& frontiers | Frontiers in

@ Check for updates

OPEN ACCESS

EDITED BY
Davide Giovanardi,
University of Modena and Reggio Emilia, Italy

REVIEWED BY
Xingang Zhou,

Northeast Agricultural University, China
Asharani Patel,

Indian Agricultural Research Institute (ICAR),
India

*CORRESPONDENCE
Liangzhi Li
205601006@csu.edu.cn

RECEIVED 01 November 2023
ACCEPTED 08 February 2024
PUBLISHED 12 March 2024

CITATION

Peng D, Wang Z, Tian J, Wang W, Guo S,

Dai X, Yin H and Li L (2024) Phyllosphere
bacterial community dynamics in response to
bacterial wildfire disease: succession and
interaction patterns.

Front. Plant Sci. 15:1331443.

doi: 10.3389/fpls.2024.1331443

COPYRIGHT

© 2024 Peng, Wang, Tian, Wang, Guo, Dai, Yin
and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Plant Science

TvPE Original Research
PUBLISHED 12 March 2024
D01 10.3389/fpls.2024.1331443

Phyllosphere bacterial
community dynamics in
response to bacterial wildfire
disease: succession and
interaction patterns

Deyuan Peng*, Zhenhua Wang®, Jinyan Tian', Wei Wang*,
Shijie Guo®, Xi Dai*, Huaqun Yin** and Liangzhi Li**

tZhangjiajie Tobacco Company of Hunan Province, Zhangjiajie, China, 2School of Minerals Processing
and Bioengineering, Central South University, Changsha, China, *Key Laboratory of Biometallurgy of
Ministry of Education, Central South University, Changsha, China

Plants interact with complex microbial communities in which microorganisms
play different roles in plant development and health. While certain
microorganisms may cause disease, others promote nutrient uptake and
resistance to stresses through a variety of mechanisms. Developing plant
protection measures requires a deeper comprehension of the factors that
influence multitrophic interactions and the organization of phyllospheric
communities. High-throughput sequencing was used in this work to
investigate the effects of climate variables and bacterial wildfire disease on the
bacterial community’s composition and assembly in the phyllosphere of tobacco
(Nicotiana tabacum L.). The samples from June (M1), July (M2), August (M3), and
September (M4) formed statistically separate clusters. The assembly of the whole
bacterial population was mostly influenced by stochastic processes. PICRUSt2
predictions revealed genes enriched in the M3, a period when the plant wildfire
disease index reached climax, were associated with the development of the
wildfire disease (secretion of virulence factor), the enhanced metabolic capacity
and environmental adaption. The M3 and M4 microbial communities have more
intricate molecular ecological networks (MENSs), bursting with interconnections
within a densely networked bacterial population. The relative abundances of
plant-beneficial and antagonistic microbes Clostridiales, Bacillales,
Lactobacillales, and Sphingobacteriales, showed significant decrease in
severally diseased sample (M3) compared to the pre-diseased samples (M1/
M2). Following the results of MENs, we further test if the correlating bacterial
pairs within the MEN have the possibility to share functional genes and we have
unraveled 139 entries of such horizontal gene transfer (HGT) events, highlighting
the significance of HGT in shaping the adaptive traits of plant-associated bacteria
across the MENSs, particularly in relation to host colonization and pathogenicity.
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Introduction

Plants harbor diverse microbial species playing crucial roles in
their growth, health, and productivity (Bai et al., 2015; Xin et al,
2016; Brader et al., 2017; Ahmed et al., 2022). These
microorganisms form co-evolved communities that contribute to
disease protection and act as a supplement of the plant’s immune
system. Apart from the root zone, recent researches have
emphasized the influence of phyllosphere microbes on plant
growth, including nitrogen fixation, plant pathogen control, and
organic pollutant bioremediation (Vorholt, 2012; Xu et al., 2022).

The contact between a terrestrial plant’s aboveground section
and the surrounding air is called the phyllosphere. It is estimated
that the surface of approximately 100 million square kilometers of
leaves harbors over 10> bacteria globally, making the phyllosphere
highly biodiverse habitats (Forero-Junco et al., 2022).

Traditionally, the phyllosphere has been considered an
inhospitable habitat for microbial colonization due to prolonged
exposure to solar/ultraviolet radiation, extreme diurnal temperature
fluctuations, desiccation, humidity fluctuations, rain scouring, and
limited nutrient availability (Truchado et al., 2017).

High-throughput sequencing methods have, however, recently
made it possible to characterize the spatiotemporal organization of
the phyllosphere microbiome in great detail. Numerous
microorganisms with densities as high as 10°~10” cells per square
centimeter have been found to reside in the phyllosphere, according
to these research (Kembel et al., 2014; Carvalho and Castillo, 2018;
Ding et al., 2022). These microbes perform a variety of biological
tasks, including as improving plant resistance to disease,
biocontrolling phytopathogens, fixing nitrogen, breaking down
toxic and hazardous materials, and producing plant hormones
and volatile organic compounds (Vorholt, 2012; Xu et al,, 2022).
Furthermore, the phyllosphere’s suitability for experiments and
visual examination makes it an appropriate model system for
testing basic ecological ideas (Redford and Fierer, 2009; Remus-
Emsermann and Schlechter, 2018).

Microorganisms, including phytopathogens, are found in
intricate microbial communities within natural ecosystems (Brader
et al, 2017; Hu et al,, 2020; Ahmed et al,, 2022). They interact with
each other and with their host organisms or larger entities. However,
comprehensive comprehension of multilateral interactions,
particularly interactions within microbial communities, is in
its infancy.

Plant disease development often involves collaborative efforts
from various pathogens, commensal microorganisms, and abiotic
factors. They directly affect host defenses and disrupt microbiota
structures (Hajishengallis and Lamont, 2016). Auxiliary pathogens
and commensal microbes, also identified as bacterial companions,
facilitate the establishment of these pathogens in the community by
exploiting compromised defenses, thereby enhancing their survival
chances. Comprehensive understanding of these interactions is
necessary for predicting disease incidence and severity and
finding novel solutions against them. For example, Dai et al.
(2022) investigate the spatiotemporal changes in community
tobacco leaves infected by brown spot disease. The results of the
investigation showed that Pseudomonas, Sphingomonas, and
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Methylobacterium all became more abundant proportional to the
age of tobacco leaves. Similarly, Liu et al. (2022) showed that
inoculating Bacillus velezensis SYL-3 suppressed diseases like
Alternaria alternata and tobacco mosaic virus (TMV) while
increasing beneficial bacteria like Pseudomonas and Sphingomonas.

Horizontal gene transfer (HGT) is of significant importance in
the evolution and succession of microbial communities, particularly
in the transmission and acquisition of genes among different
organisms (Li L. et al., 2022). Through HGT, emerging pathogens
can acquire new DNA fragments from other organisms, influencing
their progression. This process is significant as it enables the rapid
sharing of genes providing superior defense mechanisms among
distantly related organisms, potentially facilitating processes like
eco-invasion and adaptation to new environments. HGT occurs
when a donor and recipient colonize a similar niche, promoting the
colonization of novel microbial species in that niche. Consequently,
HGT can lead to the emergence of microorganisms with altered
pathogenicity and the development of entirely new pathogens
(James et al., 2006; Richards et al., 2011; Chaib De Mares et al.,
2015). Certain plant surface sites have been shown to be conducive
to microbial growth and colonization, leading to localized increases
in active cell densities. The aboveground plant compartments offer
nutrient-rich environments that are particularly beneficial for HGT
and have been characterized as “hot spots” for microbial HGT
(Pinto-Carbo et al., 2016). HGT can also be augmented by different
compound excreted from plants (Nielsen and van Elsas, 2001; Kay
et al., 2002). The implications of HGT extend beyond individual
organisms, shaping the dynamics and genetic makeup of
microbial communities.

In this study, a field cultivating the model plant, cigar tobacco
(Nicotiana tabacum L.) affected by wildfire disease caused by the
commonly-seen phytopathogen Pseudomonas syringae (Xin et al.,
2018) was used for investigation on the natural succession of
phyllosphere bacterial communities. The objectives of this study
were to (i) clarify taxonomic and functional changes in the
phyllosphere bacterial communities under biotic (bacterial
wildfire disease) and environmental stresses of four time periods,
M1, M2, M3, and M4, which correspond to the months of June,
July, August, and September in 2022; (ii) explore ecological
networks of various time periods and deduce putative gene
sharing events within communities to offer insights into the
microbial interaction.

Results

Dissecting bacterial community in the cigar
tobacco phyllosphere

The forty-eight phyllosphere bacterial DNA samples yielded
3,599 operational taxonomic units (OTU) and 2,347,083 high-
quality paired 16S rRNA gene sequences (average: 48,896; range:
46,698-59,926 reads per sample). A respectable amount of reads for
bacterial communities were acquired in all samples, according to
rarefaction curves created to assess the richness of bacterial
communities (Supplementary Figure SI). The microbiome from
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the four time series groups formed statistically separate clusters,
according to principal coordinate analysis (PCoA) of Bray-Curtis
distance. This suggests that the phyllospheric microbiome from
different time periods displayed varied community compositions
(Figure 1A). 51.9% of the total variation was explained by the first
two axes combined (ANOISM, R = 0.601, P = 0.001). The four
groups share 275 OTUs (the core taxa) in total; the M3 group
contains the most unique OTUs (974), followed by the M4 group
(478) (Figure 1B). Richness, Shannon, Simpson, Pielou, and
invsimpson are examples of alpha diversity indices that clearly
exhibited an upward trend from the M1 group to the M3 group
before showing a modest decline at the M4 group (Figure 1C).
Alphaproteobacteria, Sphingobacteria, Clostridia,
Gammaproteobacteria and Bacilli were the predominant classes
(Figure 1D); Pseudomonadales,
Sphingobacteriales, Clostridiales, Lactobacillales, Rhodospirillales,

Enterobacterales,

Alteromonadales, Flavobacteriales, Sphingomonadales,
Burkholderiales, and Rhizobiales were the dominant bacterial
orders (Figure 1E); Finally, Pseudomonas, Stenotrophomonas,
Enterobacter, Acinetobacter, Lactococcus, Enterococcus, Clostridium
and Sphingobacterium were the dominant bacterial genra (Figure 1F).
Additionally, the bacterial community structure of cigar tobacco in
current study is significantly distinct from that of fine-tuned tobacco
that we previously reported (Wang Z. et al., 2022) upon partial least
squares-discriminant analysis (PLS-DA), which aligns with the notion

10.3389/fpls.2024.1331443

that host genotype affect the composition of microbial holobiont
(Supplementary Figure S2). The PLS-DA model was validated by a
permutation test: R2 intercept = 0.370 and Q2 intercept = -0.402. The
PLS-DA models appeared to be reasonably predictable based on the
negative Q2 intercept. Bacteria affiliated with Sphingobacterium,
Pantoea, Herminiimonas, Acinetobacter, Lactococcus, Enterococcus,
Erwinia, Pseudomonas and Pediococcus ranked the top 15 variable
importance in projection (VIP), indicating them as the statistically
significant taxa for the microbiota classification.

LEfSe (Linear discriminant analysis Effect Size) analysis was
used to identify the differential taxa in each group in order to
further ascertain the changes in the makeup of the bacterial
community throughout time series (Figure 2A). The importance
of bacterial biomarkers in each group is positively connected with
the linear discriminant analysis (LDA) score (Figure 3). In
comparison, M1 group exhibits enrichment of genra such as
Sphingobacterium (LDA =5.33), Pseudoxanthomonas
(LDA =3.99), and Sphingomonas (LDA =3.83). Sphingobacterium
and Sphingomonas are aerobic foliar and phytohormone-producing
bacterium capable of protecting plants from foliar diseases caused
by Pseudomonas syringae (the wildfire disease pathogen) via
, 2012). In vitro plant growth-
promoting characteristics, such as phosphate solubilization, IAA

substrate competition (Vogel et al.

synthesis, and ACC deaminase activity, were demonstrated by
Sphingomonas isolates (Jin et al., 2023).
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FIGURE 1

Bacterial community compositions and diversities of cigar tobacco phyllosphere. (A) Principal coordinate analysis (PCoA) illustrating the effects of
different time series (T1, T2, T3 and T4) on the cigar tobacco phyllospheric bacterial community; (B) Venn diagrams illustrating number of shared or
unique OTUs in each time series group (M1, M2, M3 and M4); (C) Alpha diversity indexes of cigar tobacco phyllosphere bacterial communities in
each time series group (M1, M2, M3 and M4); (D) Bar chart illustrating bacterial community composition at the class level; (E) Bar chart illustrating
bacterial community composition at the order level; (F) Bar chart illustrating bacterial community composition at the genus level.
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FIGURE 2
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Analysis of microbial differences between groups. (A) The linear discriminant analysis effect size (LEfSe) analysis at species level of bacterial
communities (with LDA score >3.1 and p < 0.05) among M1, M2, M3 and M4 groups presented by cladogram and distribution histogram;

(B) Comparison of disease incidence rate (IR) and disease index (DI) among groups (top) with asterisks indicate significance; *p < 0.05; **p < 0.01;
***k*p < 0.001; ns, not significant. Random forest analysis showing genra contributed to the wildfire disease index (bottom).

At the same time, M2 group shows enrichment of bacterial
genra such as Acinetobacter (LDA =4.98), Pediococcus (LDA =4.69),
and Lactiplantibacillus (LDA =3.39). Notably, the M3 period, which
comparatively has a higher disease incidence rate (IR) and disease
index (DI) than other groups (Figure 2B), shows significant
enrichment of many bacterial genra of opportunistic pathogens,
including Enterobacter (LDA =5.21), Pseudomonas (LDA =5.16),
Pantoea (LDA =4.43), Klebsiella (LDA =4.37), Escherichia_Shigella
(LDA =4.08), Dickeya (LDA =4.07), Erwinia (LDA =3.79) and
Pectobacterium (LDA =3.46). Consistently, the random forest
analysis indicated that genra Pseudomonas, Sphingobacterium,
Enterobacter, Saccharibacillus and Enterococcus contributed
greatly (top 5 MSE score) to the wildfire disease index
(Figure 2B). Lastly, M4 group shows enrichment of bacterial
orders of Clostridiales (LDA =5.53), Lactobacillales (LDA =5.56),
and Bacillales (LDA =4.32). These bacteria often considered to be
plant-beneficial and antagonistic against phytopathogens (Ahmed
et al., 2022; Jaffar et al.,, 2023).

An established technique for inferring stochastic processes
associated with community assembly is the neutral community
model (NCM), which has proven useful in the explanation of a
number of ecological phenomena (Roguet et al,, 2015). This
model could quantify the significance of processes that are not
easy to observe directly but might have a great impact on
microbial communities (i.e., dispersal and ecological drift). In
our study, the NCM has predicted 54.9%, 63.0%, 35.9% and 36.1%
of the relation between the occurrence frequency of OTUs and the
relative abundance for M1, M2, M3 and M4 groups, respectively
(Figure 3A). Consistently, the incidence-based (Raup-Crick)
beta-diversity (Brc) values increased rapidly at M3 and
thereafter decreased at M4 period, but they remained within the
‘stochastic’ range (-0.95<Brc<+0.95) (Vass et al., 2020)
(Figure 3B). Consistently, the estimated niche width of M3
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group is relatively greater than that of other groups
(Figure 3C). Besides, the Nm value followed a gradual
downtrend from M1 (567) to M4 (211), indicating that the
species dispersal on tested plant phyllosphere decreased as time
go by (Figure 3A).

The partial Mantel tests were used to explore the relationships
between climate and disease indexes and plant associated microbes
(Figure 3D). The compositions of main bacterial taxa such as those
belonging to Pseudomonadales were significantly correlate with the
disease index (DI, r>0.4, p <0.01). Redundancy analysis (RDA)
was further applied to reveal the relationship between phyllospheric
bacterial populations and factors (Figure 3E). RDA results showed
that morbidity variables, including wildfire disease incidence rate
(IR) and disease index (DI), are positively correlated with
temperature (TEMP), humidity (HM) and rainfall capacity (RC).
In addition, Pseudomonas syringae (OTU2), the pathogen of
bacterial wildfire disease, and Enterococcus (OTU3), a kind of
gram-positive and opportunistic pathogen (Dickel et al., 2018),
were also positively correlated (contributing) to the disease index
(DI). In the contrary, negatively correlated to the DI and these
pathogenic taxa were genra such as Acinetobacter,
Sphingobacterium and Lactococcus, indicating that they are the
potential disease biocontrol agents (Ikeda et al., 2023; Jaffar et al.,
2023). Overall, the morbidity (IR, DI) and climatic factors (TEMP,
HM, RC) have significantly affected the phyllospheric bacterial
community. Variance partitioning analysis (VPA) further showed
that the complete set of the morbidity and climatic variables
together could explain 2.5% of the variation of the tested
phyllospheric bacterial communities, with climatic variables
contributing more than morbidity (Figure 3F). The high
proportion of unexplained variation in VPA also suggested the
potential importance of neutral or stochastic processes during
community assembly.
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FIGURE 3
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Analyses on factors that impacted the relative abundance and occurrence frequency of microbes in cigar tobacco phyllosphere. (A) Fit of the neutral
community model (NCM) of community assembly. The OTUs more frequently present than predicted are in cyan, whereas those less frequently are
in red. The blue dashed lines represent 95% confidence intervals around the model prediction and the OTUs fallen into the confidence intervals are
regarded as neutrally distributed. Nm indicates the meta-community size times immigration, Rsqr indicates the fit to the neutral model. Neutral
processes are the part within 95% confidence interval (red) while non-neutral are the parts including above and below prediction (dark green);

(B) Comparison of incidence-based (Raup-Crick) beta-diversity (Brc) among groups; (C) Niche breadth comparison; (D) The partial Mantel tests
showing the relationships between climate and disease indexes and plant associated microbes; Correlations were shown by the depth of colors, the
significance showed with numbers; *p < 0.05; **p < 0.01; ***p < 0.001; (E) Redundancy analysis (RDA) of the relationships between bacterial
community in tobacco leaves and environmental variables, including morbidity variables (disease incidence rate: IR, and disease index: DI) and
climatic factors (temperature: TEMP, humidity: HM, and rainfall capacity: RC); (F) Variance partitioning analysis (VPA) showing contributions of
morbidity and climatic variables to tobacco phyllospheric bacterial community variation.

The predicted function profiles of
microbiomes are influenced by disease

In order to investigate the effects of (a)biotic factors on the
community functions of different periods, metagenomes of bacterial
communities were predicted using PICRUSt2 and then annotated by
referring to the KEGG database. A total of 7,281 KEGG Orthologs
(KOs) were predicted in the phyllosphere-associated communities.
PCoA analysis at the KO level showed that community functions of
different time series significantly differed from each other (ANOSIM,
R? ~ 0.513, P < 0.001), suggesting that the bacterial wildfire disease
also had a significant effect on microbiome functions of different time
(Supplementary Figure S3). C, N, S cycling, secretion and adaption
related genes showed a varied pattern among the phyllosphere
bacterial communities (Figure 4).

Specifically, functional genes more abundant in the M3
microbiome were involved in Secretion system (acting as
virulence factor, such as genes encoding the conjugal transfer
pilus assembly proteins Tra and Hof), Carbohydrate metabolism
(e.g. Pentose phosphate pathway, Amino sugar and nucleotide
sugar metabolism) and Energy metabolism (e.g. Carbon fixation,
Sulfur metabolism), as well as genes related with osmotic stress
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resistance (e.g. otsAB, opuC). We proposed that these genes
enriched in the M3, a period when the plant wildfire disease
index reached climax (Figure 2B), were related with the
deterioration of wildfire disease (more secretion of virulence
factor), the enhanced metabolic capacity and environmental
adaption. Similar observation was also reported previously (Wang
etal, 2022). In comparison, functional genes more abundant in the
M4 microbiome were involved in Glycolysis/Gluconeogenesis (e.g.
porB and porD), Glycan metabolism (e.g. exoHKVQXY) and
Sporulation (e.g. spoVK, yndF, and cotSA). These sporulation
genes may represent an adaptive strategy that enables bacteria to
survive harsh environmental conditions (e.g., depleted nutrient on
old leaves) for prolonged periods of time (Figure 4).

Characteristics of microbial interaction
through co-occurrence network

Molecular ecological networks (MENS) are built and visualized
to investigate the impact of combinations of bacterial wildfire
disease and climatic factors on microbial interactions across the
distinct time periods. The aim was to gain a deeper insight into the
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FIGURE 4

PICRUSt-predicted metagenome functions at KO level with significant different abundance among groups.
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interactions among phylospheric microorganisms. Analysis
revealed that the four networks exhibited significantly different
structures, highlighting the diverse impact of bacterial wildfire
disease and climatic factors on microbial interactions across time
(Figure 5A). This observation provides valuable insights into the
dynamic nature of these interactions in response to environmental
changes. The number of nodes in the MENs exhibits an increasing
trend from M1 (188) to M3 (424), followed by a slight decrease at
M4 (325). This tendency is also found in MEN properties such as
the network diameter, modularity, average path length, and
connected components (a maximal set of nodes such that each
pair of nodes is connected by a path). In comparison, the edge
numbers increase sharply from M1 (960) and M2 (793) to M3
(4,488) and M4 (12,706). Similar trend is also found in MEN
properties such as average (weighted) degree, clustering
coefficient, and network density (comparison between the edges
available in a graph and a graph with all possible edges) (Figure 5B).
The portion of positive correlation also followed an increase trend
from M1 (77.3%) to M3 (96.1%). The positive correlation thereafter
slightly decreased at M4 (79.8%).

Additionally, the average path lengths range from 2.39 to 4.49
(Figure 5B), exhibiting the network properties of typical small world with
all nodes highly interlinked within the networks (Watts and Strogatz,

Frontiers in Plant Science

1998). The bacterial taxa Clostridiales (18.2%-27.8%), Pseudomonadales
(6.2%-11.6%), Lactobacillales (6.1%-12.1%), Sphingobacteriales (2.8%-
11.7%), Bacillales (3.8%-15.1%), Enterobacterales (3.7%-23.4%),
Rhizobiales (4.3%-6.4%), Burkholderiales (4.3%-7.4%) always
predominate the nodes of the MENS.

Following the results of MENs, we further test if the correlating
bacterial pairs within the MEN have the possibility to share
functional genes. Namely, the available genomes of phyllosphere
bacterial isolates were used to detect putative HGT events from the
correlating taxa in MENs. Interestingly, we have unraveled 139
entries of such HGT events (Supplementary Table S1) and we
further perform phylogenetic reconstruction on representative
horizontally transferred genes (HTGs) to verify the accuracy of
HGT inferences.

These HTGs putatively confer adaptive functions to
opportunistic plant-associated pathogenic microorganisms in the
following categories:

(A) Enter/degrade host tissue:

Plant-associated pathogens degrade plant cell wall structures for
energy and for gaining entry to the host. In current study, the
identified HGT events related to these functions include:

(i) Lytic murein transglycosylase. This enzyme is found to be
shared among plant-associated microbes of Pseudomonadales (e.g.
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Molecular ecological networks of phyllospheric bacterial community of different groups. (A) Visualization of separate and overall molecular
ecological networks. Each node represents an OUT; The size of each node is proportional to the number of connections (degree) and the colors of

nodes represent different bacterial order (top) or module (bottom). The links
correlations; (B) Molecular ecological network properties of the four groups.
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the wildfire disease pathogen Pseudomonas syringae) from sampling
sites like diseased soybean/Coriandrum sativum leaflet and
Burkholderiales (e.g. the rhizosphere species Burkholderia
hospita) from sampling sites like forest soil (Figure 6A). This is

corresponding to 322 links in the overall MEN between
Burkholderia and Pseudomonas. Lytic murein transglycosylase is a
type of autolysin that exerts virulence by breaking the B-1,4
glycosidic bond between N-acetylmuramic acid and N-
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acetylglucosamine residues within the host peptidoglycan (Liu
et al.,, 2012);

(i) Type IV secretion system protein VirB3. This protein is
found to be shared among plant-associated pathogens belonging to
Pseudomonas, Xanthomonas and Pantoea, which inhabit the plant
phyloplane and leaf surface, highlighting their potential role in
intercellular communication and host manipulation (Figure 6B).
This observation, corresponding to 541 links in the MEN among
these three genra, underscores the significance of the type IV
secretion system in facilitating pathogenic processes and
contributing to disease (Christie et al., 2005). VirB3, which shares
similarities with the pilin-like TraL protein involved in T-pilus
assembly, represents a conserved component of this secretion
system (Mossey et al., 2010).

In addition to the secretion system, other key mechanisms have
been identified in plant-associated microbes. For instance,
Pseudomonas spp. have been observed to utilize their flagellar
apparatus to attach to and reach more favorable niches on the
plant surface (Haefele and Lindow, 1987). This finding is consistent
with the current study, which reveals the sharing of cell
filamentation protein between Betaproteobacteria and
Gammaproteobacteria strains (Figure 6C). Furthermore, the study
identifies several other proteins, such as TrbB, TraO, TraD, and
TraQ-like protein, which are involved in host attachment and
virulence, and that are shared among plant-associated microbes
in the MENs (Supplementary Table S1).

Apart from the flagellar apparatus implicated in host
attachment, it is also noteworthy that esterase/lipase genes,
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known for their involvement in cleaving the cuticle layer of the
cell wall under the regulation of quorum-sensing, were found to be
shared among plant-associated microorganisms like Sphingomonas,
Bradyrhizobium, and Paenibacillus (Supplementary Table SI).
Biofilm formation plays an important role in the colonization,
abiotic resistance, and virulence of microbial community (Wang
W. H. et al, 2022). Align with this, our study reveals the gene
transmission of dTDP-glucose 4,6-dehydratase (RmlB) between
plant-associated Methylobacterium and Sphingomonas, which are
inhabitants of the wheat phyllosphere (Figure 6D).

(B) Ingest and utilization of nutrients from host:

A Ca?*-binding protein of the repeats in toxin (RTX) family,
which causes the leakage of host cellular content through producing
pore on the targeted cell membranes (Ostolaza et al., 2019), was
found to be transferred among phytopathogens (Figure 7A).

This study further supports the importance of HGT in shaping
nutrient acquisition strategies in plant-associated microorganisms,
as abundant HGT of transporter-encoding genes has been identified
in microbes present in the MEN. The horizontally transferred genes
identified are associated with the transport of nutrients including
D-glucose, cellobiose, D-methionine, arabinose, nitrate/nitrite,
raffinose/stachyose/melibiose, and more (Supplementary Table
S1). To validate the representative horizontally transferred genes
(HTGs), phylogeny inference was conducted on HTGs such as the
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Pseudomonadales) and the arginine:ornithine antiporter/lysine
permease (Burkholderiales-Xanthomonadales) (Figures 7B-D).

(C) Counteract, Subvert, or Manipulate Host Pathways:

Upon recognizing an invading pathogen, plant cells activate
multiple defense responses, including producing ROS (reactive
oxygen species) and secreting antimicrobial toxins. Inhibition of
the plant’s oxidative burst is crucial for the successful infection of
several biotrophic and hemibiotrophic phytopathogens (Fu et al.,
2022). In current study, HGT events of antioxidant enzymes
that neutralize the reactive oxygen species were identified
(Supplementary Table S1). For example, a catechol 2,3-
dioxygenase was found to be shared between Stenotrophomonas
and Variovorax that inhabit plant phyllosphere/fallen leaves
(Figure 8A), in correspondence to 21 links in the MEN between
these taxa; a protein-disulfide isomerase was found to be shared
between Stenotrophomonas and Achromobacter that inhabit
sorghum phyllosphere/maize root (Figure 8B), in correspondence
to 30 links in the MEN between these taxa; a glutathione S-
transferase was found to be shared between Variovorax and
Pseudomonas that inhabit switchgrass leaf surface/forest soil
(Figure 8C), in correspondence to 21 links in the MEN between
these taxa. In addition, genes encoding peroxiredoxin
(Stenotrophomonas-Achromobacter, 30 links in the MEN),
ferredoxin (Acidovorax-Bradyrhizobium, a links in the MEN),
Dyp-type peroxidase family (Sphingomonas-Cupriavidus, 52 links
in the MEN), D-methionine (an antioxidant) transport system
(Figure 8D, Pectobacterium-Paenibacillus, 338 links in the MEN)

10.3389/fpls.2024.1331443

and non-heme chloroperoxidase (Rhizobium-Sphingomonas, 46
links in the MEN) were predicted to be shared by plant-
associated microbes (Supplementary Table S1).

In order to overcome the inhibitory effects of antimicrobial
toxins produced by plants, phytopathogens have developed
strategies to break down these compounds using secreted
enzymes (Maor and Shirasu, 2005). For example, the pea
pathogen Nectria haematococca encodes a cytochrome P450
enzyme responsible for the detoxification of the pea-produced
1994), and its
discontinuous distribution supports the hypothesis of HGT

phytoalexin pisatin (Maloney and VanEtten,

(Temporini and VanEtten, 2004). Consistently, genes encoding
cytochrome P450 were identified to be shared between
Acidovorax and Rhizobium from root nodule and the
phyllosphere of Agrostis stolonifera (Figure 8E).
Glycosyltransferase is involved in the detoxification of organic
toxics generated upon plant infections (Poppenberger et al., 2003;
Sepulveda-Jimenez et al., 2005). Consistently, genes encoding
glycosyltransferase family were widely identified in plant-
associated microbes (n=4, Supplementary Table S1). For example,
phylogenetic analysis showed that species of Enterobacterales
(Gammaproteobacteria) and Burkholderiales (Betaproteobacteria)
that inhabit plant environments (phyllosphere/rhizosphere/
endophyte) share a poly-beta-1,6-N-acetylglucosamine synthase-
like glycosyltransferase via cross-class HGT (Figure 8F).
Siderophores are important in iron biogeochemical cycling in
soils, pathogen competition, plant growth promotion and cross-
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kingdom signaling (Gu et al., 2020). Correspondently, components
of cobalamin/Fe**-siderophores transport systems and iron(IIT)
transport system were found to be shared by pathogenic microbes
inhabiting plant-associated environments, such as Pseudomonas
syringae and Ralstonia solanacearum (Figures 8G, H). Ralstonia
solanacearum is a soilborne phytopathogen that causes bacterial
wilt and substantial yield losses in many plants (Yin et al., 2022).

(D) Abiotic Stresse Resistance

Plant-surface microorganisms frequently encounter challenging
abiotic stresses due to fluctuations in climate, such as osmotic stress,
sun exposure, and exposure to antimicrobial drugs like antibiotics
and chemicals containing metal ions. HGT events play a crucial role
in helping these microorganisms adapt to these harsh conditions (Li
L. et al,, 2022).

Several examples of HGT events related to osmotic stress
resistance have been identified (Supplementary Table S1). These
HGT events include (Figures 9A-C): the osmoprotectant transport
system ATP-binding protein (Pseudomonas-Agrobacterium, 338

10.3389/fpls.2024.1331443

links in the MEN), the sodium:proton antiporter (Pseudomonas-
Erwinia, 445 links in the MEN), and the bile acid:Na* symporter
(Variovorax-Stenotrophomonas, 12 links in the MEN); HGT events
associated with DNA repair and radiation resistance, such as the
restriction endonuclease Notl (Pseudomonas-Xanthomonas, 319
links in the MEN); In terms of antimicrobial resistance, HGT
events encompass a range of mechanisms involved in antibiotics
inactivation and efflux (Figure 9D-G), such as streptomycin 3’-
adenylyltransferase (Luteimonas-Pseudomonas, 319 links in the
MEN), nitroreductase (Xanthomonas-Pseudomonas), a well-
documented resistance factor (Miiller et al., 2015), and amidase
(Xanthomonas-Pseudomonas), as well as the multidrug efflux
pumps (Stenotrophomonas-Variovorax).

Additionally, genes conferring resistance to antimicrobial
chemicals containing metal ions, such as the chromate efflux
transporter (Luteimonas-Pseudomonas), copper resistance protein
B (Luteimonas-Pseudomonas), Cu'-exporting ATPase
(Methylobacterium-Roseomonas, 6 links in the MEN) and
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FIGURE 9

Phylogenetic analyses of the representative horizontally transferred genes related to responses to host defense in this study (red color) with the
closest sequences from Genbank database. The trees were constructed with PhyML: (A) Osmoprotectant transport system ATP-binding protein;
(B) Sodium:proton antiporter; (C) Restriction endonuclease Notl; (D) Streptomycin 3'-adenylyltransferase; (E) Nitroreductase; (F) Amidase;

(G) Multidrug efflux pump.
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mercuric ion transport protein MerT (Ralstonia-Pseudomonas, 324
links in the MEN), have also been horizontally transferred
(Figure 10A-D).

Furthermore, the ppGpp synthetase/RelA/SpoT-type
nucleotidyltranferase that participates in the stringent response is
shared between Pectobacterium and Pseudomonas (326 links in the
MEN); the starvation-inducible DNA-binding protein is shared
between Rhizobium and Sphingomonas; The transcriptional
regulator (MerR) is shared between Stenotrophomonas and
Sphingobium (22 links in the MEN), as well as between
Xanthomonas and Pseudomonas (319 links in the MEN). These
proteins are additional examples of HGT events related to holistic
response to abiotic stress resistance (Figure 10E).

Discussion

Pseudomonas and Enterobacter affiliated microbes could be a
primary factor that affecting the plant disease development. It was
demonstrated that the two highly conserved effectors of
Pseudomonas syringae, AvrE and HopM]1, require high moisture
2016). In the
phyllosphere, members of the Enterobacter genus can reproduce

on establishing the aqueous apoplast (Xin et al,

quickly, form aggregates when there is plenty of moisture, and
respond sensitively to changes in the humidity on plant surfaces
(Brandl and Mandrell, 2002; Brandl, 2006; Whipps et al., 2008). The
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Enterobacterial genra, Pectobacterium and Dickeya, are well-
characterized plant pathogens that cause blackleg in tobacco and
soft rot in Chinese cabbage, potato, and other crops (Ma et al,
2007). Consistently, these taxa were significantly enriched in the M3
period. On the other hand, Bacterial populations associated with the
Clostridiales, Lactobacillales, and Bacillales orders have been
identified as beneficial for plant growth. The recruitment of
Bacillales in plant associated niche was reported to be induced by
the plant exudation for disease suppression (Zhou et al., 2023). The
existence of these bacteria in the M4 period may represent tobacco’s
response mechanism to attract microorganisms during biotic
stressors like pathogen invasion and unfavorable climatic
conditions (Chen et al.,, 2014). Similarly, the relative abundances
of Clostridiales, Bacillales, Lactobacillales (Ahmed et al., 2022; Jaffar
et al,, 2023), and Sphingobacteriales (Ikeda et al., 2023), which are
often considered to be plant-beneficial and antagonistic microbes,
showed significant decrease in severally diseased sample (M3)
compared to the pre-diseased samples (M1/M2) in the MENSs.
This might be seen as the plant’s “cry for help” mechanism to
lessen the effects of these stresses (Wang and Song, 2022).

The NCM has successfully predicted a significant portion of the
community variance, indicating that stochasticity plays a more
crucial role than determinism in shaping the tobacco
phyllospheric bacterial community. Specifically, M1 and M2
groups demonstrated a higher NCM prediction fraction
compared to M3 and M4 groups, suggesting that stochasticity is
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Phylogenetic analyses of the representative horizontally transferred genes related to abiotic stresse resistance in this study (red color) with the
closest sequences from Genbank database. The trees were constructed with PhyML: (A) Chromate efflux transporter; (B) Copper resistance protein
B; (C) Cu*-exporting ATPase; (D) Mercuric ion transport protein MerT; (E) ppGpp synthetase/RelA/SpoT-type nucleotidyltranferase.
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dominant in the early stages of community establishment, while
deterministic processes become increasingly important over time in
plant-related habitats (Dini-Andreote et al., 2015). This can be
attributed to the critical influence of amino acids on stochastic
processes in plant leaves for environmental selection (Xu et al.,
2023). MENs of M3 and M4 demonstrate increased complexity,
with abundant interactions in a highly connected microbial
community. This suggests an increase in cooperative and
facilitative interactions between pathogens and compatible
microbes, potentially contributing to disease development
(Ahmed et al, 2022). This could be attributed to the peak in
rainfall and humidity during the M3 period (corresponding to
August) at the sampling site, as indicated by data from the
national meteorological center of China (http://www.nmc.cn/).
These conditions likely provided an optimal environment for
microbial growth and the formation of connections. We further
analyze the structural robustness of MENs (M1, M2, M3, and M4)
by calculating their natural connectivity (Supplementary Figure S4).
A higher natural connectivity indicates a more structurally robust
network (Li F. et al,, 2022). Considering that real networks may
experience node failures, we simulate random node failures by
randomly removing nodes in our analysis. The natural connectivity
of M1, M2, M3, and M4 in a network without node failures is 0.24,
0.27, 0.66, and 0.21, respectively. When approximately half of the
nodes are removed, the natural connectivity of M3 is 61.5%, 68.0%,
and 61.7% higher than that of M1, M2, and M4, respectively. This
indicates that M3 topology possesses superior structural robustness
and is more stable compared to other topologies. The natural
connectivity algorithm reflects the communication links between
nodes in reality. As a result, M3 topology’s higher structural
robustness is expected to translate into better performance in
real-world networks, where nodes may fail due to various reasons.
In contrast, M1, M2, and M4 topologies lack the redundancy of M3.
When nodes fail in these topologies, there are fewer alternative
paths for nodes to take, leading to a more significant disruption of
communication. Overall, the superior structural robustness of M3
makes it a more reliable and stable topology for various network
applications. Consistent with our findings, a study by Hu et al.
(2020) revealed that the rhizosphere and endophytic compartments
of infected tobacco were more complex compared to those of
healthy tobacco. Similarly, a higher level of connections was also
observed in the wilt-diseased rhizoplane of tobacco compared to
healthy samples (Ahmed et al., 2022; Tao et al., 2022).

HGT may also be significant in shaping the genetic repertoire and
adaptive traits of plant-associated bacteria across the MENS,
particularly in relation to host colonization, and pathogenicity. We
have unraveled 139 entries of HGT events between the correlating
bacterial pairs within the MEN that suggest the possibility to share
functional genes. The validity of the HGT direction and identification
during the inference process may be concerns. To allay these worries,
we have included in our analysis the “gold standard” confirmation for
the identified HGT genes: phylogenetic incongruence, which occurs
when the evolutionary tree of a given protein family differs from the
known organismal phylogeny, indicates that a given gene has been
acquired through HGT from a different lineage (Schonknecht et al,
2014). For instance, the well-supported phylogenetic tree of methionine
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transport system permease illustrates that the protein sequences from
Pectobacterium sp. (Proteobacteria) embedded within sequences from
Paenibacillus sp. and Bacillus sp. (Firmicutes) (Figure 8D). Cross-
phylum HGT originating from Firmicutes to Proteobacteria is the most
economical explanation for this phylogenetic pattern.

Our study has identified abundant virulence-related HTGs.
Consistently, there is evidence supports the notion that enzymes
that degrades cell wall are often horizontally transferred among
microbes to interact with host plants, as shown in previous studies
(James et al., 2006; Richards et al., 2011; Chaib De Mares et al.,
2015). The plant wildfire pathogen Pseudomonas syringae has been
observed to involve prophages in transferring genes that encode
Type III secreted effector (T3SE) proteins, which contribute to the
evolution of pathogenic virulence (Hulin et al., 2023). Furthermore,
the existence of Type IV secretion systems in transmissible bacterial
plasmid with diverse excretion functions, including the delivery of
toxic proteins by pathogens, further emphasizes their versatility and
significance in host-pathogen interactions (Tauch et al., 2002). The
presence of exogenously acquired DNA and pathogenicity
determinants in the genome of the plant wilt pathogen Ralstonia
solanacearum further emphasizes the role of HGT in the evolution
of plant-associated pathogens (Salanoubat et al., 2002). Likewise,
genomic differences correlated with virulence and host-range
functions have been identified in phytopathogenic Xanthomonas
species, underscoring the importance of HGT in shaping niche-
adaptive traits (Da Silva et al., 2002). In the case of Pectobacterium
atrosepticum, planta colonization promotes the transfer of
integrative and conjugative elements, and leads to the acquisition
of virulence genes (Vanga et al,, 2015). Moreover, HGT has been
proposed as a contributing factor to the adaption of Erwinia
tracheiphila, the bacterial wilt pathogen affecting cucurbits
(Shapiro et al., 2016). The prediction of the transmission of an
alpha-1,2-mannosidase between Stenotrophomonas and
Sphingomonas (75 links in the MEN, Supplementary Table SI)
and cell-wall-degrading enzymes in current study is also
noteworthy. This mannitol metabolic enzyme associates with
growth and pathogenicity in phytopathogens (Veléz et al., 2008)
and can trim host glycoproteins (Reichenbach et al, 2018). Its
exclusive transfer among distantly related phytopathogenic fungi
further supports the significance of this enzyme (Qiu et al., 2016).
The findings align with previous researches that highlight the
function of these genes in the enzymatic modification and
breakdown of the cell wall and to evade plant defenses (Voigt
et al., 2005; Devescovi et al., 2007; Feng et al., 2009; Liu et al., 2018).
RmlIB is an enzyme associated with the formation of rhamnose-
containing biofilms and the virulence of pathogenic bacteria (Sen
etal., 2011). This prediction corresponds to the presence of 50 links
in the MEN. Plant-associated microbes generally detect and
respond to signals received from plants, including organic acid
and sugar from exudate, and begin to colonize. Microorganisms
utilize their flagella to navigate towards the plant once a signal is
detected. Subsequently, bacteria adhere to the plant surface and
form the biofilms (Delmotte et al., 2009). These findings underscore
the multifaceted strategies employed by plant-related
microorganisms to interact with their host plants. Biofilm
formation facilitates the establishment and persistence of
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microbial communities, contributing to colonization, abiotic
resistance, and virulence. Meanwhile, chemotaxis allows
microorganisms to detect and respond to plant signals, aiding in
their movement towards the plant surface. The presence of genes
associated with flagella assembly, bacterial motility, and biofilm
formation further supports the concept of biofilm-mediated
colonization and the formation of complex microbial
communities in the phyllosphere and stem settings. These
collective adaptations enable plant-associated microbes to thrive
and interact synergistically with their plant hosts.

The availability of nutrient compounds on leaves plays a crucial
role in the colonization of the phyllosphere by bacterial populations
(Lindow and Brandl, 2003). The release of small quantities of
nutrients, including simple sugars like glucose, fructose, and
sucrose, from the plant’s core has been observed (Lindow and
Brandl, 2003). Consistently, we have detected abundant nutrient
transport related HTGs. the nutrient acquisition strategies of plant-
associated osmotrophic microbes heavily rely on the array of
plasma membrane transporters they encode. Through HGT, these
microbes can acquire novel transporter genes, expanding their
nutrient repertoire and enabling them to occupy new ecological
niches, ultimately giving them competitive advantages over other
microorganisms from the same niches (Richards and Talbot, 2013).
Polyamines like arginine and putrescine, in addition to serving as a
source of essential and osmoprotectant amino acids, also function
as signaling molecules that enable the microbiome to detect the
presence of eukaryotic hosts (Jiménez-Bremont et al., 2014; Liu
et al, 2018). Plant-associated microbial species alter their lifestyle
upon detecting these compounds, promoting adhesion and biofilm
development as a means to evade plant defenses. This response
allows the microbes to establish a closer relationship with their host
plants by forming biofilms that enhance their persistence and
resistance to plant immune mechanisms (Jimenez-Bremont et al.,
2014; Liu et al,, 2018). This highlights the importance of HGT in
shaping the evolution of microbial nutrient acquisition strategies,
and suggests that plant-associated microbes may share common
mechanisms for acquiring nutrients from their environments
(Bachhawat et al., 2013).

Notably, the identified HGT events frequently occur within plant-
associated environments, such as the phyllosphere and root. For
instance, the sequences of Stenotrophomonas spp. inhabiting
sorghum phyllosphere and maize root are clustered with
Burkholderia-affiliated species from similar habitats as seen in the
phylogeny of multidrug efflux pump (refer to Figure 9G). This can be
explained by the consistent inheritance of conserved core plant
microbiomes (holobionts) through seed dispersion or recruitment
from the surrounding environments (Agler et al, 2016). Root
microbiomes can rapidly spread to the endorhizosphere through
fissures in lateral-root connections or wounds caused by
phytopathogen (de Santi Ferrara et al, 2012). Endophytic bacteria
may migrate from root to phyllosphere, where they can develop into
local communities (Chi et al., 2005). In fact, extensive taxonomic and
functional overlaps between the plant leaf and root microbial
communities were unraveled (Bai et al., 2015). SourceTracker
analysis of tea microbiome revealed high similarities (34%) within
the phyllosphere and within the rhizosphere, indicating exchanges
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between roots and leaves (Xu et al,, 2023). These microbial migration
and colonization processes provide opportunities for HGT among
plant holobionts, as demonstrated by the phylogenetic proximity of the
HGT-affected genes. In addition, HGT can be stimulated by various
exuded compounds, such as organic acids and amino acids (Nielsen
and van Elsas, 2001; Kay et al., 2002).

Overall, these findings emphasized the shared features and
mechanisms utilized by plant-associated microorganisms to
interact with their host plants. The presence of shared proteins
involved in cellular attachment, virulence, and enzymatic
breakdown of the cell wall suggests the conserved strategies and
adaptations in the microbial ecology of plant-associated pathogens.

Materials and methods

Disease incidence of bacterial
wildfire disease

The incidence of bacterial wildfire disease in tobacco was
assessed using the standards outlined in the tobacco pest
classification and survey methods (GB/T 23222-2008) of China.
The disease incidence was determined by calculating the percentage
of diseased tobacco in each field. Additionally, the disease index was
calculated using the formula:

Disease index (DI) = [ (r x N)/(n x R)] x 100

where r represents the disease severity, N is the number of
infected tobaccos with a rating of r, n is the total number of tobaccos
tested, and R is the highest disease severity value in each field.
Meteorological data were obtained from the National
Meteorological Center of China’s website (http://www.nmc.cn/).

Leaf collection method

Leaf samples of cigar tobacco (Nicotiana tabacum L) were
collected from the Yongding Region, Sangzhi County, Zhangjiajie
City, Hunan Province, China (29°28'3"N, 110°57’51"E) at four
different time points in 2022: June (M1), July (M2), August (M3),
and September (M4). Samples were taken from cigar tobacco fields
with varying levels of bacterial wildfire disease, with three plants
displaying typical symptoms of the disease sampled from each plot,
resulting in a total of three duplicates. The sampling followed a
random block pattern, covering a plot area of 90 m?, adhering to local
planting methods. A total of 18 plants per plot were sampled. To
extract foliar microbial DNA, middle leaves from every sixth plant
were collected and stored at 4°C until transportation back to
the laboratory.

DNA extraction and high-
throughput sequencing

To extract the genomic DNA of foliar microorganisms, we
collected 15 grams of leaf samples from different areas of the leaf
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surface, specifically excluding the main and branch veins, using a
sterile puncher. The samples were then placed in a 50 mL solution
of 0.1% Tween-80 bacterial phosphate buffer (pH 7.0) and shaken
for 30 minutes at 170 revolutions per minute (rpm) and 28°C.
However, the current processing method for our samples may not
accurately differentiate between endophytes and epiphytes. The
resulting bacterial suspension was collected, and the leaf samples
were washed twice more. Afterward, the collected suspensions were
centrifuged for 15 minutes at 4°C and 10,000 rpm to pellet the
microorganisms, which were then washed three times and re-
suspended in sterile water. Subsequently, the microorganisms
were resuspended in 1 mL of sterile water for DNA extraction,
which was performed using the Bacteria Genomic DNA Kit
according to the manufacturer’s protocol. The 16S rRNA gene’s
V3/V4 regions were amplified using the specific primer pair 341F
(5-CCT ACG GGN GGC WGC AG-3’) and 805R (5-GAC TAC
HVG GGTATC TAA TCC-3°). Finally, the amplicons were
sequenced using the Illumina NovaSeq PE250 platform by LC-Bio
Technology Co., Ltd (Hang Zhou, Zhejiang Province, China).

Sequencing processing and
statistical analyses

We performed several steps to process the raw sequences.
Firstly, the raw sequences were divided into sample libraries using
barcodes. Subsequently, low-quality sequences with a quality score
(QC) below 20 over a 5-base pair window size were removed using
Btrim (Kong, 2011), and sequences shorter than 100 base pairs were
eliminated. Then, the forward and reverse sequences were merged.
Any sequences containing ambiguous bases or of incorrect length
were excluded, and the remaining sequences were compared against
the UNITE v8.2 (Koljalg et al., 2005) to identify and remove
possible chimeras.

Following this, the sequencing fragment lengths were restricted
to 200-400 base pairs. The UPARSE (Edgar, 2013) was utilized to
cluster and generate operational taxonomic units (OTUs) at a 97%
similarity level. To ensure data authenticity, OTUs represented by
only one sequence across the entire dataset (global singletons) were
removed. All statistical analyses and calculations were conducted
using the R (v 3.6.3) statistical platform (www.r-project.org).

Subsequently, we used analysis of similarities (ANOSIM) to
assess significant differences in community dissimilarity and
conducted a classification random forest analysis (Yuan et al,
2021) using the R randomForest package to identify key taxa. We
also utilized the incidence-based (Raup-Crick) beta-diversity (Brc)
to differentiate between deterministic and stochastic assembly
processes (Chase, 2010; Stegen et al.,, 2013; Vass et al., 2020). In
addition, we adopted a neutral community model (NCM) to predict
the relationship between OTU detection frequencies and their
relative abundance across the wider metacommunity, using R
(version 3.6.3) to determine the potential importance of stochastic
processes on community assembly.
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Network construction and
HGT identification

To construct molecular ecological networks (MENs), we
calculated correlations between pairwise OTUs that were present
in over half of the samples using the SparCC method (Friedman and
Alm, 2012). Only edges with a significant correlation higher than
0.7 (p < 0.01) were retained for network construction. We then
evaluated the robustness of the microbial association networks
against random and targeted node removals (Albert et al., 2000),
using natural global network connectivity as a reliable measure of
network robustness (Wu Jun et al., 2010). By sequentially removing
nodes from the network, we observed how the natural connectivity
of the microbial network changed, providing insights into
its robustness.

Subsequently, following the results of MENs, we investigated if
correlating bacterial pairs within the MENs had the potential to
share functional genes. To achieve this, we utilized available
genomes of phyllospheric bacterial isolates to detect putative
horizontal gene transfer (HGT) events from the correlating taxa
in MENSs. Identification of horizontally transferred genes in the
genomes of bacterial isolates from the phyllosphere was conducted
using the Integrated Microbial Genomes Annotation Pipeline
(IMGAP) v.5.0 (Markowitz et al., 2010). Genes in tested genomes
were defined as having been horizontally transferred from a distant
lineage based on the principle that genes had the best BLASTP hits
(highest bit scores) or >90% of the best hits found outside the
taxonomic lineage of the tested genome (i.e., from a distant phylum,
class, etc.) and with lower-scoring hits or no hits within the lineage.

Furthermore, the phylogeny of various abiotic resistance genes
was constructed based on gene-translating protein sequences using
the PhyML v.3.0 program (Guindon et al, 2010) with the
Maximum Likelihood (ML) method and 1,000 bootstrap
replicates. These sequences were aligned with MUSCLE (Edgar,
2004) and trimmed with Gblocks (Talavera and Castresana, 2007)
before tree construction, which was then visualized using iTOL
(Letunic and Bork, 2021).

Conclusions

Pathogenicity is a multifaceted concept influenced by various
factors, including pathogen and host genotypes, environmental
stresses, and microbial interactions. Together, these factors
determine the plant’s response to disease-causing microorganisms.
Traditional plant pathology textbooks typically describe the
development of plant diseases as reliant on prerequisites such as a
microbial pathogen with virulence or pathogenicity factors, a
susceptible plant host, and environmental conditions that favor
disease progression, such as humidity and temperature. However,
recent recognition of the symbiotic or mutualistic relationships
between many plants and microorganisms has led to a more
nuanced understanding of disease causation. The hypothesis of a
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pathological microbiome suggests that pathogens are integrated into
their biological environment, and the microbiome plays a crucial role
in plant health and resistance to pathogens.

Taking into account the complexity of these interactions, a
conceptual framework known as the disease tetrahedron has been
proposed to encompass the interactions between disease
determinants, using biological factors as a fourth dimension. In
this framework, disease progression is influenced and moderated by
various factors, including vectors that transmit pathogens,
environmental factors, and the microbiota that regulate
pathogenesis and plant defense. Environmental factors affect not
only the host plant but also the pathogens and other biological
factors, while biological factors directly influence plant
performance, pathogens, and other biological components.

The study’s findings revealed distinct clusters formed by four
series groups (M1, M2, M3, and M4) within the bacterial community,
with the assembly primarily driven by stochastic processes.
Predictions using PICRUSt2 showed that genes enriched in the M3
group were associated with disease progression, increased virulence
factor secretion, enhanced metabolic capacity, and environmental
adaptation. The molecular ecological networks of M3 and M4
demonstrated a higher complexity with numerous interactions
within a highly connected microbial community.

The study also found that the abundance of beneficial plant
microbes and antagonistic microbes decreased significantly in severely
diseased samples (M3) compared to pre-diseased samples (M1/M2),
indicating potential implications for disease progression. Furthermore,
the study explored the potential for HGT within the bacterial pairs in
the MENs and identified 139 instances of such HGT events.

Overall, the study provides valuable insights into the bacterial
communities in the phyllosphere, shedding light on the dynamics of
plant-microbe interactions. These findings contribute to the
development of strategies to manage diseases, promote plant
health, and engineer microbiomes to enhance the resilience of
plants against foliar bacterial diseases.
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