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Introduction: Unmanned aerial vehicles (UAVs) equipped with visible and

multispectral cameras provide reliable and efficient methods for remote crop

monitoring and above-ground biomass (AGB) estimation in rice fields. However,

existing research predominantly focuses on AGB estimation based on canopy

spectral features or by incorporating plant height (PH) as a parameter. Insufficient

consideration has been given to the spatial structure and the phenological stages

of rice in these studies. In this study, a novel method was introduced by fully

considering the three-dimensional growth dynamics of rice, integrating both

horizontal (canopy cover, CC) and vertical (PH) aspects of canopy development,

and accounting for the growing days of rice.

Methods: To investigate the synergistic effects of combining spectral, spatial and

temporal parameters, both small-scale plot experiments and large-scale field

testing were conducted in Jiangsu Province, China from 2021 to 2022. Twenty

vegetation indices (VIs) were used as spectral features, PH and CC as spatial

parameters, and days after transplanting (DAT) as a temporal parameter. AGB

estimation models were built with five regression methods (MSR, ENet, PLSR, RF

and SVR), using the derived data from six feature combinations (VIs, PH+CC, PH

+CC+DAT, VIs+PH +CC, VIs+DAT, VIs+PH+CC+DAT).

Results: The results showed a strong correlation between extracted and ground-

measured PH (R2 = 0.89, RMSE=5.08 cm). Furthermore, VIs, PH and CC exhibit

strong correlations with AGB during the mid-tillering to flowering stages. The

optimal AGB estimation results during the mid-tillering to flowering stages on

plot data were from the PLSR model with VIs and DAT as inputs (R2 = 0.88,

RMSE=1111kg/ha, NRMSE=9.76%), and with VIs, PH, CC, and DAT all as inputs (R2

= 0.88, RMSE=1131 kg/ha, NRMSE=9.94%). For the field sampling data, the ENet

model combined with different feature inputs had the best estimation results (%

error=0.6%–13.5%), demonstrating excellent practical applicability.

Discussion:Model evaluation and feature importance ranking demonstrated that

augmenting VIs with temporal and spatial parameters significantly enhanced the

AGB estimation accuracy. In summary, the fusion of spectral and spatio-temporal
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features enhanced the actual physical significance of the AGB estimation models

and showed great potential for accurate rice AGB estimation during the main

phenological stages.
KEYWORDS

multispectral remote sensing, rice above-ground biomass, vegetation indices, digital
surface model, plant height, canopy cover, regression method
1 Introduction

Rice, as one of the most important staple crops in China, plays a

pivotal role in ensuring food security and promoting agricultural

sustainability (Huang et al., 2011; Wang et al., 2014). The above-

ground biomass (AGB) serves as a key indicator for reflecting rice

growth and predicting the yield (Confalonieri et al., 2009b; Choi

et al., 2013; Adeluyi et al., 2022). Therefore, obtaining precise AGB

estimates during the primary phenological stages of rice is essential

for assessing rice growth status, targeting rice management, and

optimizing agricultural practices (Gnyp et al., 2013; Zhang

et al., 2017).

Conventional methods for obtaining rice growth parameters

involve labor-intensive field measurements using various tools (Yao

et al., 2013). Although these methods provide relatively accurate

data, they are time-consuming and impractical for large-scale

measurements (Confalonieri et al., 2009a). Notably, destructive

sampling is required for direct AGB measurement, making it

unsuitable for long-term monitoring and affecting yield

assessment (Borra-Serrano et al., 2019; Nakajima et al., 2023).

Also, it is difficult to accurately assess the overall condition of

large rice fields due to the limitation of sampling points and spatial

heterogeneity (Zhou et al., 2023). In recent years, remote sensing

monitoring technologies, based on platforms such as satellites,

airborne, unmanned aerial vehicles (UAVs) and ground, have

emerged as innovative alternatives for AGB estimation (Duan

et al., 2019; Mostofialmamaleki et al., 2019). These platforms are

equipped with various sensors, including digital, multispectral,

hyperspectral, thermal infrared and synthetic aperture radar

(SAR), enabling timely and non-destructive acquisition of canopy

information (Chakraborty et al., 1997; Mashimbye et al., 2012; Han

et al., 2021; Qiu et al., 2021).

Satellite remote sensing possesses the capability for all-weather,

multisource, and multiscale monitoring, allowing synchronous

observations over large rice areas (Inoue et al., 2014; Wang et al.,

2016; Jiang et al., 2021). However, it is accompanied by drawbacks

such as long revisit periods, high satellite costs, and significant

interference from cloud cover, posing challenges in ensuring

monitoring precision (Feng et al., 2021). The combination of

airborne hyperspectral and LiDAR data enables effective
02
monitoring of biomass, but the cost of operating and maintaining

airborne platforms is also high, making them more commonly used

for large-scale forest monitoring than for crops such as rice

(Brovkina et al., 2017; Gao et al., 2022). Ground remote sensing

systems are close to the surface, facilitating more detailed

information on rice, but are limited in their coverage due to fixed

station locations (Gnyp et al., 2012). In comparison, the application

of near-ground UAVs provides significant assistance in improving

the temporal and spatial resolution of rice monitoring, with the

advantages of cost-effectiveness, operational simplicity, and high

efficiency in large-scale monitoring (Wan et al., 2020; Bascon et al.,

2022; Luo et al., 2022; Xu et al., 2022a). In particular, consumer-

grade UAVs equipped with visible and multispectral cameras can

conveniently obtain canopy structural parameters and key spectral,

color and texture features, which have been widely used to estimate

AGB (Xu et al., 2022b; Zheng et al., 2023).

Traditional methods for estimating AGB from UAV imagery

have mainly relied on vegetation indices (VIs), which have achieved

acceptable estimation accuracy (Gnyp et al., 2014; Cheng et al.,

2017). Researchers have developed dozens of VIs, such as

Normalized difference vegetation index (NDVI), Leaf Chlorophyll

Index (LCI) and Soil Adjusted Vegetation Index (SAVI) (Huete,

1988; Peñuelas et al., 1997; Xue and Su, 2017). These dimensionless

indices integrate spectral data from different narrow-band

wavelengths and can reflect characteristics including coverage,

chlorophyll content, moisture, and health status (Bannari et al.,

1995). Along with VIs that make use of spectral features, texture

indices that reflect subtle variations in canopy structure are also

commonly used to enhance the estimation of AGB (Wang et al.,

2022b; Liu et al., 2023a). Many studies predominantly focus on

establishing empirical relationships directly between these features

and ground-measured AGB values using statistical analysis and

machine learning algorithms. Typical methods involve Linear

Regression, Partial Least Squares Regression, Support Vector

Machine, Random Forest, and Artificial Neural Network (Yang

et al., 2018; Zhang et al., 2020; Wang et al., 2023a, Wang et al.,

2023b). The lack of a solid foundation in physics and physiology

will limit the improvement of AGB estimation accuracy. Moreover,

crop spectral response can be influenced by various factors,

including crop type, moisture content, nutrient status, soil, and
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atmospheric spatio-temporal variations (Hoffer, 1978; Bannari

et al., 1995). Therefore, VIs tend to be unstable during the long

growth process of rice and have the potential for saturation under

high biomass conditions, posing difficulties for AGB estimation

over multiple phenological periods (Yue et al., 2019; Liu

et al., 2023c).

To address the limitations of VIs, researchers have integrated

plant height (PH) to enhance AGB estimation (Bendig et al., 2015;

Panday et al., 2020; Wang et al., 2022a; Yang et al., 2023). Three-

dimensional point cloud data of the crop canopy can be obtained

using photogrammetry or LiDAR technology (Sun et al., 2022).

After interpolation, the 3D point cloud data can be generated into a

digital surface model (DSM) for extracting plant height. This

method has been widely applied to UAV remote sensing

monitoring of crop PH with strong physical significance and high

accuracy (Kawamura et al., 2020; Ji et al., 2022; Liu et al., 2022c).

However, relying solely on PH cannot comprehensively reflect rice

growth as it involves only one dimension. To gain a more

comprehensive understanding of changes during crop growth,

Canopy Coverage (CC) has received attention from researchers

(Walter et al., 2015; Shu et al., 2023). Canopy cover refers to the

proportion of land covered by the vertical projection of the

vegetation canopy (Guevara-Escobar et al., 2005; Lee and Lee,

2011), which can be used to quantify the expansion of the rice

canopy in the horizontal dimension as AGB increases. Studies have

shown that CC is a reliable parameter for reflecting plant canopy

growth and estimating AGB, Leaf Area Index (LAI), and yield

(Nielsen et al., 2012; Goodwin et al., 2018; Garcıá-Martıńez et al.,

2020). Currently, there are relatively few studies combining PH and

CC for AGB estimation, emphasizing the need to strengthen the

role of CC. The physical significance of AGB estimation can be

further improved from both vertical and horizontal perspectives.

The stages of crop growth can be quantified through various

metrics, including time-based measures like Days After Sowing

(DAS) and thermal-based measures like Growing Degree Day

(GDD) (Li et al. , 2022). Additionally, widely adopted

classification systems like the Feekes code and Zadoks code

delineate distinct phenological stages of crops (Zadoks et al.,

1974; Simmons et al., 1985; Chin et al., 1991). Connections can

be established between these orderly digitized metrics and the

accumulation of crop biomass. Typically, rice biomass can be

effectively expressed as a function of time (t) using logistic or

Gompertz models (Yu et al., 2002; Varela et al., 2021). Currently,

studies have mainly focused on establishing AGB estimation models

in specific or overall phenological stages of rice. Among them, the

quantitative value for rice growth has received limited attention.

Considering the effect of temporal parameters would compensate

for the possible saturation and instability of spectral features as the

crop grows. Therefore, apart from spectral and spatial parameters,

the days after transplanting (DAT) of rice was also introduced as a

parameter in this study to investigate its impact on AGB estimation

across the main phenological stages. This integrated approach aims

to provide more accurate and detailed information for monitoring

AGB in rice growth, offering robust support for agricultural

management and decision-making.
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Considering the limitations of the commonly used methods for

estimating rice AGB using VIs and PH, a novel multidimensional

approach was introduced in this study that considers both spatial

structure and phenological stages. In addition, to ensure the

robustness and practical applicability of AGB estimation model, it

was imperative to transition from the controlled small-scale

experimental plots to the complex reality of large-scale rice fields.

The combination of experimental and sampling data could

reinforce the reliability of the models, making it a valuable tool

for rice monitoring. The main objectives of this study were to (1)

obtain 3D point cloud data and multispectral features of rice

canopies by UAV-borne digital and multispectral cameras, (2)

precisely extract 20 types of VIs, PH and CC based on UAV

images from rice fields, (3) estimate rice AGB across main

phenological stages with five regression algorithms (MSR, ENet,

PLSR, RF and SVR) and six feature combinations (VIs, PH+CC, PH

+CC+DAT, VIs+PH+CC, VIs+DAT, VIs+PH+CC+DAT) and

evaluate the simulation and accuracy, (4) construct a

multidimensional AGB estimation model that integrates spectral,

temporal and spatial features of rice.
2 Materials and methods

2.1 Study area and experimental design

In this study, small-scale plot experiments and large-scale field

sampling were both carried out to validate and assess the

applicability of the AGB estimation models developed. The

specific scheme is illustrated in Figure 1. The plot experiments

were conducted at the experimental site of Hohai University in

Nanjing, Jiangsu Province, China (31°55′N, 118°47′E) during 2021
and 2022. The study area was under a humid subtropical climate

with an average annual precipitation of 1090.4mm and an average

annual temperature of 15.4°C. Japonica rice variety Nanjing 9108

was transplanted into drainage lysimeters at a spacing of 20 cm × 15

cm. All plots were 2.5 meters long, 2 meters wide and 2 meters deep.

Five nitrogen fertilizer treatments were used: 0 kg/ha (N0), 150 kg/

ha (N1), 225 kg/ha (N2), 300 kg/ha (N3), and 375 kg/ha (N4), each

with four replications. In addition, all treatments were applied with

75 kg/ha of phosphate fertilizer and 120 kg/ha of potash fertilizer.

Nitrogen fertilizer was applied in three stages (base, tiller, and spike)

at a 4:3:3 ratio, while phosphate fertilizer was applied as a base, and

potash fertilizer was split into a base and spike application at a 1:1

ratio. Weeds in the plots were manually removed as appropriate.

To evaluate the AGB estimation models, extensive field

sampling occurred in the northern region of Jiangsu Province in

October 2021. This field sampling involved multiple areas,

including three fields in Xuzhou (34°2′N, 117°52′E) and two

fields in Suqian (33°59′N, 118°28′E), as depicted in Figure 1C.

Both Xuzhou and Suqian experience a semi-humid monsoon

climate, with an annual precipitation of about 900 mm and an

average annual temperature of about 15°C. The same variety of

japonica rice was also transplanted locally at a density of 300,000

plants per hectare.
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2.2 Ground data acquisition

Rice plant height (PH) was measured as the vertical height from

the soil surface to the top of the canopy using a steel ruler. In plot

experiments, six rice plants were selected in each plot for periodic

observation to assess the extracted plant height values from the

UAV images. The acquisition time of ground data in plot

experiments is shown in Table 1. On the day of each destructive

sampling, we collected above-ground portions from three

representative rice plants in the lysimeter plots and five

representative rice plants from the fields. Subsequently, the PH of

these plants was measured using the same steel ruler. The above-

ground biomass (AGB) of these plants was then determined using

the oven-drying method. These plant samples were initially dried at

a constant temperature of 105°C for 0.5 hours, followed by a

constant temperature of 75°C for 48 hours until reaching a

constant temperature. The dry weight of each sample was

measured using an electronic balance. For plot experiments, the

average AGB of three plant samples per plot, after multiplied by the

rice planting density, was converted into the average AGB per

hectare (kg/ha). From a total of 10 samplings over two years, 200

groups of data were obtained in plot experiments. For field
Frontiers in Plant Science 04
sampling, the average AGB of five plant samples from each of the

five fields was calculated as individual plants (g/plant).
2.3 UAV data acquisition and processing

2.3.1 Image acquisition and compositing
The DJI Phantom 4-Multispectral (P4M) (DJ-Innovations,

Shenzhen, China) was employed for this experiment, featuring an

integrated multispectral imaging system comprising one visible light

camera and five multispectral cameras (Blue, Green, Red, Red Edge,

and NIR). These cameras were responsible for capturing visible light

and multispectral images, respectively, with the single camera

boasting an effective pixel count of 2.08 million. Additionally, the

DJI P4M was equipped with a Real-Time Kinematic (RTK) system,

ensuring centimeter-level positioning accuracy. In positioning mode,

the DJI P4M could fly at a maximum horizontal speed of 50 km/h.

The vertical hovering accuracy was ±0.1 m and the horizontal

hovering accuracy was ±0.1 m.

All image acquisitions were conducted during midday hours

(10:00 to 14:00) on clear, cloudless or less cloudy days. Flight missions

were planned using the software DJI GS Pro (DJ-Innovations,
B

C

A

FIGURE 1

Layout of the small-scale experimental plots and large-scale sampling fields in this study. (A) Location of the plots and fields in Jiangsu Province. (B)
Plot experiments in Hohai University. (C) Field sampling in Xuzhou (Field 1, Field 2 and Field 3) and Suqian (Field 4 and Field 5).
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Shenzhen, China), with a forward overlap rate of 80% and a side

overlap of 70%. The DJI P4M captured images in “waypoint

hovering” mode and flew at 18 km/h. The altitude for each mission

of the plot experiments and field sampling was set at 10m and 35m,

respectively. The corresponding image accuracies were 0.5 cm/px and

1.9 cm/px, respectively. Two calibration boards of known reflectance

were also photographed each time the UAV mission was conducted

for later radiometric correction of the images. The reflectance of

calibration boards in different bands is shown in Table 2.

Before transplanting the rice, and on the day of PH

measurement and destructive sampling, UAV missions were

conducted to obtain images. All UAV images were reconstructed

in 2D multispectral by the software DJI Terra (DJ-Innovations,

Shenzhen, China). The 3D point cloud data was rasterized to obtain

the DSM. The calibration data was imported for reflectance

radiometric correction to generate ortho-mosaic results for each

band (Figure 2).

2.3.2 Calculation of vegetation indices, plant
height and canopy cover

The elevation data of the images at different growth stages were

uniformly corrected by setting fixed control points. Rice PH at
Frontiers in Plant Science 05
different stages was extracted by subtracting the DSM of the rice

canopy from the bare soil DSM using the Raster Calculator function

of ArcMap 10.8. At the corresponding position of each designated

observation plant, a 10 cm × 10 cm sample square was drawn as a

polygon element. Then the mean value of all raster data within the

frame was calculated as the PH of that rice plant using the Zonal

Statistics function of ArcMap 10.8. The PH inputs corresponding to

the AGB samples in the regression model were the mean values of

PH extracted within the plot or field on the day of destructive

sampling. In addition, 20 VI maps were also calculated from five

single-band reflectance maps using the Raster Calculator function.

The calculation formulas are shown in Table 3.

To facilitate the accurate extraction of rice canopy features from

the images, it was essential to exclude the interstitial soil areas

between adjacent rice plants. The maximum inter-class variance

method (OTSU algorithm) (Otsu, 1979) was applied in MATLAB

R2021b to extract the rice canopy. This algorithm returned a

threshold for effectively distinguishing between foreground (rice

plants) and background (soil). The segmentation threshold for

plants and soil was determined using NIR band images in this

study. The rice canopy extracted according to this threshold then

served as a mask for extracting VI maps. In plot experiments, the

outermost two rows of plants on each side of the plots were

excluded and the remaining rice canopy pixel points were

included in the VI calculation. Additionally, the extracted rice

canopy was also used to calculate canopy cover (CC). The CC of

each plot or field was the ratio of the rice canopy-covered area to the

total area.
2.4 Data analysis and modelling

2.4.1 Correlation analysis
In this study, correlation analysis was carried out between

features (VIs, PH and CC) obtained from UAV images and the
TABLE 2 Multispectral spectrum and reflectance of calibration boards.

Band name Wavelength

Reflectance of calibra-
tion boards

25% 50%

Blue 450 ± 16nm 0.2602 0.4771

Green 560 ± 16nm 0.2613 0.488

Red 650 ± 16nm 0.251 0.4949

Red Edge 730 ± 16nm 0.2465 0.4957

NIR 840 ± 26nm 0.2482 0.5005
TABLE 1 Ground data measurement in plot experiments.

Year Transplanting date Harvest date Indicator Date of measurement

2021 3 July 25 October AGB, PH

Jointing-booting stage: DAT48

Milk ripening stage: DAT69

Yellow ripening stage: DAT114

2022 26 June 22 October

AGB, PH

Tillering stage: DAT15, DAT27, DAT42

Jointing-booting stage: DAT52

Heading-flowering stage: DAT68

Milk ripening stage: DAT82

Yellow ripening stage: DAT109

PH

Tillering stage: DAT30, DAT40

Jointing-booting stage: DAT50

Heading-flowering stage: DAT60

Milk ripening stage: DAT70
AGB, above-ground biomass; PH, plant height; DAT, days after transplanting.
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corresponding AGB measured on each sampling day. These

comparisons were based on the Pearson correlation coefficient (r)

(Lee Rodgers and Nicewander, 1988), a dimensionless metric that

assesses the degree of correlation between variables. The value of r

ranges from −1 to 1 and an absolute value closer to 1 indicates a

stronger correlation between the two variables. The formula for
Frontiers in Plant Science 06
calculating r is as in Equation (1):

r= on
i=1(xi−�x)(yi−�y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi−�x)

2o(yi−�y)
2

q (1)

where �x and �y are themean values of variables x and y, respectively.
TABLE 3 Vegetation indices (VIs) used in this study.

NO. Index Abbreviation Formula Reference

1 Chlorophyll Index Green CIg (NIR/Green)−1 (Gitelson et al., 2003)

2 Chlorophyll Index RedEdge CIre (NIR/RedEdge)−1 (Gitelson et al., 2003)

3 Chlorophyll Vegetation Index CVI (NIR/Green)×(Red/Green) (Vincini et al., 2008)

4 Difference Vegetation Index DVI NIR−Red (Jiang et al., 2006)

5 Enhanced Vegetation Index EVI 2.5(NIR−Red)/(NIR+6Red−7.5Blue+1) (Huete et al., 2002)

6 Enhanced Vegetation Index 2 EVI2 2.5(NIR−Red)/(NIR+2.4Red+1) (Jiang et al., 2008)

7 Green Leaf Index GLI (2Green−Red−Blue)/(2Green+Red+Blue) (Gobron et al., 2000)

8 Green Normalized Difference Vegetation Index GNDVI (NIR−Green)/(NIR+Green) (Gitelson et al., 1996)

9 Leaf Chlorophyll Index LCI (NIR−RedEdge)/(NIR+Red) (Datt, 1999)

10 Modified Chlorophyll Absorption in Reflectance Index MCARI
((RedEdge−Red)−0.2(RedEdge−Green))

×(RedEdge/Red)
(Daughtry et al., 2000)

11 Modified Simple Ratio MSR ((NIR=Red)� 1)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(NIR=Red) + 1

p
(Haboudane et al., 2004)

12 Normalized Difference RedEdge NDRE (NIR−RedEdge)/(NIR+RedEdge) (Barnes et al., 2000)

13 Normalized Difference Vegetation Index NDVI (NIR−Red)/(NIR+Red) (Rouse et al., 1973)

14 Optimized Soil Adjusted Vegetation Index OSAVI (NIR−Red)/(NIR+Red+0.16) (Rondeaux et al., 1996)

15 Renormalized Difference Vegetation Index RDVI (NIR − Red)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR + Red

p
(Roujean and Breon, 1995)

16 Ratio Vegetation Index RVI NIR/Red (Jordan, 1969)

17 Soil Adjusted Vegetation Index SAVI 1.5(NIR−Red)/(NIR+Red+0.5) (Huete, 1988)

18 Triangular Vegetation Index TVI (120(NIR−Green)−200(Red−Green))/2 (Broge and Leblanc, 2001)

19 Visible Atmospherically Resistant Index VARI (Green−Red)/(Green+Red−Blue) (Gitelson et al., 2002)

20 Wide Dynamic Range Vegetation Index WDRVI (0.2NIR−Red)/(0.2NIR+Red) (Gitelson, 2013)
FIGURE 2

The main methods of this study.
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2.4.2 Modelling methods
Highly correlated data points from multiple samplings were

chosen to create the model dataset. This dataset was divided

randomly into two subsets: a training set, including 70% of the

dataset, and a separate test set, comprising the remaining 30%. To

avoid the performance of the model being affected by the order of

magnitude of different features, it was essential to pre-process the

data. Standardization was employed, using the mean and standard

deviation, to scale and normalize the data consistently (Milligan and

Cooper, 1988). The formula for standardization is as in Equation

(2):

z=
xi−�x
s

(2)

where �x and s are the mean and the standard deviation of the

variable x, respectively.

Five regression methods were employed in this study, including

Multiple Stepwise Regression (MSR), Elastic Net Regression (ENet),

Partial Least Squares Regression (PLSR), Random Forest Regression

(RF) and Support Vector Regression (SVR). All model construction

was completed in Python.

Multiple Stepwise Regression is a method of iteratively checking

the significance of each independent variable to finally obtain the

independent variable that has a significant effect on the dependent

variable (Ku and Popescu, 2019). It includes three methods: forward

selection, backward elimination and bidirectional elimination. In

this study, forward stepwise regression was used and the adjusted R²

value was selected to compare the performance of the model. The

independent variables that contributed the most to the model were

selected to be added. The final multivariate linear model (Altman

and Krzywinski, 2015) was built using those selected

independent variables.

Elastic Net Regression is a regularized regression method based

on a linear model that combines the L1 and L2 penalties of the Lasso

and Ridge methods (Zou and Hastie, 2005). Ridge regression retains

all variables in the model and is not applicable to feature selection.

Lasso regression does not solve the problem of rational selection

among highly correlated features. ENet as a combination of both

has advantages in dealing with multicollinearity as well as reducing

overfitting. In this study, the strength and scale of regularization

were determined based on the parametric grid search.

Partial Least Squares Regression, as a widely used algorithm,

can address the problem of covariance between independent

variables and enables dimensionality reduction in the latent

variable space (Mashimbye et al., 2012). The number of features

to be retained after dimensionality reduction can be specified. It can

explain as much as possible about the relationship between the

original independent variables and the dependent variable

providing strong model interpretability. In this study, the optimal

number of features after dimensionality reduction was found by

loop traversal for different combinations of feature inputs.

Random Forest Regression is an ensemble learning method that

operates by constructing a large number of decision trees while

training (Izquierdo-Verdiguier and Zurita-Milla, 2020). RF avoids

the problem of overfitting in the Decision tree model and it returns
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the average prediction of individual trees in a regression task. In this

study, the number of decision trees, maximum depth, and

maximum number of randomly selected features for each

decision tree were determined by parametric grid search.

Importance scores of features in the RF algorithm were used to

support feature selection.

Support vector regression constructs a regression model by

finding a set of data points that are closest to the target value in the

feature space, which is called a support vector, to fit the data (Smola

and Schölkopf, 2004). The goal of SVR is to find the best hyperplane

at the maximum interval to minimize the total prediction error. In

this study, the type of kernel, regularization parameter, and kernel

coefficients used in support vector machines were determined by

parametric grid search.

To explore what combination of spectral features, spatial

parameters and the temporal parameter can achieve the optimal

AGB estimation results, six feature combination scenarios were

considered for each method: (1) VIs; (2) PH and CC; (3) VIs, PH,

and CC; (4) VIs and DAT; (5) PH, CC, and DAT; (6) VIs, PH, CC,

and DAT. Grid search was employed to find a more optimized

group of parameters.

2.4.3 Model accuracy assessment
The models built by each method on the training set were cross-

validated with four folds. The K-fold cross-validation is a common

method of assessing model performance (Zhang and Liu, 2023). It

divides the dataset into K folds and trains the model K times. A

different fold is used as the validation set each time and the

remaining folds are used as the training set. The results of each

training are averaged to obtain the final model performance

estimate. The cross-validation can effectively reduce the model

overfitting problem and improve the reliability and generalization

performance (Vu et al., 2022).

To evaluate the accuracy of the extracted Plant Height (PH) and

the performance of the regression models, two metrics were

employed: the coefficient of determination (R2) (Karch, 2020), the

root mean square error (RMSE) (Hyndman and Koehler, 2006) and

the normalized root mean square error (NRMSE) (Khan and

Osińska, 2023). R2 serves as an indicator of the proportion of

variance explained by the model relative to the total variance and

typically falls between 0 and 1. Higher R2 values signify better model

explanatory power, with values closer to 1 indicating a stronger fit.

RMSE is a widely used statistic for quantifying the discrepancy

between estimated and actual values. It’s particularly suitable for

comparing different methods on the same dataset since it usually

has the same units as the estimated and true values. NRMSE is the

normalized value of RMSE, usually expressed as a percentage.

Smaller values of RMSE and NRMSE indicate a closer

correspondence between estimated and actual values, reflecting a

superior fitting performance of the model. Conversely, larger RMSE

and NRMSE values suggest diminished model accuracy.

The testing results of the AGB estimation model on field

samples were assessed using percent error (%error). The formulas

for calculating R2, RMSE, NRMSE and %error are as in Equations

(3–6):
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RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi−xi)

2

s
(4)

NRMSE=
RMSE

xmax−xmin
(5)

% error =
j yi − xi j

xi
�100% (6)

where n is the number of data points, xi is the true value of the

data point, yi is the estimated value of the data point, �x, xmax and

xmin are the mean, maximum and minimum values of true

values, respectively.

2.4.4 Model interpretation
In addition to focusing on model accuracy, the correct

interpretation of model outputs is also significant for model

improvement. Simple models (e.g., linear models) are easy to

interpret but may be less accurate. Complex models are usually

more accurate but, as a ‘black box’, often have complicated internal

mechanisms that are difficult to explain in concrete ways. For this

reason, Shapley additive explanations (SHAP) (Lundberg and Lee,

2017) was used in this study to interpret the predictions of each

regression model as a unified measure of the feature importance.

The concept of Shapley values was derived from the theory of

cooperative games and can be used to measure the marginal

contribution of each feature to the final output. SHAP analysis
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does not depend on the internal mechanism of the model, so it is

suitable for various types of models with inputs and outputs, such as

linear regression models, tree-based models and neural networks.

In this study, the Shapley value calculation was implemented

with the help of a module package in Python. The results were

visualized through bee swarm plots, with features ordered by their

importance level from top to bottom. Positive Shapley values for

each feature signified a positive impact on increasing the predicted

value, while negative values indicated a negative impact.

Furthermore, the color of the dots represented the specific

feature value.
3 Results

3.1 Comparison between measured and
extracted PH

The comparison between ground-measured PH and PH

extracted from the DSM was conducted from tillering to milk

ripening stages (DAT30, DAT40, DAT50, DAT60 and DAT70) in

the year 2022, as illustrated in Figure 3. Each measurement involved

a total of 120 observation plants distributed across 20 plots. Figure 3

demonstrates a strong correlation between ground-measured PH

and extracted PH. Notably, as the rice plants matured, this

correlation exhibited a manifest strengthening trend.

In the first three measurements, the R2 values were 0.72, 0.75

and 0.75, and the RMSE values were 3.89, 4.34 and 5.2 cm,

respectively. Remarkably, for the latter two measurements, the R2

values were 0.84 and 0.88, and the RMSE values were 3.96 and 3.42
B C

D E F

A

FIGURE 3

Correlation between the ground-measured plant height (PH) and extracted PH from UAV images from tillering to milk ripening stages: (A, B) tillering
stage; (C) jointing-booting stage; (D) heading-flowering stage; (E) milk ripening stage; (F) total.
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cm, respectively, demonstrating higher correlations. When

considering all five measurements collectively, the overall R2 value

reached 0.89 and the RMSE was 5.08 cm, signifying that the

utilization of 3D point cloud data obtained from UAV facilitated

a convenient and relatively accurate measurement of rice PH.
3.2 Correlation analysis between features
and AGB at different growth stages of rice

The study examined the correlation between the 20 VIs, PH, CC

extracted from UAV images and AGB of rice plants in 2021 and

2022, as illustrated in Figure 4. Overall, correlations between these

variables followed a pattern of increasing and then decreasing as the

rice grew. Notably, during the mid-tillering to flowering stages

(DAT48 and DAT69 in 2021, DAT27, DAT42, DAT52 and DAT68

in 2022), most VIs showed strong correlations with AGB (p< 0.01).

In 2021, VIs like GNDVI, LCI, MSR, NDRE and WDRVI reached

correlations as high as 0.87 at DAT48. In 2022, VARI had the

highest correlation with AGB at DAT68, reaching 0.92. However,

during early and late growth stages (DAT114 in 2021, DAT15,

DAT82 and DAT109 in 2022), the correlations were weaker or non-

existent. PH and CC also showed significant correlations with AGB,

suggesting their potential for improving AGB estimation accuracy

based on VIs.
3.3 Regression modelling for AGB

Based on the results in section 3.2, a total of 120 groups of data

from the six samplings (DAT48 and DAT69 in 2021, DAT27,

DAT42, DAT52 and DAT68 in 2022) were collected as a plot

dataset to estimate the rice AGB during the major growth stages
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(from mid-tillering to flowering stages). The training set consisted

of 84 groups randomly selected from the dataset. The test set

consisted of the remaining 36 groups. The mean results of the

four-fold cross-validation on the training set of five regression

models are shown in Figure 5, each employing six different

combinations of features. When only VIs were used as the

independent variable, the MSR and PLSR models had similar

accuracy results with R2 values of 0.73 and RMSE values of 1758

and 1760 kg/ha, respectively. Models constructed from spatial

parameters (PH and CC) were all less accurate. Among them, the

RF model performed the best (R2 = 0.69, RMSE=1873 kg/ha). With

either VIs as features or PH and CC as features, the meanNRMSE of

the four-fold cross-validation of the SVR model was the lowest

compared to the other models, namely 13.42% and 16.38%,

respectively. With the addition of the temporal parameter (DAT)

to the spatial parameters, the accuracy of the other four models,

except for the MSR model, improved. In particular, the R2 value of

the RF model increased to 0.75 and the RMSE value decreased to

1699 kg/ha.

As shown in Figure 5, the addition of spatial parameters to the

VIs together as input features can significantly improve the

estimation accuracy of rice AGB. When VIs, PH and CC were

used as model inputs, the MSR and PLSR models had R2 values that

exceeded 0.80, RMSE values of 1501 and 1519 kg/ha, and NRMSE

values of 12.09% and 12.36%, followed closely by the ENet, SVR and

RF models. Similarly, the combination of VIs and DAT provides

better estimation accuracy for AGB than the models constructed

from VIs only, but slightly lower than those constructed from VIs,

PH and CC. When VIs, PH, CC, and DAT were all taken as the

features, the estimation accuracy of all five regression models was

also good. The MSR, ENet, PLSR and SVR models obtained quite

similar results in terms of R2 values, with the MSR model having the

lowest RMSE value of 1517 kg/ha and NRMSE value of 12.16%.

Overall, it was shown that the feature combination of VIs with
FIGURE 4

Pearson correlation coefficient (r) between 20 vegetation indices (VIs), plant height (PH), canopy cover (CC) with above-ground biomass (AGB) at
different growth stages of rice. * and ** indicate significance at the 0.05 and 0.01 significance levels, respectively.
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spatial parameters was superior to that of VIs with spatio-temporal

parameters, followed by that of VIs with temporal parameters.
3.4 Importance analysis of model features

Figure 6 illustrates the feature importance of the AGB

estimation models constructed from VIs and combinations of

VIs, PH, CC and DAT. In the models built with VIs only, the

index CVI made the highest contribution to the MSR, ENet, PLSR

and RF model outputs, and the second highest contribution to the

SVR model output. Moreover, other indices that contributed more

to the output in several models included RVI, GLI, CIg, EVI

and MSR.

When VIs, PH, CC and DAT were all applied as model input,

the PH made a significant contribution to the results of the models.

In the ENet model, it was the feature PH that contributed the most

to the output, and PH ranked second in the PLSR and RF model.

The CVI index also contributed greatly to the ENet, RF and SVR

model outputs. In addition, the VIs that contributed significantly to

the output of each model included RDVI, EVI2 and NDVI in the

MSR model, GLI in the ENet, PLSR, RF and SVR model, LCI in the

MSR and PLSR model, GNDVI in the PLSR, RF and SVR model.

Furthermore, as can be seen from the distribution of feature

value in Figure 6, the sample points with high feature values of VIs

such as RDVI, CVI, CIg and LCI have mostly positive SHAP values,
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while the sample points with low feature values of these VIs have

mostly negative SHAP values. This indicated that when the value of

these VIs was higher, the estimated AGB value would be larger. On

the contrary, the lower their value, the smaller the estimated AGB

value would be. Thus, the DVI and EVI2 in the MSR model and

GNDVI in the PLSR and SVR model showed the opposite property.

Their larger feature values decreased the estimated AGB while

smaller feature values increased the estimated AGB.
3.5 Testing results of AGB estimation
models on experimental plot data

The testing results of the established regression models on the

independent test set of the plot dataset are shown in Figure 7.

Among the models using VIs as the independent variables, the SVR

model had the highest accuracy with an R2 value of 0.8, an RMSE

value of 1432 kg/ha, and an NRMSE value of 12.59%. In addition,

the R2 value of the other four models all exceeded 0.78. AGB models

constructed from the spatial parameters PH and CC all had

relatively lower testing accuracy with their R2 values ranging from

0.47 to 0.67 and RMSE values ranging from 1864 to 2340 kg/ha.

Also, the addition of the temporal parameter DAT based on PH and

CC could improve the testing accuracy of AGB to a certain extent.

Models constructed from combinations of VIs along with PH

and CC all achieved relatively high testing results. Among them, the
B CA

FIGURE 5

Average accuracy of four-fold cross-validation of the AGB estimation models built from five regression algorithms (MSR, ENet, PLSR, RF and SVR),
each using six feature combinations (VIs, PH+CC, VIs+PH+CC, VIs+DAT, PH+CC+DAT, VIs+PH+CC+DAT): (A) R2 comparison; (B) RMSE
comparison; (C) NRMSE comparison.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1328834
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dai et al. 10.3389/fpls.2024.1328834
MSR model showed the best performance on the test set with an R2

value of 0.87, an RMSE value of 1146 kg/ha, and an NRMSE value of

10.07%, followed by the SVR, ENet and PLSR models. In the case of

VIs and DAT as features, the PLSR model showed the most accurate

result with an R2 value as high as 0.88, an RMSE value of 1111 kg/ha,

and an NRMSE value of 9.76%. Furthermore, with all parameters

included as the independent variable, again the PLSR model showed

the best accuracy (R2 = 0.88, RMSE=1131 kg/ha, NRMSE=9.94%).
3.6 Testing results of AGB estimation
models on sampling field data

To explore the applicability of the established AGB estimation

models on large-scale fields, the models were tested on five extra

fields and the percent error between their estimated and measured

values was calculated. The input features considered included VIs

and their combinations with spatial and temporal features. The

estimation results of different models and their errors are shown

in Table 4.
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Considering four different feature input situations, the

estimation results of the ENet model were optimal on all five

fields. When using VIs and DAT as inputs, the ENet model had

an average %error of only 5.7% in estimating AGB for the five fields,

followed by VIs as inputs (5.8%), VIs, PH and CC as inputs (6.4%),

VIs, PH, CC and DAT as inputs (6.4%). For the PLSR method, with

all of VIs, PH, CC and DAT as inputs, the best AGB estimation

results could be obtained (6.9%). Compared to the other three

feature combinations, the MSR and SVR models showed relatively

better results when VIs and DAT were used as inputs, with average

%error of 17.0% and 20%, respectively. Notably, when the stepwise

regression method selected a large number of parameters, it may

lead to the constructed linear model having a relatively large error

on the new data. For all five fields, the RF model combined with

different feature combinations produced results with large errors,

with %error ranging from 63% to 75.4%. Overall, the ENet and

PLSR models performed better for AGB estimation on large fields

compared to the other models. Moreover, the introduction of

temporal or spatial parameters can improve the accuracy of these

models in estimating AGB in large fields to some extent.
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FIGURE 6

Importance ranking of features in different AGB estimation models constructed from two types of feature inputs: (A–E) VIs; (F–J) VIs, PH, CC
and DAT.
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4 Discussion

4.1 Performance evaluation of different
regression models for estimating AGB

Five regression methods, MSR, ENet, PLSR, RF and SVR, were

used in this study to construct the AGB estimation model. In terms of

the results of the models on the test set of the plot dataset, the

performance of the five models varied when facing high-dimensional

data (Figure 7). For the MSR method, the introduction of the DAT

feature into the model characterized by VIs, PH and CC did not result

in any further improvement in model testing accuracy. Similarly, for
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the SVR method, the introduction of extra parameters into the model

characterized by VIs and DAT or VIs, PH and CC did not result in

any improvement in the testing accuracy. This may be attributed to

the overfitting caused by a larger number of features (Sim et al., 2018).

In comparison, the RF model performed better (Zhang et al., 2022).

In this study, feature selection was carried out based on the

importance scores of features in the RF algorithm (Li et al., 2017).

Whether the DAT feature was introduced over VIs, PH, and CC, or

PH and CC over VIs and DAT, the RF model demonstrated a

noticeable improvement in the testing accuracy.

In addition, we found that the RF model performs better with

high-dimensional data than with low-dimensional data. When two
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FIGURE 7

Testing results of the AGB estimation models on the test set of plot dataset: (A–E) VIs; (F-J) PH+CC; (K-O) PH+CC+DAT; (P-T) VIs+PH+CC; (U-Y)
VIs+DAT; (Z-AD) VIs+PH+CC+DAT.
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TABLE 4 Testing results of AGB estimation models on large-scale field data.

ods

R RF SVR

GB %
Error

Estimated AGB
(g/plant)

%
Error

Estimated AGB
(g/plant)

%
Error

10.9% 29.2 70.2% 216.0 120.3%

1.8% 27.9 71.3% 221.3 127.5%

9.1% 27.9 72.5% 258.7 154.7%

5.6% 29.3 72.5% 212.2 99.4%

17.1% 29.7 74.8% 169.2 43.9%

16.0% 36.2 63.1% 166.1 69.4%

15.1% 34.6 64.4% 168.1 72.8%

8.8% 34.6 65.9% 180.5 77.7%

10.7% 36.6 65.6% 169.8 59.6%

15.5% 37.1 68.4% 183.9 56.4%

25.5% 28.7 70.7% 123.8 26.2%

21.5% 28.2 71.0% 114.8 18.1%

24.7% 28.2 72.2% 119.3 17.5%

17.6% 28.9 72.8% 126.4 18.8%

5.4% 29.0 75.4% 140.5 19.4%

5.5% 36.3 63.0% 127.8 30.3%

8.9% 34.6 64.4% 123.3 26.8%

4.8% 34.6 65.9% 126.5 24.5%

2.3% 36.2 66.0% 129.9 22.0%

12.9% 37.4 68.2% 140.8 19.7%
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MSR ENet PLS

Estimated AGB
(g/plant)

%
Error

Estimated AGB
(g/plant)

%
Error

Estimated A
(g/plant)

VIs

F1 161.8 65.0% 98.7 0.6% 108.7

F2 149.9 54.1% 88.6 9.0% 95.5

F3 152.2 49.8% 87.8 13.5% 92.3

F4 165.6 55.6% 101.2 4.9% 112.4

F5 187.1 59.1% 118.9 1.1% 137.7

VIs+PH+CC

F1 40.6 58.6% 93.6 4.5% 113.7

F2 48.3 50.3% 92.4 5.0% 111.9

F3 41.6 59.1% 91.1 10.3% 110.5

F4 42.7 59.9% 97.8 8.1% 117.9

F5 42.6 63.8% 112.8 4.0% 135.8

VIs+DAT

F1 120.7 23.1% 97.3 0.7% 123.1

F2 119.0 22.3% 88.9 8.6% 118.1

F3 116.5 14.7% 90.1 11.3% 126.6

F4 120.0 12.7% 99.7 6.4% 125.1

F5 103.1 12.3% 115.6 1.7% 123.9

VIs+PH+CC
+DAT

F1 39.6 59.6% 94.5 3.6% 103.4

F2 47.6 51.1% 91.3 6.1% 105.9

F3 40.7 59.9% 91.2 10.2% 106.4

F4 41.8 60.7% 97.4 8.5% 108.9

F5 41.8 64.4% 113.5 3.5% 132.8
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feature combinations (PH+CC, PH+CC+DAT) were used as model

inputs, the training results of the RF model were both optimal, with

R2 values of 0.69 and 0.75, and RMSE values of 1873 and 1699 kg/

ha, respectively. However, the accuracy of the RF model on the test

set was the lowest when PH and CC were used as features, with an

R2 value of only 0.47 and an RMSE value exceeding 2000 kg/ha. In

contrast, the testing accuracy remained high when PH, CC, and

DAT were used as features.

The MSR, ENet, and PLSR methods are all linear regression

methods. When VIs, PH, CC and DAT were all included in the

model features, the ENet model had the lowest accuracy. This may

be attributed to the possibility that although the ENet model

combines the characteristics of Lasso and Ridge regression, it

does not eliminate the shortcomings in handling multicollinearity

and feature selection. Therefore, some bias and inconsistency in

parameter estimation and the problem of high variance in Lasso

estimates remain (Kayanan and Wijekoon, 2019, 2020). In dealing

with multicollinearity and feature selection, the MSR model can

obtain a reliable and effective set of feature combinations through

stepwise selection (Kolasa-Wiecek, 2015), while the PLSR model

can control the complexity of the model by setting the number of

Latent Variables to achieve dimensionality reduction (Shen et al.,

2020). In this study, the more appropriate process of dimensionality

reduction allowed the MSR and PLSR models to outperform the

ENet model on the test set.
4.2 Combining spatial and temporal
parameters to improve the AGB
estimation accuracy

In this study, we investigated the accuracy differences of AGB

regression models for various combinations of spectral features

(VIs), spatial parameters (PH and CC), and the temporal parameter

(DAT). As can be seen from Figures 5 and 7, compared with models

constructed from spectral features or spatial parameters alone, the

combination of these features showed a significant improvement in

estimation accuracy. The increase in rice PH in the vertical

direction and the expansion of CC in the horizontal direction

were generally consistent with the continuous increase of rice

AGB. Therefore, the combination of PH and CC can visualize the

changes in rice AGB in a 3D space (Maimaitijiang et al., 2019).

Similar studies (Adeluyi et al., 2022; Shu et al., 2023) have also

suggested the positive significance of PH and CC for AGB

estimation, which is consistent with the findings of this study.

Image resolution affects the accuracy of AGB estimation using

spectral information and crop surface models (Modica et al., 2020;

Liu et al., 2021). Low spatial resolution reduces image quality. High

spatial resolution brings more details of the crop canopy but

captures environmental noise from soil, weeds, and shadows at

the same time (Liu et al., 2022b; Zhu et al., 2023). Considering the

large areas of the sampling fields, we did not employ the same flight

height of image acquisition as the experimental plots in terms of

practicality. The five groups of field samples were mainly used to

test the applicability of the models. Although the spatial resolution

of the large sampling fields (1.9 cm/px) was slightly lower than that
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of the experimental plots (0.5 cm/px), the ENet and PLSR models

still achieved good estimation results in this study. We will consider

constructing estimation models with greater applicability across

field data in the future. In addition, the impact of extracted PH

tending to be lower than the actual PH values needs to be further

investigated (Willkomm et al., 2016; Ji et al., 2022). Here, the

underestimation of PH may be attributed to the sparse canopy

point cloud, which could be occasionally mistaken for the soil point

cloud when the rice canopy cover was minor. We will further

calibrate the extracted PH values in subsequent studies to match the

actual conditions more closely and thus improve the accuracy. In

addition, the CC in this study was calculated by extracting the rice

canopy using only one algorithm, OTSU. Combining methods such

as machine learning may improve the accuracy of CC and further

enhance the accuracy of AGB estimation.

From a temporal perspective, the growth of rice biomass

conforms to the rule of the Logistic curve, which can be

characterized as slow growth at the initial stage, rapid growth in

the middle stage, slow growth in the later stage, and eventually

converging to the maximum value infinitely (Yu et al., 2002).

Therefore, the growing days of rice can also function as a

parameter for estimating AGB and can compensate for the

possible saturation of VIs, PH, and CC in the later stages of rice

growth. In this study, the results show that introducing the

temporal parameter DAT based on VIs can indeed improve the

estimation accuracy of AGB. In particular, when the spatial

parameters of rice cannot be obtained due to objective conditions,

adding DAT to spectral features to estimate AGB is also an

alternative. On the whole, the feature combinations of VIs, PH,

CC, and DAT showed superior evaluation performance for all five

modelling approaches (Figure 7). For the MSR and ENet models,

the combination of VIs, PH, CC, and DAT demonstrated similar

test accuracy to the combination of VIs, PH, and CC; for the PLSR

model, the combination of VIs, PH, CC, and DAT demonstrated

similar test accuracy to the combination of VIs and DAT.

Overall, we took advantage of the convenience of obtaining,

processing and analyzing point cloud data and multispectral remote

sensing images. Considering that the information on multispectral

bands is limited and sensitive to the atmosphere and clouds,

integrating multi-source remote sensing data is one future study

target (Yu et al., 2023; Zhai et al., 2023; Liu et al., 2023b). For instance,

hyperspectral remote sensing, synthetic aperture radar (SAR), and

thermal infrared remote sensing (TIR) could provide more abundant

spectral and temperature information, and help to minimize the

influence of weather and environmental factors (Alebele et al., 2020;

Liu et al., 2022a; Xu et al., 2023; Zhang et al., 2024). Spectral analysis

methods such as wavelet analysis could also be employed to provide

more integrated and in-depth data (Wang et al., 2022b).
4.3 Generalization ability of regression
algorithms on different nitrogen samples

To explore the generalization ability of each regression algorithm,

samples with low-nitrogen (N1) and high-nitrogen (N4) treatments

were used for testing, respectively and the remaining treatments were
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used as the training set. Thus, two scenarios were included, one using

the N1, N2, and N3 sample set to train the model and test it on the N4

sample, and the other using the N2, N3, and N4 sample set to train

the model and test it on the N1 sample. VIs, PH, CC and DAT were

all taken as model features. The constructed models were also cross-

validated with four folds and the average accuracy results are shown

in Figure 8. Among the models trained from the N1, N2 and N3

sample set, the MSR model had the highest R2 value of 0.76 and the

lowest RMSE value of 1461 kg/ha, followed by the SVR, ENet and

PLSR models. As for the models trained from the N2, N3 and N4

sample set, the RF, SVR and MSR models had similar accuracy, with

their R2 values exceeding 0.69. Overall, the accuracy of the AGB

estimation models constructed from the N1, N2, and N3 sample set

was higher than that of models constructed from the N2, N3, and N4

sample set.

The testing results of the models for the two scenarios above are

shown in Figure 9. The estimated results for the majority of the N4

sample points were smaller than the measured values, while those

for the majority of the N1 sample points were larger than the
Frontiers in Plant Science 15
measured values. The better models for estimating the N4 treatment

were the ENet and SVR models with their R2 values up to 0.81. The

PLSR and RF models had similar estimation accuracy, with R2

values of 0.80. In addition, the best model for estimating N1

treatment was the PLSR model with an R2 value of 0.80, an

RMSE value of 1362kg/ha and an NRMSE value of 13.77%. The

RF model had the lowest estimation accuracy for the N1 sample,

with an R2 value of only 0.52. Although the accuracy of the

modelling set performed well, the MSR model obtained the lowest

accuracy in predicting the N4 samples. This may be attributed to

overfitting. Studies have shown that small-scale training may cause

the problem of overfitting (Dai et al., 2022). For a small training set

consisting only some of the samples, MSR selected a relatively large

number of features, resulting in a good performance on the training

set and a poor adaptation on unseen data. A similar result was

observed when the RF model predicted N1 samples. Therefore, a

large and representative amount of training data is crucial to

achieve a good generalization ability of the constructed model,

especially when employing machine learning algorithms (Xin et al.,
B CA

FIGURE 8

Accuracy of different AGB estimation models trained from the N1, N2 and N3 sample set and the N2, N3 and N4 sample set: (A) R2 comparison; (B)
RMSE comparison; (C) NRMSE comparison.
B C D E
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FIGURE 9

Testing results of different AGB estimation models trained from the N1, N2 and N3 sample set on the highest nitrogen treatment (N4) sample (A–E)
and models trained from the N2, N3 and N4 sample set on the lowest nitrogen treatment (N1) sample (F–J).
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2020; Cao et al., 2021). In general, the ENet and PLSR models had

better generalization performance for new data from both high-

nitrogen and low-nitrogen samples in this study.
5 Conclusions

To further enhance the accuracy of estimating rice AGB through

VIs, this study proposed an innovative multidimensional estimation

method that comprehensively considers spectral features, spatial

structure, and phenological stages. We employed UAV-borne

visible and multispectral cameras to capture digital surface models

and canopy multispectral images of rice at various phenological

stages. From these, we accurately extracted 20 VIs, PH, and CC.

The AGB estimation models across phenological stages were

constructed using five regression methods (MSR, ENet, PLSR, RF

and SVR) with six different feature combinations (VIs alone, PH+CC,

PH+CC+DAT, VIs+PH+CC, VIs+DAT, VIs+PH+CC+DAT).

Effective testing was conducted on both plot and field experiments.

The findings demonstrate the potential of drone technology for rapid

and relatively accurate estimation of rice PH. Notably, the

introduction of spatial parameters (PH and CC) and the temporal

parameter (DAT) significantly improved the accuracy of AGB

estimation. Among the models, the PLSR model with VIs and

DAT as inputs, or with VIs, PH, CC, and DAT as inputs, achieved

the optimal AGB estimation on plot data. Meanwhile, the ENet

model showed the best estimation results on field data, highlighting

its strong practical applicability. In summary, the integration of UAV

remote sensing and multi-feature fusion provides an effective way to

accurately estimate rice AGB. This will not only provide dependable

technical guidance for remote sensing monitoring and field

management of rice but also contribute to promoting the

advancement of large-scale smart agriculture and precision farming.
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