was reported to localize to uncharacterized

compartments (Kurth et al., 2017). Here, we determined that

MYOB1, MYOB2, MYOB3, MYOB5, and MYOB14 localize to LDs

in A. thaliana, indicating that these proteins may be involved in LD

movement. Our microscopy observations revealed that LDs move

along actin filaments, suggesting that this movement is mediated by

myosin and MYOBs (Figure 6). In addition, we observed that LDs

move together with the ER. Organelle dynamics of the ER are closely

related to those of actin filaments (Ueda et al., 2010). Our data suggest

that LD movement along actin filaments is mediated by myosin XI

and LD-localized MYOBs.

A. thaliana has 16MYOBs (Peremyslov et al., 2013; Perico et al.,

2021), and we determined that 5 of these localize to LDs, suggesting

that there might be various LD-localized MYOBs in plant cells. LD

localization of MYOBs may play important roles in plant

physiology. MYOBs are characterized into three groups

(Peremyslov et al., 2013): MYOB1, MYOB2, MYOB3, and

MYOB5 are in group I, and MYOB14 is in group III. Myosin

XIK interacts with MYOB1, MYOB2, MYOB3, MYOB5, and

MYOB14 in A. thaliana (Peremyslov et al., 2013; Kurth et al.,

2017). We detected myosin XIK in our Co-IP assays using MYOB2-

GFP (Supplementary Table S2) and MYOB14-GFP (Supplementary

Table S3) as well as in our LD proteomics data (Supplementary

Table S1). Thus, LD-localized MYOBs may function with myosin

XIK in LD movement.
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UfaM, UfaD, UfaO, and FufM are enzymes involved in FU-FA

biosynthesis in the photosynthetic bacterium C. sphaeroides (Lemke

et al., 2014; Lemke et al., 2020; Yu and Shanklin, 2020). A. thaliana

contains three proteins whose amino acid sequences are highly

similar to those of the bacterial enzymes for FU-FA biosynthesis:

AT3G23510 (AtUFAMD1), AT1G30130 (AtUFAO1), and

AT4G33110 (AtFUFM1/LIME1). These proteins localize to LDs

(Figure 6). FU-FAs have been detected in Hevea brasiliensis latex

(Liengprayoon et al., 2011) and in soybean (Glycine max) and soy

products (Müller et al., 2020); however, FU-FA biosynthesis in plants

is largely unknown. Our findings indicate that FU-FA biosynthesis

may occur in LDs. It will be interesting to investigate whether

AtUFAMD1, AtUFAO1, and AtFUFM1/LIME1 directly function in

FU-FA biosynthesis.
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SUPPLEMENTARY FIGURE 1

Fluorescence images of N. benthamiana leaves transiently co-expressing a-
DOX1-RFP and the GFP-fused candidate proteins.

SUPPLEMENTARY FIGURE 2

Fluorescence images of epidermal cells of true leaves of N. benthamiana
transiently co-expressing a-DOX1-GFP (LDs, punctate structures) and

mCherry-HDEL (ER, network structures).

SUPPLEMENTARY FIGURE 3

Co-immunoprecipitation using transgenic A. thaliana expressing MYOB2-
GFP or MYOB14-GFP. (A, B) Fluorescence images of MYOB2-GFP (A) and
MYOB14-GFP (B) in epidermal cells of true leaves of 2-week-old A. thaliana
plants. Arrowheads indicate LDs. (C, D) Immunoblot analysis of the co-

immunoprecipitates of MYOB2-GFP (C) and MYOB14-GFP (D) plants using

anti-GFP antibody.

SUPPLEMENTARY FIGURE 4

Subcellular localization of myosin XIK and LDs. (A) Fluorescence images of N.

benthamiana leaves transiently expressing GFP-XIKGTD along with a-DOX1-
RFP. (B) Fluorescence images of myosin XIK-YFP and MDH (LDs) in the

hypocotyls of XIK-YFP plants following the induction of LD formation with

mevalonic acid.

SUPPLEMENTARY FIGURE 5

Subcellular localization of AT4G33110. Fluorescence images of N.

benthamiana leaves transiently expressing AT4G33110-GFP along with a-
DOX1-RFP.

SUPPLEMENTAL MOVIE S1

Fluorescence in Lifeact–Venus plants (for visualizing actin filaments) stained

with BODIPY 493/503 for visualizing LDs.

SUPPLEMENTAL MOVIE S2

Fluorescence in N. benthamiana leaves transiently co-expressing a-DOX1-

RFP for LD visualizing and mCherry-HDEL for ER visualizing.
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