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This paper presents a general framework for simulating plot data in multi-

environment field trials with one or more traits. The framework is embedded within

the R package FieldSimR, whose core function generates plot errors that capture

global field trend, local plot variation, and extraneous variation at a user-defined ratio.

FieldSimR’s capacity to simulate realistic plot datamakes it a flexible and powerful tool

for a wide range of improvement processes in plant breeding, such as the

optimisation of experimental designs and statistical analyses of multi-environment

field trials. FieldSimR provides crucial functionality that is currently missing in other

software for simulating plant breeding programmes and is available on CRAN. The

paper includes an example simulation of field trials that evaluate 100maize hybrids for

two traits in three environments. To demonstrate FieldSimR’s value as an optimisation

tool, the simulated data set is then used to compare several popular spatialmodels for

their ability to accurately predict the hybrids’ genetic values and reliably estimate the

variance parameters of interest. FieldSimR has broader applications to simulating data

in other agricultural trials, such as glasshouse experiments.
KEYWORDS

simulation, spatial variation, plot error, multi-environment field trials, linear
mixed models
1 Introduction

This paper presents a general framework for simulating plot data in multi-environment

field trials with one or more traits. The framework is embedded within the R package

FieldSimR, whose core function generates plot errors that capture global field trend, local

plot variation, and extraneous variation. FieldSimR’s capacity to simulate realistic plot data

makes it well-suited to a wide range of improvement processes in plant breeding, such as

the optimisation of experimental designs and statistical analyses of multi-environment field

trials. It is also well-suited to a range of education purposes, such as teaching the principals

of spatial modelling and multi-environment trial analysis.
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Plant breeding programmes continuously evaluate, select, and

release improved genotypes in order to meet the complex and

dynamic requirements of different customer groups, including

farmers, processors, and end-users (Covarrubias-Pazaran et al.,

2022). The resources required to compare different improvement

strategies in the field, however, can quickly exceed the practical

possibilities of a plant breeding programme. Often, multiple factors

must be evaluated simultaneously over several years or even decades

to identify an optimised breeding strategy. This requires a

pragmatic approach to identify profitable long-term strategies in

plant breeding programmes.

Simulation is a fast and cost-efficient tool for comparing

different breeding strategies over time (Gaynor et al., 2021).

Interestingly, this is not a new concept. Simulations have been

utilised by plant and animal breeders for almost a century,

beginning with the application of the Breeder’s equation (Lush,

1937), a form of deterministic simulation to predict genetic gain

based on selection intensity, selection accuracy, genetic variance,

and generation interval. However, only recently, with the

availability of modern computers and flexible software have

breeders and researchers been granted access to more powerful

stochastic simulations for optimising entire breeding programmes

across multiple generations. Currently available software includes

QU-GENE (Podlich and Cooper, 1998), ADAM-plant (Liu et al.,

2019), and ChromaX (Younis et al., 2023), as well as the R packages

Selection Tools (Frisch, 2023) and AlphaSimR (Gaynor et al., 2021).

These software applications can be used, for example, to compare

different crossing and selection strategies over time. They lack,

however, the functionality to simulate realistic plot data in multi-

environment field trials. This capacity is necessary to evaluate the

impact of different experimental designs, multi-environment testing

strategies, and statistical analyses on the performance of a

breeding programme.

The motivation to simulate realistic plot data has stemmed from

the importance of spatial variation in plant breeding field trials (see,

for example, Wilkinson et al., 1983; Besag and Kempton, 1986;

Cullis and Gleeson, 1991; Rodrıǵuez-Álvarez et al., 2018; Piepho

et al., 2022). Spatial variation occurs naturally in field trials laid out

as a two-dimensional lattice of plots (Gogel et al., 2023), and can

account for more than 50% of the total phenotypic variation. Spatial

variation can be broadly categorised as either global trend, local

variation, or extraneous variation (Gilmour et al., 1997). Global

trend occurs on a large scale across the field, such as large scale

moisture and fertility gradients (Green et al., 1985). Local variation

occurs on a small scale between neighbouring plots. It may reflect

small scale changes in soil composition (trend) or random error

(noise), such as measurement error and within-plot variability

(Besag, 1977). Conversely, extraneous variation is predominately

induced during the conduct of the trial, and as a result is often

aligned with the column and row dimensions. It may reflect

management practices, such as serpentine harvesting and

spraying, mult i-plot seeders that sow mult iple plots

simultaneously, or inaccurate trimming resulting in unequal plot

lengths (Stefanova et al., 2009). The complexity and importance of

spatial variation dictate the need for a general framework to
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simulate realistic plot errors that capture the main components

described above.

FieldSimR is an R package for simulating plot errors in multi-

environment field trials that capture global and local trend, random

error, and extraneous variation. It also provides compatibility with

AlphaSimR to generate plot phenotypes, by combining the

simulated plot errors with genetic values. This makes FieldSimR a

powerful tool for a wide range of improvement processes, such as:
• Comparing spatial modelling approaches, e.g., separable

autoregressive processes, tensor-product penalised splines,

and nearest neighbour adjustments.

• Comparing experimental designs for single- and multi-

environment studies, e.g., complete and incomplete block

designs, including various p-rep and sparse testing designs.

• Comparing approaches for analysing multi-environment

trial data, e.g., reaction norms, random regressions, and

factor analytic models.
The paper is arranged as follows. The “Methods” section

presents the theoretical framework for simulating plot errors,

which are generated by combining spatial, random, and

extraneous error components at a user-defined ratio. The “Results

and discussion” section introduces an example simulation of field

trials that evaluate 100 maize hybrids for two traits in three

environments. To demonstrate FieldSimR’s value as an

optimisation tool, the simulated data set is then used to compare

several popular spatial models for their ability to accurately predict

the hybrids’ genetic values and reliably estimate the variance

parameters of interest.
2 Methods

This section presents the framework in FieldSimR for

simulating plot errors in multi-environment field trials. FieldSimR

generates plot errors by combining spatial, random, and extraneous

error components at a user-defined ratio. The simulation

framework is initially developed for a single trait and then

extended for multiple traits.
2.1 Framework for simulating plot errors in
multi-environment field trials

Assume a single-trait multi-environment trial data

set comprises p environments with n plots in total, where n =

op
j=1nj and nj is the number of plots in environment j. Also assume

that each environment is laid out as a two-dimensional lattice of

plots such that nj = cj × rj, where cj and rj are the number of columns

and rows, respectively. The n-vector of plot errors is then given by

e ¼ ð eT1 ,…, eTp )T, where e j is the nj-vector of plot errors

for environment j (ordered as rows within columns). The vector

ej captures the main components of spatial variation, i.e., global and

local trend, random error, and extraneous variation.
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FieldSimR generates the vector of plot errors for each

environment as the sum of three terms:

e j = sj + rj + ej,

where sj is a vector of errors that capture global and local spatial

trend, rj is a vector of random errors, and ej is a vector of errors that

capture extraneous variation. The errors in sj and ej are hereafter

referred to as the spatial and extraneous errors, respectively. All

terms are simulated as mutually independent with zero means and

variance components given by s 2
sj , s

2
rj , and s 2

ej , respectively. The

total plot error variance is then given by s 2
ej = s 2

sj + s 2
rj + s 2

ej .
2.1.1 Spatial error
The errors in sj capture both global and local trend, such as large

scale fertility gradients (Green et al., 1985) and small scale changes

in soil composition (Gilmour et al., 1997). FieldSimR has the

capacity to generate spatial errors based on either bivariate

interpolation (Akima, 1978) or an autoregressive process (Box

and Jenkins, 1970). The key difference is that bivariate

interpolation applies a (non-stochastic) smoothing function to the

errors, while autoregressive processes assume correlated errors

based on a stochastic variance matrix (Gogel et al., 2023). Both

approaches have been widely and successfully adopted for the

empirical analysis of field trial data, and hence their

implementation within FieldSimR.

Bivariate interpolation is implemented through the interp()

function in the R package interp (Gebhardt et al., 2023), which

applies piece-wise linear interpolation across the two-dimensional

lattice of plots. An example field array with spatial trend generated

using bivariate interpolation is presented in Figure 1. The field array

comprises cj = 10 columns and rj = 20 rows for nj = 200 plots in total.

The field spans 80 m long in the column direction and 40 m wide in

the row direction, with rectangular plots 8 m long by 2 m wide

(Figure 1A). There are two square blocks aligned in the column

direction (side-by-side), with 100 plots in each block. Four

interpolation (knot) points are placed outside the four corners of

the field, which prevents continuity issues that occur at the

interpolation boundary. The z-values at these points were sampled

from a standard normal distribution, with z = 2.56, 1.08, 0.43, and

−2.56 for the example (clockwise from top left). The continuous array

between the knot points is then interpolated, which produces a

smooth continuous surface across the lattice of plots (Figure 1B). A

single error value is assigned to each plot by averaging over the

continuous surface within each plot (Figure 1C). The error values are

then scaled to the defined spatial error variance for each

environment, s 2
sj . This produces the vector of spatial errors, sj.

The complexity of spatial trend can be controlled in FieldSimR

by setting the number of additional knot points sampled inside the

field array. By altering the complexity, users can explicitly change

the ratio of global to local trend. The example in Figure 1 has no

additional knot points besides those at the four corners, so the

simulated spatial error predominately captures global trend with

minimal or no local trend. Three additional examples are presented

in Figure 2, which have 5, 10, and 50 knot points, respectively. The

knot points are sampled from a continuous uniform distribution
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defined by all points in the continuous array. This means that more

than one knot point can be sampled for each plot. The position of

the knot points and corresponding z-values are presented in

Supplementary Figure S1, which displays the smooth continuous

surface for the examples in Figure 2.

The examples demonstrate FieldSimR’s capacity to simulate

global and local trend, as well as within-plot variability. Increasing

the complexity will generate more local trend relative to global trend,

up to a point where the errors capture minimal or no trend (i.e., only

noise). At this point, numerous knot points may be sampled for each

plot which further increases the amount of within-plot variability. By

default, FieldSimR sets the number of knot points to half the

maximum of the number of columns and rows. For example, the

default complexity for a field trial with 10 columns and 20 rows is

given by max(10, 20)/2 = 10 knot points (see, for example, Figure 2B).

This generally provides a good ratio of global to local trend, but users

are encouraged to alter the complexity as required.

Trellis plots for the three examples are presented in

Supplementary Figure S2. These graphics also demonstrate that

various ratios of global to local trend can be generated by altering

the complexity. For example, the first graphic demonstrates a

gradual decrease in spatial error as the row number increases,

which is a classical sign of global trend in field trials. Conversely,

the last graphic demonstrates more small-scale fluctuations between

neighbouring columns and rows, which is a sign of local trend. Note

that since bivariate interpolation is a smoothing function, rather

than a stochastic process, the spatial errors are not simulated as

random variables.

Alternatively, the spatial errors can be generated as random

variables in FieldSimR based on a separable first order

autoregressive (AR1) process. Separable AR1 processes explicitly

model spatial dependence (correlation) between neighbouring plots

in the column and row dimensions, rather than interpolating a

smooth continuous surface across the field array. In this case,

FieldSimR simulates the vector of spatial errors:

sj ∼ N(0,s 2
sjSj),

where s 2
sj is the spatial error variance and Sj is the nj×nj separable

correlation matrix, which is constructed as:

Sj = Scj (rcj )⊗Srj (rrj ),

where rcj is the column autocorrelation parameter with cj × cj
correlation matrix Scj and rrj is the row autocorrelation parameter

with rj × rj correlation matrix Srj . Note that, in contrast to bivariate

interpolation, the separable AR1 process does not require plot

dimensions, since they are implicitly modelled through rcj and rrj
(see Gilmour et al., 1997). This approach allows users to implement

estimates of rcj and rrj previously obtained from empirical analyses

of field trial data.

The ratio of global to local trend can be controlled by altering

the column and row autocorrelation parameters. Decreasing the

autocorrelation parameters will effectively increase the complexity

of the spatial trend, in the sense that more local trend will be

generated relative to global trend, up to a point where the errors

capture minimal or no trend (i.e., only noise). This occurs when the
frontiersin.org
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A

B

C

FIGURE 1

Demonstration of how FieldSimR generates spatial errors using bivariate interpolation: (A) the two-dimensional lattice of plots is constructed with
four knot points placed outside the four corners, (B) the continuous array between the knot points is interpolated which produces a smooth
continuous surface, and (C) a single error value is assigned to each plot by averaging over the continuous surface within each plot.
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A

B

C

FIGURE 2

Examples of spatial errors generated using bivariate interpolation with (A) 5, (B) 10, and (C) 50 knot points. These options are set using complexity =
5, 10, and 50. The coordinates of the knot points are presented in Supplementary Figure S2. The graphics were produced with the plot_effects()
function in FieldSimR.
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autocorrelation parameters are set to zero. Three examples are

presented in Supplementary Figure S3, which show spatial trend

generated using a separable AR1 process with (a) rcj = 0.7 and rrj =
0.9, (b) rcj = 0.5 and rrj = 0.7, and (c) rcj = 0.3 and rrj = 0.5. The

theoretical and sample variograms for these examples are presented

in Supplementary Figure S4. The examples demonstrate the

stochastic nature of the spatial errors generated based on the

separable AR1 process.

The methods above for generating global and local trend will be

well-suited to most applications. However, some users may desire to

explicitly set the amount of global and local trend without fine-

tuning the complexity or the autocorrelation parameters. In this

case, users may simulate spatial trend as the sum of two

components, i.e., global trend (with no/low complexity) and local

trend (with moderate/high complexity or low/moderate

autocorrelations). This is left to the discretion of the user.

2.1.2 Random error
The errors in rj capture local variation that is not trend, such as

noise, measurement error, and intrinsic variability within the plots

(Besag, 1977; Wilkinson et al., 1983). FieldSimR simulates the

vector of random errors as:

rj ∼ N(0,s 2
rjInj ),

where s 2
rj is the random error variance and Inj is an identity matrix

of order nj.

2.1.3 Extraneous error
The errors in ej capture extraneous variation predominately

induced during the conduct of the trial, such as serpentine

harvesting or spraying and unequal plot dimensions (Gilmour

et al., 1997; Stefanova et al., 2009). This type of variation is
Frontiers in Plant Science 06
assumed to be aligned with the columns and rows of the trial.

FieldSimR generates the vector of extraneous errors as the sum of

two terms as:

ej = Zcjecj + Zrjerj ,

where ecj is a vector of column errors with nj × cj design matrix Zcj

and erj is a vector of row errors with nj × rj design matrix Zrj . The

design matrices are given by Zcj = Icj ⊗ 1rj  and Zrj = 1cj ⊗ Irj .

The column and row errors are simulated as:

ecj ∼ N(0,s 2
ecj
Icj ) and erj ∼ N(0,s 2

erj
Irj ),

where s 2
ecj

is the column error variance and s 2
erj

is the row error

variance, which are set according to whether column and/or row

errors are desired. The total extraneous error variance is then given

by s 2
ej = s 2

ecj
+ s 2

erj
.

FieldSimR has the capacity to simulate extraneous errors based

on zig-zag or random ordering between neighbouring columns and/

or rows. The zig-zag ordering is achieved by alternating the positive

and negative simulated values between neighbouring columns and

rows. The two examples in Figure 3 demonstrate the two types of

extraneous variation. The first example demonstrates a zig-zag

pattern where the errors in odd row numbers are always positive

(mean of +0.37), while those in even row numbers are always

negative (mean of -0.37). This type of non-stationarity is a classical

sign of extraneous variation attributed to systematic management

practices, such as serpentine harvesting and spraying. The second

example demonstrates a more stochastic pattern in which the errors

may be attributed to random processes, such as inaccurate plot

trimming resulting in unequal plot dimensions. Interested users

may also manipulate the above functionality to simulate interplot

competition, typically observed as a negative correlation between

neighbouring rows (Durban et al., 2001; Stringer et al., 2011).
A B

FIGURE 3

Examples of extraneous errors generated using (A) zig-zag and (B) random ordering. These options are set using ext.ord = “zig-zag” and “random”.
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2.1.4 Total plot error
FieldSimR generates the total plot errors in Equation 1 by

combining the spatial errors with the random and extraneous

errors according to a user-defined ratio. The desired ratio is applied

by setting the proportions of spatial and extraneous error variance,

with the remaining proportion assigned to random error. By default,

FieldSimR sets the proportion of spatial error to 0.5 and extraneous

error to 0, resulting in a proportion of random error variance of 0.5.
2.2 Extension to multiple traits

FieldSimR has the capacity to simulate correlated plot errors for

multiple traits. The correlationmatrix between traits can be set for the

spatial, random, and extraneous errors terms separately. By default,

FieldSimR fits a separable correlation structure between traits and

environments (Bančič et al., 2023), but note that different error

variances can be set for different environment-within-trait

combinations. It is also important to note that when bivariate

interpolation is used, the correlation matrix for the spatial errors is

applied to the z-values at the knot points, not the spatial errors

themselves. This is because the spatial errors generated using

bivariate interpolation do not have an assumed stochastic variance

matrix, and the z-values are treated as the random variables.
3 Results and discussion

FieldSimR is an R package for simulating plot errors that

comprise global and local trend, random error, and extraneous

variation. This functionality makes FieldSimR a powerful tool for a

wide range of improvement processes, such as the comparison of

different spatial modelling approaches. This section demonstrates

the simulation and analysis of field trials that evaluate 100 maize

hybrids for two traits in three environments. In the first part,

FieldSimR is used to simulate plot errors, genetic values, and

phenotypes for the 100 maize hybrids in the three field trials. In

the second part, eight spatial models are compared for their ability

to accurately predict the true genetic values of the maize hybrids

and to reliably estimate the true variance parameters of interest.
3.1 Simulation example

Consider a scenario in which 100 maize hybrid genotypes are

evaluated for grain yield (t/ha) and plant height (cm) in field trials

across three environments. The simulation of plot phenotypes with

FieldSimR involves three steps:
Fron
1. Simulation of plot errors.

2. Simulation of genetic values.

3. Generation of phenotypes by combining the plot errors

with the genetic values.
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3.1.1 Simulation of plot errors
Plot errors for grain yield and plant height were simulated with

FieldSimR ’s core function field_trial_error(), assuming

independence between traits and between environments.

Environments 1 and 2 comprised two blocks each, while

Environment 3 comprised three blocks. The blocks were aligned

in the column direction (side-by-side) and comprised 5 columns

and 20 rows for 100 plots in each block. The plots were 8 m long in

the column direction by 2 m wide in the row direction.

To obtain plot-level heritabilities of h2 = 0.3 for grain yield and

h2 = 0.5 for plant height in all three environments, the total error

variances for the two traits were defined relative to their genetic

variances, as demonstrated in Supplementary Script S10. The

simulated plot errors comprised spatial, random, and extraneous

error terms. The spatial errors were simulated using bivariate

interpolation with complexity set to 10 and proportion of spatial

error variance set to 0.4 in all three environments. The extraneous

errors were simulated using zig-zag ordering across neighbouring

rows. The proportion of extraneous error variance was set to 0.2 in

all three environments. This resulted in a proportion of random

error variance of 1 − (0.4 + 0.2) = 0.4.
error_df <- field_trial_error(ntraits = 2,

nenvs = 3,

nblocks = c(2,2,3),

ncols = c(10,10,15),

nrows = 20,

block.dir = "col",

varR = c(0.20, 0.28, 0.14,

15.1, 8.5, 11.7),

spatial.model = "Bivariate",

complexity = 10,

plot.length = 8,

plot.width = 2,

prop.spatial = 0.4,

ext.ord = "zig-zag"

ext.dir = "row",

prop.ext = 0.2)
.

The simulated plot errors can also be accessed through the

example data frame error_df_bivar, which will be used below to

generate phenotypes. The spatial errors, extraneous errors, random

errors, and total plot errors are presented in Figure 4 for gain yield

in Environment 1.
3.1.2 Simulation of genetic values
Genetic values for grain yield and plant height in the three

environments were simulated based on an unstructured model for

genotype-by-environment (GxE) interaction. The simulation was

done in AlphaSimR (Gaynor et al., 2021), using FieldSimR’s

wrapper functions unstr_asr_input() and unstr_asr_output(), as
frontiersin.org
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demonstrated in Supplementary Script S10. The simulated genetic

values can be accessed through the example data frame gv_df_unstr.

The genetic values for grain yield in Environment 1 are presented

in Figure 4.

In addition to the unstructured model, FieldSimR provides

wrapper functions for simulating genetic values based on

compound symmetry and multiplicative models for GxE

interaction. Alternatively, users can provide their own set of

genetic values, e.g., through simulation or previously obtained

from empirical analyses.
Frontiers in Plant Science 08
3.1.3 Generation of phenotypes
Phenotypes for grain yield and plant height were generated by

combining the simulated plot errors with the genetic values stored

in FieldSimR’s example data frame gv_df_unstr. The maize hybrids

were randomly allocated to plots according to a randomised

complete block design (RCBD).
pheno_df <- make_phenotypes(gv.df = gv_df_unstr,

error.df = error_df_bivar,

randomise = TRUE)
.

A B

FIGURE 4

Demonstration of how FieldSimR generates phenotypes: (A) plot errors are simulated by combining the spatial errors with the random and
extraneous errors at a user-defined ratio, and (B) phenotypes are generated by combining the total plot errors with the true genetic values simulated
with AlphaSimR. The graphics were produced with the plot_effects() function in FieldSimR.
frontiersin.org
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The phenotypes are presented together with the plot errors and

genetic values in Figure 4 for grain yield in Environment 1. The

graphics in Figure 4 were produced with FieldSimR’s plot function

plot_effects().
Fron
plot_effects(df = pheno_df[pheno_df$env == 1,],

effect = "y.Trait1")
.

FieldSimR currently provides functionality to generate an

RCBD, but note that other (incomplete) designs are being

implemented. Users will also have the ability to apply

experimental designs generated externally, e.g., with R packages

such as agricolae (de Mendiburu, 2023), odw (Butler, 2021), and

DiGGer (Coombes, 2020).
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3.2 Comparison of spatial models

The comparison of spatial models is demonstrated for the

simulated grain yield data in Environment 1 (Figure 4). A

sequential approach was adopted for model fitting following

Gilmour et al. (1997), with global trend and extraneous variation

diagnosed using the sample variogram and accounted for using

fixed and random model terms. This resulted in eight spatial

models, including a baseline model, three models with a separable

first order autoregressive (AR1) process, two models with a tensor-

product penalised spline (TPS), and two models implementing

nearest neighbour (NN) adjustments (Table 1). All models were

fitted with ASReml-R (Butler et al., 2018), as demonstrated in

Supplementary Script S11.

The spatial models were evaluated in three ways (Table 2):
TABLE 2 Linear mixed models fitted to the simulated grain yield data in Figure 4, Part 2: Model fit criteria, prediction accuracy, and bias.

Model Fixed Pars � 2 loglik REMLRT AIC Accuracy Bias

Baseline 1 3 −70:4 −66:7 0.65 −0:026

1 1 5 −99:1 p < 0.0001 −94:4 0.72 −0:014

2 1 6 −113:7 p < 0.0001 −103:7 0.74 −0:021

3 2 7 −133:4 −126:6 0.76 −0:012

4 4 8 −110:8 −93:8 0.69 −0:050

5 4 10 −135:7 p < 0.0001 −116:7 0.72 −0:021

6 1 3 −103:8 −102:0 0.71 −0:003

7 1 3 −94:2 −94:7 0.70 −0:023
Presented for each model are the number of fixed terms and autocorrelation/variance parameters, residual deviance, REMLRT, AIC, prediction accuracy, and bias. The selected AR1, TPS, and
NNmodels are distinguished with bold font. The REMLRT is applied sequentially and cannot compare models with different fixed effects. Models 6 and 7 cannot be compared with REMLRT and
AIC because the phenotypes have been adjusted. AR1, first order autoregressive; TPS, tensor-product penalised spline; NN, nearest neighbour; ID, independent error.
TABLE 1 Linear mixed models fitted to the simulated grain yield data in Figure 4, Part 1: Summary of non-genetic model terms.

Fixed Random

Model Terms Col Row Col:Row Col Row AR1 TPS ID

Baseline ID ✓

1 AR1 ✓

2 AR1 + ID ✓ ✓

3 AR1 + ID + Frow + Rrow ✓ ✓ ✓ ✓

4 TPS + ID ✓ ✓ ✓ ✓ ✓

5 TPS + ID + Rcol + Rrow ✓ ✓ ✓ ✓ ✓ ✓ ✓

6 NN + ID ✓

7 NN + ID ✓
fr
All models included a fixed overall mean, and random genotype and block effects. The separable AR1 process included one variance and two autocorrelation parameters. The TPS included three
fixed and five random spline terms, each with their own variance parameter. The moving grids used in the NN adjustments are presented in Supplementary Figure S9. AR1, first order
autoregressive; TPS, tensor-product penalised spline; NN, nearest neighbour; ID, independent error.
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Fron
1. The model fit was assessed using the residual maximum

likelihood ratio test (REMLRT) and the Akaike information

criterion (AIC).

2. The prediction accuracy was calculated as Pearson’s

correlation coefficient (r) between the true genetic values

from the simulation and the predicted genetic values from

the analysis.

3. The bias was calculated as the difference between the true

and estimated genetic variance parameters.
Note that the expected prediction accuracy for the data set is

0.68, based on the simulation parameters. Also note that the

REMLRT is based on the non-zero variance approach of Stram

and Lee (1994) and the AIC is based on the full log-likelihood

approach of Verbyla (2019), which can compare models with

different fixed effects. Typical experimental design and data

checks were performed prior to model fitting (Supplementary

Figure S5).

3.2.1 Baseline model
The analyses commenced by fitting a baseline linear mixed

model, which included random genotype and block effects, and an

independent (ID) error term (Table 1). This model reflects a classical

complete block analysis that assumes independent genotypes, blocks,

and residuals. The prediction accuracy of the baseline model was

lower than the expected accuracy (r = 0.65 compared to 0.68;

Table 2). The estimated genetic variance was ŝ 2
g = 0:061, which

was lower than the true value of 0.087 (bias = −0.026; Tables 2, 3).

3.2.2 Separable first order
autoregressive processes

Models 1, 2, and 3 included random genotype and block effects,

and a separable AR1 process. The separable AR1 process represents

a stochastic process which assumes correlated residuals in the
tiers in Plant Science 10
column and row dimensions (Martin, 1990; Cullis and Gleeson,

1991). It comprised one variance and two autocorrelation

parameters (Table 1).

Model 1 provided a significantly better fit than the baseline model

in terms of REMLRT (p < 0.0001) and AIC (−94.4 compared to −66.7),

and produced a higher prediction accuracy (r = 0.72 compared to

0.65; Table 2). The estimated genetic variance was ŝ 2
g = 0:073,

which provided a better estimate than the baseline model (bias = –

0.014; Tables 2, 3). The estimated column and row autocorrelations

were r̂ c =  0:51 and r̂ r =  0:23.

Model 2 was an extension of Model 1 that included an

additional ID error term (Besag, 1977; Wilkinson et al., 1983).

Model 2 provided a significantly better fit than Model 1 and

produced a higher prediction accuracy (Table 2). The estimated

genetic variance was ŝ 2
g = 0:066, which was slightly lower than

Model 1 (Table 3). The estimated column and row autocorrelations

were r̂ c =  0:95 and r̂ r =  0:87, which were substantially higher

than for Model 1. This indicated that the AR1 process captured

(highly correlated) spatial trend, while the ID term captured the

remaining random error. The sample variogram in Figure 5A shows

a zig-zag pattern between neighbouring rows, with consistently

higher semivariances for odd displacements compared to even

displacements (also see Supplementary Figure S6). The row face

of the variogram shows that the semivariances do not fall within the

coverage intervals (see Stefanova et al., 2009). This is a classical sign

of extraneous variation attributed to systematic practices aligned

with the rows, which matches the extraneous error simulated in this

data set.

Model 3 was an extension of Model 2 that included additional

fixed and random row terms. The fixed term was coded as a factor

with 1 for odd row numbers and 2 for even row numbers, while the

random term was coded as a factor with levels equivalent to row

number (Stefanova et al., 2009). The significance of the fixed term

was assessed using a Wald F-test with denominator degrees of
TABLE 3 Linear mixed models fitted to the simulated grain yield data in Figure 4, Part 3: REML estimates of autocorrelation and variance parameters.

Genotype Block Col Row AR1 TPS ID

Model ŝ 2
g ŝ 2

b ŝ 2
ec ŝ 2

er ŝ 2
s

r̂ c r̂ r ŝ 2
s1 ŝ 2

s2 ŝ 2
s3 ŝ 2

s4 ŝ 2
s5 ŝ 2

r

Baseline 0.061 0.02 0.19

1 0.073 0.00 0.20 0.51 0.23

2 0.066 0.00 0.40 0.95 0.87 0.09

3 0.075 0.00 0.01 0.10 0.75 0.89 0.08

4 0.037 0.05 0.03 0.03 0.69 0.00 0.07 0.16

5 0.066 0.04 0.00 0.05 0.04 0.02 0.70 0.00 0.08 0.09

6 0.084 0.00 0.14

7 0.064 0.00 0.17
frontiers
The selected AR1, TPS, and NN models are distinguished with bold font. The separable AR1 process included one variance and two autocorrelation parameters. The TPS included five random

spline terms, each with their own variance parameter. The true genetic variance was s 2
g = 0:087, while the true error variances were s 2

s = 0:08, s 2
er = 0:04, and s 2

r = 0:08. AR1, first order

autoregressive; TPS, tensor-product penalised spline; NN, nearest neighbour; ID, independent error.
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freedom (p < 0.001; Kenward and Roger, 1997). Model 3 provided a

better fit than Model 2 in terms of AIC and produced a higher

prediction accuracy (Table 2). The estimated genetic variance was

ŝ 2
g =  0:075, which was the second best estimate of all models

(Table 3). The estimated column autocorrelation was much lower

than for Model 2 (r̂ c =  0:75 compared to 0.95). The sample

variogram in Figure 5B no longer shows a zig-zag pattern
Frontiers in Plant Science 11
between neighbouring rows (also see the row face of the

variogram). Instead, a discontinuity is shown at 0 displacement,

reflecting the random error variance, followed by a gradual incline

in the column direction. This type of non-stationarity is a sign of

global trend in the column direction, which matches the spatial

error simulated in this data set. However, the column face of the

variogram shows that the semivariances fall within the coverage
A B

FIGURE 5

Sample variograms for the AR1 spatial models fitted to the simulated grain yield data in Figure 4: (A) Model 2: AR1 + ID and (B) Model 3: AR1 + ID +
Frow + Rrow. The column and row faces of each variogram were constructed following Stefanova et al. (2009), and are supplemented with
approximate 95% coverage intervals. Only semivariances based on more than 30 pairs are shown. AR1, first order autoregressive process, ID,
independent error, Frow, fixed row, Rrow, random row.
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intervals. The observed non-stationarity is, therefore, an artefact of

the correlated AR1 process, rather than global trend requiring

further remediation. Model 3 was selected as the final AR1 spatial

model based on the model fit criteria.

3.2.3 Tensor-product penalised splines
Models 4 and 5 included random genotype and block effects, a

TPS, and an ID error term. The TPS represents a smoothing

function which is applied to the two-dimensional continuous

array (Rodrıǵuez-Álvarez et al., 2018; Piepho et al., 2022). Both

models were fitted with the SpATS package (Rodrıǵuez-Álvarez

et al., 2018) and also with ASReml-R using the TPSbits helper

functions (Welham, 2019). A cubic B-spline basis was used with 6

knots in the column direction and 12 knots in the row direction

(Velazco et al., 2017). The TPS included three fixed and five random

spline terms, each with their own variance parameter (Table 1).

Model 4 provided a better fit than the baseline model in terms of

AIC (−93.8 compared to −66.7), and produced a higher prediction

accuracy (r = 0.69 compared to 0.65; Table 2). However, Model 4

provided a poorer fit and lower prediction accuracy than any of the

AR1 spatial models. The estimated genetic variance was ŝ 2
g =  0:037,

which provided the worst estimate of all models (bias = −0.050;

Tables 2, 3). Like for Model 2, the sample variogram in

Supplementary Figure S7 shows a zig-zag pattern between

neighbouring rows, suggesting the presence of extraneous variation.

Model 5 was an extension of Model 4 that included additional

random column and row terms. This model is equivalent to the

SpATS approach of Rodrıǵuez-Álvarez et al. (2018). Model 5

provided a significantly better fit than Model 4 and a higher

prediction accuracy (Table 2). However, it still provided a poorer

fit and lower prediction accuracy than the final AR1 spatial model,

despite having five additional model parameters (Table 1). The

sample variogram in Supplementary Figure S8 no longer shows a

zig-zag pattern, suggesting that the prescribed extraneous variation

was sufficiently remediated. Model 5 was selected as the final TPS

spatial model based on the model fit criteria.

3.2.4 Nearest neighbour adjustments
Models 6 and 7 implemented NN adjustments to the grain yield

phenotypes (Papadakis, 1937; Bartlett, 1978). The NN adjustments

were obtained by averaging over neighbouring plots with the

mvngGrAd package (Technow, 2015). The moving grids for

Models 6 and 7 are presented in Supplementary Figure S9. Both

models were fitted with ASReml-R, with model terms equivalent to

the baseline model (Table 1).

Models 6 and 7 produced higher prediction accuracies than the

baseline model (r = 0.71 and 0.70 compared to 0.65; Table 2).

However, both models produced lower prediction accuracies than

the final AR1 and TPS spatial models (r = 0.71 and 0.70 compared to

0.76 and 0.72, respectively). The estimated genetic variance for Model

7 was s 2
g =  0:084, which was the best estimate of all models (bias =

−0.003; Table 3). Model 7 was selected as the final NN adjusted model

based on the ratio of genetic to total phenotypic variance.
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FieldSimR’s capacity to simulate realistic plot errors that capture

global and local trend, random error, and extraneous variation

makes it a flexible and powerful tool for various improvement

processes in plant breeding. It’s general framework for simulating

spatial variation exploits two widely adopted approaches for

analysing real-world field trial data: bivariate interpolation and

autoregressive processes. In contrast to real-world data, however,

FieldSimR enables the efficient and comprehensive assessment of

experimental designs and statistical analyses on a large scale, across

an extensive array of scenarios. It also provides a platform for

obtaining unbiased comparisons of statistical approaches for their

ability to accurately predict the genetic values and to reliably

estimate the variance parameters of interest, as the true values are

defined by the user and, therefore, are known.

FieldSimR is available on CRAN, and has been extensively

deployed as part of the Excellence in Breeding (EiB) initiative to

provide guidance on the improvement of field trial design and

analysis strategies across numerous CGIAR breeding programmes.
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