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Identification of plant microRNAs
using convolutional
neural network
Yun Zhang*†, Jianghua Huang †, Feixiang Xie, Qian Huang,
Hongguan Jiao and Wenbo Cheng

College of Information Engineering, Guizhou University of Traditional Chinese Medicine, Guiyang,
Guizhou, China
MicroRNAs (miRNAs) are of significance in tuning and buffering gene expression.

Despite abundant analysis tools that have been developed in the last two

decades, plant miRNA identification from next-generation sequencing (NGS)

data remains challenging. Here, we show that we can train a convolutional neural

network to accurately identify plant miRNAs from NGS data. Based on our

methods, we also present a user-friendly pure Java-based software package

called Small RNA-related Intelligent and Convenient Analysis Tools (SRICATs).

SRICATs encompasses all the necessary steps for plant miRNA analysis. Our

results indicate that SRICATs outperforms currently popular software tools on

the test data from five plant species. For non-commercial users, SRICATs is freely

available at https://sourceforge.net/projects/sricats.
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1 Introduction

MicroRNAs (miRNAs) are 20–24 nucleotide non-coding RNAs that perform

important roles in a wide range of critical cellular processes in animals, plants, and

viruses (Zhang et al., 2011). In plants, miRNAs are produced by Dicer-catalyzed excision

from stem-loop precursors transcribed from miRNA genes. They are found amid a

maelstrom of RNA species called small interfering RNAs (siRNAs), which are processed

by Dicer proteins from double-stranded RNA (dsRNA) precursors. The majority of

miRNAs are able to negatively regulate gene expression via direct RNA-induced

silencing complex (RISC) binding to target mRNAs to cause transcript degradation or

translational repression, while small fractions have developed specific properties that

regulate other silencing pathways (Li and Yu, 2021). Since they are crucial in a number

of physiological and developmental processes, miRNAs are regarded as important

candidates for bioengineering to improve crop yield and food security (Wai et al., 2017;

Wang et al., 2021; He et al., 2022; Su et al., 2023). Additionally, over the last decades, some

studies suggest that they may be able to inhibit severe acute respiratory syndrome
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coronavirus 2 and other viruses such as influenza A viruses,

varicella-zoster virus, and enterovirus 71 (Zhou et al., 2015; Li

et al., 2018; Huang et al., 2019; Zhou et al., 2020), thus significantly

increasing the need for identifying them in many laboratories.

Recent advances in next-generation sequencing (NGS)

technology have facilitated the analysis of large plant small RNA-

seq datasets. However, accurately identifying miRNAs remains a

challenging bioinformatics task. Using features of miRNA

biogenesis, several computational tools, including PsRobot (Wu

et al., 2012), ShortStack (Axtell, 2013a), miRPlant (An et al., 2014),

miRDeep-P (Yang and Li, 2011), miRDeep-P2 (Kuang et al., 2019),

miR-PREFeR (Lei and Sun, 2014), miRA (Evers et al., 2015),

miReNA (Mathelier and Carbone, 2010), and UEA sRNA

workbench (Stocks et al., 2018), have been developed for

identifying plant miRNAs from NGS datasets. The presence of

hairpin structure has been considered the key criterion for the

identification of miRNA precursors (Meyers et al., 2008). However,

in plants, a majority of small RNAs are derived from the post-

transcriptional processing of RNA precursors, and many siRNA

precursors in them can also be folded into hairpin-like structures

(Axtell, 2013b). Moreover, most of the plant miRNA precursors are

100–200 bp long, which is much longer than those in animals, and

the complex secondary structure of these precursors makes it more

difficult to identify accurately. This is particularly true for many

plant miRNAs that have relatively large loops, which can fold into

several small bifurcate structures. As a result, these tools often

generate a significant number of false-positive or false-negative

candidates (Axtell and Meyers, 2018).

Machine learning is a field of study that empowers computers to

learn without explicit programming. In recent years, deep learning,

a branch of machine learning, has emerged as a powerful tool for

many bioinformatics tasks (Eraslan et al., 2019). Deep learning has

its beginnings in neural networks, which were a computational

model sharing some properties with the animal brain. An important

breakthrough was made in 2006 when Hinton et al. showed that a

deep feed-forward neural network could be pretrained using a stack

of restricted Boltzmann machine (RBM), followed by supervised

fine-tuning using back-propagation algorithm (Hinton and

Salakhutdinov, 2006). Recent advances in deep learning fields,

particularly convolutional neural networks (CNNs), have become

state-of-the-art for tasks like image recognition and other

challenging applications (Silver et al., 2016; Fersht, 2021). CNNs

are inspired by the visual cortex of the brain and were first

popularized by LeCun (LeCun et al., 1998, 2015). By utilizing a

stack of multiple processing layers to represent features of data,

CNNs allow automatic learning and extracting features from graph-

structured data. CNNs avoid biased a priori definitions of features

and tend to be most useful when there are some structures in the

input data. Plant small RNA precursor data contain a wealth of

structural information regarding miRNA and siRNA precursors.

Therefore, these datasets are well-suited for analysis using CNNs,

which can effectively discover local patterns within the data.

In this study, we demonstrate the successful training of a CNN

for the accurate identification of plant miRNAs. Additionally, we

introduce Small RNA-related Intelligent and Convenient Analysis

Tools (SRICATs), a freely available Java-based package that utilizes
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our method to identify plant miRNAs from NGS datasets. Our

results show that SRICATs has better performance in identifying

plant miRNAs than other tools. Moreover, many existing plant

small RNA analysis tools are typically command-line driven and

often require the installation of numerous third-party software

packages, such as genomic mapping and RNA secondary

structure prediction tools. In our package, we have integrated

rewritten Java-based programs of all these third-party tools into a

Java library, seamlessly linked to our program. We have also

developed a user-friendly graphical interface using JavaFX and

additional Java-based programs for various miRNA analysis tasks.

Ultimately, we have consolidated all these programs into a pure

Java-based package, providing users with a high-performance and

easy-to-use plant miRNA analysis tool.
2 Materials and methods

2.1 Datasets

The training data for our study consisted of datasets from two

model plants, Oryza sativa and Arabidopsis thaliana. The genome

sequences ofO. sativa ssp. japonica andA. thalianawere collected from

release 7.0 of the Rice Genome Annotation Project Database (https://

rice.plantbiology.msu.edu) and the release 10 of the Arabidopsis

Information Resource database (https://www.arabidopsis.org/),

respectively. Small RNA datasets of different tissues of O. sativa ssp.

japonica (GSM2883136, GSM2883137, GSM2883138, GSM2883139,

GSM2883140, GSM2883141, GSM3030846, GSM3030847,

GSM3030848, GSM3030849, GSM3030850, and GSM3030851) and

A. thaliana (GSM2094927 and GSM2412287) were downloaded from

the National Center for Biotechnology Information database (https://

www.ncbi.nlm.nih.gov) (see Supplementary File S1).
2.2 Data processing

To ensure the accuracy of our analysis, small RNA reads falling

outside the miRNA length range (20–24 nucleotides) were excluded.

The remaining reads were then mapped onto the corresponding

genome. From the matched regions, precursor sequences were

extracted by including various lengths of upstream and downstream

sequences. The secondary structures of the extracted precursor

sequences were evaluated using the miRPlant program, and

precursors with hairpin secondary structures were identified (An

et al., 2013, 2014). MiRNA precursors were then identified from

these precursors using a strict set of criteria, following the

recommendations of Meyers et al (Axtell and Meyers, 2018). The

input to our CNNs was a distributed representation of sequence and

structure information of all precursors with hairpin secondary

structures. As depicted in Figure 1A, the four nucleotides (“A”, “U”,

“C”, and “G”) were encoded using one-hot coding in each column of

the matrix. The secondary structures of the precursors were

represented using a two-dimensional vector. In this representation, a

value of 1 indicated that the corresponding base is paired, a value of 0

indicated that the corresponding base is unpaired, and a value of 0.5
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represented a gap. Individual small RNA reads mapped to the

precursors were represented based on their positions and

expressions. To ensure fair representation, the expressions of these

small RNAs were normalized by dividing the number of reads of each

small RNA by the number of reads of the small RNA with the

maximum expression. This normalization step was necessary to

prevent extreme input values from adversely affecting the training

process. The CNN is a supervised machine learning method. Given

training data in the form of input–output pairs, it trains a model that

can best fit the training data. In our case, a dataset of distributed

representation of miRNA precursors and other hairpin secondary

structure precursors was collected, each labeled with its category as

the output of training data. Our data were observed to be imbalanced,

with the number of negative samples being approximately three times

that of positive samples. This imbalance canmislead themodel, causing

it to overlearn the majority class and potentially affect its performance.

To address this issue, we applied resampling techniques by

oversampling the minority class in the training data, resulting in a

balanced training dataset.
2.3 CNN architecture

Regardless of the specific use case, the architecture of CNNs

typically comprises an input layer, followed by a series of feature-
Frontiers in Plant Science 03
extraction layers and connected layers. In this architecture, the

initial feature-extraction layers are responsible for capturing low-

complexity fundamental features. As the data flow through

subsequent feature-extraction layers, more complex features are

formed through intricate combinations of the low-complexity

features. This hierarchical process allows the network to

progressively learn and represent increasingly sophisticated

patterns and structures in the input data.

The feature-extraction layers have a general repeating pattern of

the sequence: convolution layer, rectified linear unit (ReLU) layer,

and pooling layer. A convolution is defined as a mathematical

operation describing a rule for how to merge two sets of

information. It defines a bridge between the space/time domain

and the frequency domain through the use of Fourier transforms.

The convolution operation, shown in Figure 1B, is known as the

feature detector of a CNN. It takes input, applies a convolution

kernel (or filter), and gives us a feature map as output. The

convolution kernels can be thought of as local feature extractors,

as their output only depends on pixels in close spatial proximity.

Convolution layers make use of a series of convolution kernels of a

particular size and are optimized to find the major characteristics of

the input matrices being subject to a sophisticated training process.

In a mathematical sense, convolutions are linear operations. For

CNNs, all convolution operation outputs are commonly

transformed by the ReLU activation function for introducing
A

B

FIGURE 1

MiRNA precursor structure recognition with a convolutional neural network. (A) Distributed representations for a precursor. The sequence information is
represented by one-hot codes of the four nucleotides of RNA. The structure information is represented by digital codes: 1 represents that the corresponding
base is paired, 0 represents that the corresponding base is unpaired, and 0.5 represents a gap. Normalized digital codes represent reads information. The
final matrix data obtained are represented by the orange area. (B) The architecture of the convolutional neural network. The network consists of an input
layer followed by a certain number of feature-extraction layers and fully connected classification layers. The feature-extraction layers have a generally
repeating pattern of the sequence: convolution layer, ReLU layer, and pooling layer. ReLU, rectified linear unit.
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non-linearity to have richer representational power than a simple

linear model. The ReLU activation function applies a max(0, x)

operation to the input data. It also can avoid the gradient vanishing

problem and has better convergence performance. In general, the

convolution layer computes its output by performing the

convolution operation with a specified number of kernels, and all

the outputs are then transformed by the ReLU activation function:

Xm,l
i,k = ReLU(o

s

x=1
o
n

y=1
Wk,l−1

x,y Xm,l−1
i+x,y )

In the given equation, X represents the input, m denotes the

index of the miRNA precursor, l represents the index of the

convolution layer, i corresponds to the index of the output

position, and k signifies the index of the convolution kernels.

Each convolution kernel, denoted as Wk,l, is a weight matrix of

size s × n for convolution kernel k at layer l. Here, s represents the

window size, and n indicates the number of input channels.

After the convolution and ReLU layers, a pooling layer is often

used to reduce the spatial size of the data representation and control

overfitting. Additionally, it facilitates motif translation invariance,

ensuring that the desired motif can be captured regardless of its

location:

Xm,l
i,k = pool Xm,l−1

is,k ,Xm,l−1
is+1,k … Xm,l−1

is+s−1,k

n o� �

In the given context, Xm,l represents the input of miRNA precursor

m from the preceding convolution layer l − 1, i denotes the index of the

output position, k signifies the index of the kernel, and s represents the

pooling window size. Within such a layer, subsets of each filtered

matrix are pooled according to their mean ormaximum values. For our

CNN, we used the max() operation. Themax() operation computes the

maximum value in a window of spatially adjacent convolution layer

outputs for each kernel, with a step size equal to the size of the pooling

window. Finally, fully connected layers aggregate the weights from the

previous layers to determine a precise combination of features that

contribute to a specific target output. In our architecture, we employed

two fully connected layers, followed by a softmax layer at the end. The

softmax layer computes class scores, which serve as the

network’s output.
2.4 Training of CNNs

Our CNNs were trained using DeepLearning4J. The training data

were used to train the CNN model by minimizing the loss function.

The loss function calculates the error at the target layer between the

actual outputs associated with the training input and the desired

outputs generated from the network. Looking for the ideal state of

the network is equivalent to finding the parameters that could

minimize errors. Thus, the loss function helps reframe training

neural networks as an optimization problem that can be

approximated and solved with iterative optimization algorithms like

gradient descent. Amethod called the error backpropagation algorithm

is used for reducing errors in CNNs.We can consider backpropagation

to be doing gradient descent in weight space where the gradient is on
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the error surface. The amount of the weights that are changed with

each iteration is known as the learning rate. During the backward pass

for each layer, the errors are used in a feedback mechanism in a layer-

by-layer fashion to update the parameters until a satisfactory level of

decision accuracy is achieved at the target layer.

To reduce overfitting and train robust features, drop-out is used

after each of the hidden layers. Dropout regularizes the neural

network by stochastically removing some neurons and their

connections from the CNNs at training time. This has the effect

of preventing coadaptation between neurons, which may not

generalize well outside of the training data.
3 Results

3.1 Determination of the CNN architecture
and hyperparameters

To evaluate the performance of the model, five-fold cross-

validation was employed. In this approach, the training dataset

was randomly divided into five equal-sized subsets. Four subsets

were used for training, while one subset served as the test group.

The model was trained on the training group and tested on the test

group. This process was repeated five times, and the five results were

averaged to produce a single estimation. Thus, the true-positive

(TP) rate, false-positive (FP) rate, true-negative (TN) rate, and false-

negative (FN) rate of the model can be evaluated. The TP is defined

if the sample is labeled as miRNA and the prediction is also miRNA.

The FP is defined if the sample is not labeled as miRNA but the

prediction is miRNA. In traditional statistics, it is also known as

“type I error”. The TN is defined if the sample is not labeled as

miRNA and the prediction is also not miRNA. The FN is defined if

the sample is labeled as miRNA but the prediction is not miRNA. In

traditional statistics, it is also known as “type II error”. Then the

accuracy, precision, recall, and F1-score of the model were

calculated to test the performance of our CNNs. The accuracy is

the proportion of all predictions that are correct:

Accuracy = (TP + TN)=(TP + FP + FN + TN)

Accuracy represents the degree of closeness between

measurements of a quantity and its true value. Precision, in

contrast, measures the proportion of positive predictions that are

correct:

Precision = TP=(TP + FP)

Precision reflects the consistency of results obtained from

repeated measurements under the same conditions. Recall

measures the proportion of actual positive observations that are

correctly identified:

Recall = TP=(TP + FN)

Recall quantifies how well the model avoids false negatives by

capturing how often an input record is correctly classified as the

positive class. The F1-score combines both precision and recall into

a single score using the harmonic mean:
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F1�score = 2 ∗TP=(2 ∗TP + FP + FN)

In binary classification, the F1-score is commonly used as an

overall measure of how well a model performs. During the training of

the CNNs, we tested various CNN architectures and hyperparameters

(Supplementary Table S1). The final model achieved an accuracy of

97.56%, a precision of 95.08%, a recall of 100%, and an F1-score of

97.48% (Table 1). Interestingly, we found that the architecture and

hyperparameters of this model were very similar to those of LeNet

(LeCun et al., 1998). We speculate that LeNet has also undergone

various tests to discover this optimal architecture and hyperparameters.
3.2 A pure Java-based package—SRICATs

To enhance user convenience, we have integrated all our programs

into a comprehensive Java-based package called SRICATs. SRICATs

supports a variety of file types from raw data to processed data. An

overview of the SRICATs program is shown in Figure 2. SRICATs first

filtered small RNA reads and mapped them onto the corresponding

genome. For a given mapped reads, SRICATs gathered sequences in

the reference genome flanking the reads and computed their secondary

RNA structures using miRPlant, a Java-based miRNA precursor

secondary structure calculation tool (An et al., 2013, 2014). Then, the

sequence structure data were transformed into distributed

representation data, and miRNA precursors were identified using

pretrained CNN models. Additionally, SRICATs also provided an

all-in-one plant miRNA analysis platform for users. The functions of

this platform include i) processing different types of input data and

analyzing multiple samples simultaneously, ii) checking the quality of

genome data and filtering low-quality small RNA reads, iii) generating

statistical charts for input and result data, iv) identifying miRNA

families by comparing program outputs to miRBase (Kozomara
Frontiers in Plant Science 05
et al., 2019), v) converting text outputs of secondary structure

information of miRNA precursors to a user-friendly visual output,

vi) analyzing miRNA expression status, and vii) supporting parameter

adjustment and model selection [as plant miRNAs with diverse

genomic origins have different structural characteristics (Zhang et al.,

2011), we trained different CNN models to meet the needs of various

users] (see Supplementary File S2). To date, most plant small RNA

analysis tools are typically command-line driven and require the

installation of multiple third-party software. We developed a user-

friendly graphical interface using JavaFX and integrated rewritten Java-

based programs of all third-party software into our package. Thus, we

provided an easy-to-use, flexible, and robust plant miRNA analysis tool

for users (see Figure 3).
3.3 Comparison of SRICATs with existing
plant miRNA identification programs

We conducted a comprehensive comparison of SRICATs with two

well-known plant miRNA identification programs: miRDeep-P2 and

UEA sRNAworkbench. miRDeep-P2 is currently the most widely used

program for plant miRNA identification and has demonstrated

superior performance compared to other commonly used programs,

such as miRDeep-P, miRPlant, miR-PREFeR, miRA, TripletSVM, and

miReNA (Kuang et al., 2019; Zhao et al., 2021). UEA sRNAworkbench

is a Java-based small RNA analysis tool that can also identify plant

miRNAs (Stocks et al., 2018). We evaluated the performances of each

program on five plant species: O. sativa, A. thaliana, Sorghum bicolor,

Chlamydomonas reinhardtii, and Physcomitrella patens. The small

RNA libraries used in our study are listed in Table 2. The number of

identified miRNAs by SRICATs falls within the range of miRDeep-P2

and UEA sRNA workbench (see Supplementary Table S2). We used
TABLE 1 CNN architectures and hyperparameters to be tuned.

CNN architectures and hyperparameters Range Final value

Number of convolution layers and pooling layers
Filter size of first convolution layer
Number of filters in first convolution layer

Activation function in first convolution layer
Filter size of second convolution layer
Number of filters in second convolution layer

Activation function in second convolution layer
Stride for filters
Using padding
Pooling method
Filter size of pooling layer
Number of units in fully connected layer
Activation function in fully connected layer
Activation function in output layer
Regularization technique
Dropout coefficient
Optimization algorithm

Loss function for classification
Weight initialization strategies

2, 3
2 * 2, 3 * 3, 4 * 4, 5 * 5
20, 30, 40, 50, 60, 70, 80, 90,
100, 300, 500
ReLU, Identity, Tanh, Sigmoid
2 * 2, 3 * 3, 4 * 4, 5 * 5
20, 30, 40, 50, 60, 70, 80, 90,
100, 300, 500
ReLU, Identity, Tanh, Sigmoid
1 * 1, 2 * 2
Yes, No
Max pooling, Average pooling
2 * 2, 3 * 3
100, 300, 500, 700, 1,000
ReLU, Identity, Tanh, Sigmoid
Sigmoid, Softmax
L1, L2, Dropout
0.5, 0.6, 0.7, 0.8, 0.9, 1.0
Adam, AdaGrad, AdaDelta,
RMSProp, Momentum SGD
Hinge, Negative log likelihood
ReLU, Xavier

2
2 * 2
20

ReLU
2 * 2
60

ReLU
1 * 1
No
Max pooling
2 * 2
500
Identity
Softmax
Dropout
0.9
AdaDelta

Negative log likelihood
Xavier
The performance of CNN architectures and hyperparameters tested can be found in Supplementary Table S1.
CNN, convolutional neural network; ReLU, rectified linear unit.
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FIGURE 2

Flowchart diagram representing the SRICATs software package. SRICATs, Small RNA-related Intelligent and Convenient Analysis Tools.
FIGURE 3

Screenshot of SRICATs. (A) Menu bar. (B) Progress panel displaying the progress of tasks. (C) Results panel showing attributes of annotated miRNAs.
(D) Statistical chart panel displaying basic features of the uploaded dataset and results. (E) Graph panel displaying the secondary structure of selected
miRNA precursors. (F) Intelligent prompts are displayed when mousing over the corresponding regions. SRICATs, Small RNA-related Intelligent and
Convenient Analysis Tools.
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precision, recall, and F1-score to qualify the results from the programs

compared. We did not use accuracy because the true-negative rate in

the data that we tested was not known. Based on previously described

plant miRNA annotation criteria (exclude secondary stems or large

loops in the miRNA/miRNA* duplex; up to five mismatched positions,

only three of which are nucleotides in asymmetric bulges) (Axtell and

Meyers, 2018), we found that SRICATs has the highest precision in

identifying miRNAs in all tested plant species (see Figure 4A). We used

high-confidencemiRNAs frommiRBase (version 21) as benchmarks to

evaluate false-negative rates. To identify knownmiRNAs in our results,

we compared the candidate miRNA sequences with those of published

miRNAs using BLASTN search in miRbase. We regarded sequences

with more than 18 matches to currently knownmiRNAs from all plant

species as known miRNAs. The difference between the number of

miRNAs in miRbase and the number of known miRNAs in our results

can be considered as a false-negative rate approximately.We found that

SRICATs also have the highest recall in S. bicolor, C. reinhardtii, and P.

patens (see Figure 4B) and the highest F1-score in O. sativa, S. bicolor,

C. reinhardtii, and P. patens (see Figure 4C). Overall, SRICATs

outperformed other programs in 12 out of 15 tests (80%), indicating

its good performance in identifying plant miRNAs.
4 Discussion

In this study, we propose a deep learning-based approach for

accurate identification of plant miRNAs. Our findings demonstrate
Frontiers in Plant Science 07
that relying solely on predefined features with plant miRNA precursors

is insufficient for precise identification. However, by leveraging CNNs

to learn representations from the raw sequence and structure

information of plant miRNA precursors, we observe a significant

improvement in performance compared to currently popular methods.

To facilitate plant miRNA analysis in a flexible and user-friendly

manner, we have developed a pure Java-based software package called

SRICATs. Researchers canutilize SRICATs toperformall stages of plant

miRNA analysis. We are pleased to offer this software package as an

open-source tool, freely available to the academic community at https://

sourceforge.net/projects/sricats. The package includes comprehensive

documentation with detailed execution instructions (Supplementary

File S2).

Moving forward, we have plans for expanding the software

package. Our ongoing efforts involve incorporating plant siRNA

analysis and animal small RNA analysis into SRICATs. Furthermore,

we will introduce additional functionalities for small RNA-related

analysis and incorporate more deep learning methods. We are

committed to continuously enhancing SRICATs to meet the evolving

needs of researchers in the field of small RNA analysis.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
TABLE 2 Resources for testing SRICATs and other tools.

Species (abb.) Genome version
sRNA libraries

Library ID File size Last update date Number of samples

Arabidopsis thaliana (Ath) Version 10 GSE113029 110.6 Mb 2020-7-8 8

Oryza sativa (Osa) Version 7 GSE26357 77.6 Mb 2019-5-15 4

Sorghum bicolor (Sbi) Version 3 GSM4769351 27.5 Mb 2021-12-31 1

Chlamydomonas reinhardtii (Cre) Version 5 GSM803103 4.0 Mb 2013-9-26 1

Physcomitrella patens (Ppt) Version 3 GSE44900 67.7 Mb 2019-5-15 10
The details of repository from which we downloaded the datasets can be found in Supplementary File S1.
SRICATs, Small RNA-related Intelligent and Convenient Analysis Tools.
A B C

FIGURE 4

Comparison of SRICATs and two other programs for plant miRNA identification. (A) Precision comparison between SRICATs and the other two programs.
(B) Recall comparison between SRICATs and the other two programs. (C) F1-score comparison between SRICATs and the other two programs. Ath,
Arabidopsis thaliana; Osa, Oryza sativa; Sbi, Sorghum bicolor; Cre, Chlamydomonas reinhardtii; Ppt, Physcomitrella patens; SRICATs, Small RNA-related
Intelligent and Convenient Analysis Tools.
frontiersin.org

https://sourceforge.net/projects/sricats
https://sourceforge.net/projects/sricats
https://doi.org/10.3389/fpls.2024.1330854
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1330854
Author contributions

YZ: Conceptualization, Data curation, Formal Analysis,

Funding acquisition, Methodology, Software, Supervision,

Visualization, Writing – original draft. JH: Methodology, Project

administration, Writing – review & editing. FX: Writing – review &

editing. QH: Writing – review & editing. HJ: Writing – review &

editing. WC: Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was funded by the National Natural Science Foundation of China

(32360152) and the doctoral start-up grant (2019-76) from Guizhou

University of Traditional Chinese Medicine.

Acknowledgments

We thank all members of the College of Information Engineering,

Guizhou University of Traditional Chinese Medicine, for their

generous help.
Frontiers in Plant Science 08
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2024.1330854/

full#supplementary-material
References
An, J., Lai, J., Lehman, M. L., and Nelson, C. C. (2013). miRDeep*: an integrated
application tool for miRNA identification from RNA sequencing data. Nucleic Acids
Res. 41, 727–737. doi: 10.1093/nar/gks1187

An, J., Lai, J., Sajjanhar, A., Lehman, M. L., and Nelson, C. C. (2014). miRPlant: an
integrated tool for identification of plant miRNA from RNA sequencing data. BMC
Bioinf. 15, 275. doi: 10.1186/1471-2105-15-275

Axtell, M. J. (2013a). ShortStack: comprehensive annotation and quantification of
small RNA genes. RNA 19, 740–751. doi: 10.1261/rna.035279.112

Axtell, M. J. (2013b). Classification and comparison of small RNAs from plants.
Annu. Rev. Plant Biol. 64, 137–159. doi: 10.1146/annurev-arplant-050312-120043

Axtell, M. J., and Meyers, B. C. (2018). Revisiting criteria for plant microRNA
annotation in the era of big data. Plant Cell 30, 272–284. doi: 10.1105/tpc.17.00851

Eraslan, G., Avsec, Z., Gagneur, J., and Theis, F. J. (2019). Deep learning: new
computational modelling techniques for genomics. Nat. Rev. Genet. 20, 389–403.
doi: 10.1038/s41576-019-0122-6

Evers, M., Huttner, M., Dueck, A., Meister, G., and Engelmann, J. C. (2015). miRA:
adaptable novel miRNA identification in plants using small RNA sequencing data.
BMC Bioinf. 16, 370. doi: 10.1186/s12859-015-0798-3

Fersht, A. R. (2021). AlphaFold - A personal perspective on the impact of Machine
Learning. J. Mol. Biol. 433, 167088. doi: 10.1016/j.jmb.2021.167088

He,M., Kong, X., Jiang, Y., Qu, H., and Zhu, H. (2022).MicroRNAs: emerging regulators in
horticultural crops. Trends Plant Sci. 27, 936–951. doi: 10.1016/j.tplants.2022.03.011

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Huang, Y., Liu, H., Sun, X., Ding, M., Tao, G., and Li, X. (2019). Honeysuckle-derived
microRNA2911 directly inhibits varicella-zoster virus replication by targeting IE62
gene. J. Neurovirol 25, 457–463. doi: 10.1007/s13365-019-00741-2

Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: from microRNA
sequences to function. Nucleic Acids Res. 47, D155–D162. doi: 10.1093/nar/gky1141

Kuang, Z., Wang, Y., Li, L., and Yang, X. (2019). miRDeep-P2: accurate and fast
analysis of the microRNA transcriptome in plants. Bioinformatics 35, 2521–2522.
doi: 10.1093/bioinformatics/bty972

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

LeCun, Y., Bottou, L., and Haffner, Y. B. P. (1998). Gradient-based learning applied
to document recognition. Proc. IEEE 86, 2278–2324. doi: 10.1109/5.726791
Lei, J., and Sun, Y. (2014). miR-PREFeR: an accurate, fast and easy-to-use plant
miRNA prediction tool using small RNA-Seq data. Bioinformatics 30, 2837–2839.
doi: 10.1093/bioinformatics/btu380

Li, M., and Yu, B. (2021). Recent advances in the regulation of plant miRNA
biogenesis. RNA Biol. 18, 2087–2096. doi: 10.1080/15476286.2021.1899491

Li, X., Huang, Y., Sun, M., Ji, H., Dou, H., Hu, J., et al. (2018). Honeysuckle-encoded
microRNA2911 inhibits Enterovirus 71 replication via targeting VP1 gene. Antiviral
Res. 152, 117–123. doi: 10.1016/j.antiviral.2018.02.015

Mathelier, A., and Carbone, A. (2010). MIReNA: finding microRNAs with high
accuracy and no learning at genome scale and from deep sequencing data.
Bioinformatics 26, 2226–2234. doi: 10.1093/bioinformatics/btq329

Meyers, B. C., Axtell, M. J., Bartel, B., Bartel, D. P., Baulcombe, D., Bowman, J. L.,
et al. (2008). Criteria for annotation of plant MicroRNAs. Plant Cell 20, 3186–3190.
doi: 10.1105/tpc.108.064311

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al.
(2016). Mastering the game of Go with deep neural networks and tree search. Nature
529, 484–489. doi: 10.1038/nature16961

Stocks, M. B., Mohorianu, I., Beckers, M., Paicu, C., Moxon, S., Thody, J., et al.
(2018). The UEA sRNA Workbench (version 4.4): a comprehensive suite of tools for
analyzing miRNAs and sRNAs. Bioinformatics 34, 3382–3384. doi: 10.1093/bioinformatics/
bty338

Su, C., Wang, L., and Kong, F. (2023). miR172: a messenger between
nodulation and flowering. Trends Plant Sci. 28, 623–625. doi: 10.1016/
j.tplants.2023.03.010

Wai, C. M., VanBuren, R., Zhang, J., Huang, L., Miao, W., Edger, P. P., et al. (2017).
Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis
in pineapple. Plant J. 92, 19–30. doi: 10.1111/tpj.13630

Wang, L., Ming, L., Liao, K., Xia, C., Sun, S., Chang, Y., et al. (2021). Bract
suppression regulated by the miR156/529-SPLs-NL1-PLA1 module is required for
the transition from vegetative to reproductive branching in rice. Mol. Plant. 14, 1168–
1184. doi: 10.1016/j.molp.2021.04.013

Wu, H. J., Ma, Y. K., Chen, T., Wang, M., and Wang, X. J. (2012). PsRobot: a web-
based plant small RNA meta-analysis toolbox. Nucleic Acids Res. 40, W22–W28.
doi: 10.1093/nar/gks554

Yang, X., and Li, L. (2011). miRDeep-P: a computational tool for analyzing the
microRNA transcriptome in plants. Bioinformatics 27, 2614–2615. doi: 10.1093/
bioinformatics/btr430
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1330854/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1330854/full#supplementary-material
https://doi.org/10.1093/nar/gks1187
https://doi.org/10.1186/1471-2105-15-275
https://doi.org/10.1261/rna.035279.112
https://doi.org/10.1146/annurev-arplant-050312-120043
https://doi.org/10.1105/tpc.17.00851
https://doi.org/10.1038/s41576-019-0122-6
https://doi.org/10.1186/s12859-015-0798-3
https://doi.org/10.1016/j.jmb.2021.167088
https://doi.org/10.1016/j.tplants.2022.03.011
https://doi.org/10.1126/science.1127647
https://doi.org/10.1007/s13365-019-00741-2
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1093/bioinformatics/bty972
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1093/bioinformatics/btu380
https://doi.org/10.1080/15476286.2021.1899491
https://doi.org/10.1016/j.antiviral.2018.02.015
https://doi.org/10.1093/bioinformatics/btq329
https://doi.org/10.1105/tpc.108.064311
https://doi.org/10.1038/nature16961
https://doi.org/10.1093/bioinformatics/bty338
https://doi.org/10.1093/bioinformatics/bty338
https://doi.org/10.1016/j.tplants.2023.03.010
https://doi.org/10.1016/j.tplants.2023.03.010
https://doi.org/10.1111/tpj.13630
https://doi.org/10.1016/j.molp.2021.04.013
https://doi.org/10.1093/nar/gks554
https://doi.org/10.1093/bioinformatics/btr430
https://doi.org/10.1093/bioinformatics/btr430
https://doi.org/10.3389/fpls.2024.1330854
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2024.1330854
Zhang, Y., Jiang, W. K., and Gao, L. Z. (2011). Evolution of microRNA genes in
Oryza sativa and Arabidopsis thaliana: an update of the inverted duplication model.
PloS One 6, e28073. doi: 10.1371/journal.pone.0028073

Zhao, Y., Kuang, Z., Wang, Y., Li, L., and Yang, X. (2021). MicroRNA annotation in
plants: current status and challenges. Brief Bioinform. 22, bbab075. doi: 10.1093/bib/
bbab075
Frontiers in Plant Science 09
Zhou, L. K., Zhou, Z., Jiang, X. M., Zheng, Y., Chen, X., Fu, Z., et al. (2020). Absorbed plant
MIR2911 in honeysuckle decoction inhibits SARS-CoV-2 replication and accelerates the
negative conversion of infected patients.Cell Discovery 6, 54. doi: 10.1038/s41421-020-00197-3

Zhou, Z., Li, X., Liu, J., Dong, L., Chen, Q., Liu, J., et al. (2015). Honeysuckle-encoded
atypical microRNA2911 directly targets influenza A viruses. Cell Res. 25, 39–49.
doi: 10.1038/cr.2014.130
frontiersin.org

https://doi.org/10.1371/journal.pone.0028073
https://doi.org/10.1093/bib/bbab075
https://doi.org/10.1093/bib/bbab075
https://doi.org/10.1038/s41421-020-00197-3
https://doi.org/10.1038/cr.2014.130
https://doi.org/10.3389/fpls.2024.1330854
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Identification of plant microRNAs using convolutional neural network
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Data processing
	2.3 CNN architecture
	2.4 Training of CNNs

	3 Results
	3.1 Determination of the CNN architecture and hyperparameters
	3.2 A pure Java-based package—SRICATs
	3.3 Comparison of SRICATs with existing plant miRNA identification programs

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


