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Introduction: Excessive application of nitrogen fertilizer in cotton field causes

soil and water pollution as well as significant increase of aphid population.

Reasonable fertilization is an important approach to improve agricultural

production efficiency and reduce agriculture-derived pollutions. This study was

aimed to explore the effects of nitrogen fertilizer on the Bt cotton physiological

characteristics and the growth and development of A. gossypii, a sap-sucking

cotton pest.

Methods: Five different levels of Ca(NO3)2 (0.0 g/kg, 0.3 g/kg, 0.9 g/kg, 2.7 g/kg

and 8.1 g/kg) were applied into vermiculite as nitrogen fertilizer in order to

explore the effects of nitrogen fertilizer on the growth and development of Bt

cotton and aphids.

Results: The results showed that the medium level of nitrogen fertilizer (0.9 g/kg)

effectively facilitated the growth of Bt cotton plant and suppressed the

population expansion of aphids, whereas high and extremely high nitrogen

application (2.7 and 8.1 g/kg) significantly increased the population size of

aphids. Both high and low nitrogen application benefited aphid growth in

multiple aspects such as prolonging nymph period and adult lifespan,

enhancing fecundity, and improving adult survival rate by elevating soluble

sugar content in host Bt cotton plants. Cotton leaf Bt toxin content in medium

nitrogen group (0.9 g/kg) was significantly higher than that in high (2.7 and 8.1 g/

kg) and low (0.3 g/kg) nitrogen groups, but Bt toxin content in aphids was very

low in all the nitrogen treatment groups, suggesting that medium level (0.9 g/kg)

might be the optimal nitrogen fertilizer treatment level for promoting cotton

seedling growth and inhibiting aphids.
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Discussion: Overall, this study provides insight into trophic interaction among

nitrogen fertilizer levels, Bt cotton, and cotton aphid, and reveals the multiple

effects of nitrogen fertilizer levels on growth and development of cotton and

aphids. Our findings will contribute to the optimization of the integrated

management of Bt cotton and cotton aphids under nitrogen fertilization.
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GRAPHICAL ABSTRACT
1 Introduction

Crops are vulnerable to various biotic and abiotic stresses at

every stage of their growth (Jichao et al., 2021; Huangfu et al., 2022).

Nitrogen (N) plays vital roles in plant growth and physiology

(Seleiman et al., 2013; Eid et al., 2020). The total consumption of

synthetic nitrogen fertilizer in China increased from 9.3 Mt in 1980

to 24 Mt in 2012 (Li et al., 2016). As a valuable commodity, cotton is

widely cultivated around the world for the production of fiber, fuel,

etc (Zafar et al., 2023). N lack or N excess will affect the growth and

yield of cotton (Gerik et al., 1998). The nitrogen shortage in cotton

plants will lead to the retarded growth of cotton and the decline in

cotton fiber strength and quality, leaf area, stem length, biomass,

photosynthetic efficiency (Zhao et al., 2003; Read et al., 2006; Zhang
02
et al., 2008; Kakar et al., 2012). Nitrogen deficiency also brings about

the decrease in cotton boll formation rate, thus reducing cotton

yield (Lokhande and Reddy, 2015). In contrast, overdose of

nitrogen fertilizer increases boll rot, decreases fiber length and

strength, prolongs vegetative growth, delays cotton ripening, and

potentially reduces lint yield (Zhang et al., 2008). The intensive use

of nitrogen fertilizer in the agricultural fields directly increases the

agricultural production cost. In addition, the application of a large

level of nitrogen fertilizer causes a series of environmental problems

such as groundwater pollution and soil acidification (Cameron

et al., 2013; Iqbal et al., 2020; Seleiman et al., 2021; Al-Suhaibani

et al., 2021; Elshayb et al., 2022; Shao et al., 2023). It has been

reported that over-application of N fertilizers has caused significant

soil acidification in major Chinese croplands and the soil pH
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decrease by 0.13 to 2.20 (Miao et al., 2011; Alkharabsheh et al.,

2021), reasonable nitrogen application can make crop growth better

(Gul Roz Khan et al., 2022).

Aphids are worldwide agricultural pests, which harm a variety of

crops and cause huge economic losses (Quan et al., 2019). The cotton

aphid, Aphis gossypii Glover (Hemiptera: Aphididae), an important

pest on cotton, which can damage the seedling, buds, flowers, and

bolls of cotton (Fernandes, F. S. et al., 2012a). Cotton is widely used in

the textiles and other industries in China (National Cotton Council

2006, http://www.cotton.org/) (Ruan, 2013; Jiang et al., 2019).

Presently, cotton aphid is the main pest in China’s cotton fields,

which has caused great harm to China’s cotton cultivation and

reduced cotton yield (Wu and Guo, 2003; Wang et al., 2016; Jiang

et al., 2019). However, there are few effective insecticides controlling

the outbreak of cotton aphid. Recently, the combination of

thiamethoxam and deltamethrin exhibits inhibitory effect on the

life expectancy and reproductive rate of aphids, and plays a certain

role in the prevention and control of cotton aphid (Majidpour et al.,

2020). The application of sulfoxaflor through drip irrigation in

Xinjiang province has been found to prolong the control period of

cotton aphid, and it is relatively safety to natural enemies such as

ladybird beetle and lacewing (Jiang et al., 2019). However, over-

reliance on pesticides results in the resistance of cotton aphid to a

variety of chemical pesticides (Morando et al., 2021). For example, a

field A. gossypii Kushima withb1 subunit R81T mutation in the

nicotinic acetylcholine receptor (nAChR) exhibits high resistance to

imidacloprid (Hirata et al., 2017). Cotton aphid has been found to

have a strong resistance to fenvalerate, imidacloprid, and acetamiprid

(Wang et al., 2007). The resistance of cotton aphid to various

pesticides increases the difficulty and costs of controlling it.

Notably, the nitrogen fertilizer, as a nutrient of plants, can also

trigger bottom-up plant-insect interaction effects (Mattson, 1980;

Blazhevski et al., 2018; Ye et al., 2018). Nitrogen fertilizer can change

the quality and quantity volatile chemicals in tomato plants, and

high-level nitrogen fertilizer makes tomato plants release less volatiles

and attract more Bemisia tabaci than normal level (10mM) or below

normal level (5mM) of nitrogen fertilizer (Islam et al., 2017). High-

level nitrogen fertilizer input in rice has unforeseen effects on crop

susceptibility to pests, and increases adaptability of the brown

planthopper Nilaparvata lugens (Rashid et al., 2017), High-level

nitrogen fertilizer also raises the physiological indexes of rice, thus

increasing colonization, survival, and development of the white-black

planthopper Sogatella furcifera fed on rice (Li et al., 2021). In

addition, the application of high-level nitrogen fertilizer influences

the tritrophic interactions (crop-pest-natural enemy), significantly

enhancing the abundance of three cereal aphids (namely Sitobion

avenae, Schizaphis graminum, and Rhopalosiphum padi). Therefore,

optimization of nitrogen fertilizer application is essential for crop

planting. However, the knowledge about the effects of nitrogen

fertilization levels on physiological and biochemical indexes of

cotton and adaptability of cotton aphid remains limited.

Since 1996, the number of genetically modified (GM) crops has

increased rapidly, especially the insect-resistant transgenic crops

that produce the toxin (a insecticidal protein originally synthesized

by Bacillus thuringiensis (Bt) bacteria) (James et al., 2009). The

planting of Bt cotton has greatly reduced the application of
Frontiers in Plant Science 03
pesticides in the field and effectively controlled many important

lepidoptera pests (Naranjo, 2011). Compared with non-Bt cotton,

Bt cotton can better control various pests such as Spodoptera exigua,

Helicoverpa armigera, and S. litura, thus indirectly stimulating their

natural enemy insect Chrysopa spp. to prey on more prey (Guan

et al., 2022) due to the reduction in insecticide application.

Although Bt planting can effectively reduce the target pests, sap-

sucking insects such as cotton aphid, as non-target pests, have

become the main pests with a trend of aggravation (Lu et al., 2012).

Bt cotton can significantly alter spatiotemporal distribution pattern

of cotton aphid inside the plant, with the development of the cotton

(Fernandes, F. S. et al., 2012b). The nitrogen application can

significantly affect aphid population number, thus influencing

cotton yield (Men et al., 2004). However, the mechanism of the

effect of nitrogen application level on Bt cotton and Aphis gossypii is

still unclear.

The nitrogen fertilizers in farmland mainly include ammonia

nitrogen, nitrate nitrogen, and amide nitrogen. Especially, calcium

nitrate (Ca(NO3)2), as one of the most valuable fertilizers on the

market, can quickly supplement calcium and nitrogen, meanwhile

improving fertilizer comprehensive utilization efficiency, eventually

raising quality of crops and fruits (Colpaert et al., 2021; Tan et al.,

2021). In laboratory experiments, Ca(NO3)2 is often utilized as

nitrate nitrogen fertilizer to test nitrogen utilization efficiency in

plants (Iqbal et al., 2020; Ochieng’ et al., 2023). In this study, Ca

(NO3)2 was used as the only nitrogen source for cotton planting

experiments. We investigated the effects of different nitrogen

fertilizer levels on physiological and biochemical indexes of Bt

cotton and adaptability and population number of cotton aphid

(Aphis gossypii) by determining physiological and biochemical

indexes determination of Bt cotton and comparing biological

parameters of cotton aphid population under the treatment with

different levels of nitrogen fertilizer. Our findings provide an insight

into the interaction among the nitrogen fertilizer levels, Bt cotton,

and cotton aphids, which will contribute to the optimization of Bt

cotton-cotton aphid integrated management under nitrogen

fertilizer application.
2 Materials and methods

2.1 Insect rearing and cotton planting

Cotton aphids were collected from the experimental cotton field

(34.8° N, 113.5° E) of Institute of Cotton Research (ICR), Chinese

Academy of Agricultural Sciences (CAAS) in Zhengzhou, and they

were cultured on J14 cotton seedlings at 26 ± 1°C and 60 ± 5% room

humidity (Light: Dark = 16: 8) in the laboratory. The cotton used in

this study was insect-resistant transgenic cotton N15-5 (containing

Cry2Aa toxin protein).
2.2 Setting of nitrogen fertilizer levels

According to the soil available nitrogen content in Xinjiang,

China (Yang et al., 2012), a “soil N-Bt cotton-cotton aphid” system
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was established with different nitrogen fertilizer levels: control (0.0

g/kg), low (0.3 g/kg), medium (0.9 g/kg), high (2.7 g/kg), and

extremely high (8.1 g/kg). Cotton seeds were sown in pot

containing vermiculite, based on the weight of the substrate

(vermiculite) for planting cotton (Vermiculite: solution = 1.05 g:

1 mL), the nitrogen fertilizer gradient was added to the quantitative

nitrogen-deficient Hoagland solution. When cotton cotyledons

were fully unfolded, the experiments started, and one cotton

seedling was planted in one pot. Ca(NO3)2 was fertilized at

different application levels of 0.0 g/kg, 0.3 g/kg, 0.9 g/kg, 2.7 g/kg,

and 8.1 g/kg, with 0.0g/kg used as control. The CaCl2 was added to

equilibrate the concentration of Ca2+ among different treatments

(Iqbal et al., 2020). On the 7th, 14th, and 30th day post cotton

seedling growth, 10 cotton seedling plants were randomly selected

from each experimental group for further analysis.
2.3 Measurement of leaf area and
plant height

The length and width of leaves were measured, based on which

leaf area was calculated using the coefficient method (Iqbal et al.,

2019). The leaf area of two cotton cotyledons was measured on day

7 post nitrogen fertilization, while the leaf area of the first leaf (along

the cotton plant counted from the top down) was calculated on day

14 and 30 post nitrogen ferelization, respectively. The stem length is

measured through a ruler, as previously described (Shao et al., 2016;

Alhammad et al., 2023).
2.4 Determination of Cry2Aa toxin and
soluble sugar contents in cotton

Bt toxin protein content and soluble sugar content in the first

cotton leaves were detected using the QuantiPlate Kit for Cry2Aa

(EnviroLogix, Portland, USA) and Plant Soluble Sugar Content

Assay Kit (Solarbio, Beijing, China), respectively. Each treatment

was performed with three replicates.
2.5 Determination of Cry2Aa toxin protein
content in A. gossypii

On day 14 post nitrogen fertilizer treatment, the first leaf (counted

from the top) was picked from the cotton plant and put into the Petri

dish (9 cm diameter, 2 cm height) with petiole inserted into 1.8% agar

medium (prepared with18g of agar added into 1L of water), and 10-20

adult aphids were placed on one leaf to produce nymphs. After 24

hours, the adult aphids were removed, leaving 10-15 nymphs on each

leaf. When nymphs grew into adults, they were collected and the Bt

toxin protein in their body were detected according to the instruction

of QuantiPlate Kit for Cry2Aa (EnviroLogix, Portland, USA). The

Cry2Aa toxin determination was repeated three times.
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2.6 Effects of nitrogen fertilizer levels on A.
gossypii development and fecundity

Cotton plants treated with different levels of Ca(NO3)2 for 14

days were randomly selected. The first leaf (counted from the top)

of the selected cotton plants was picked and inserted into the 1.8%

agar medium in Petri dishes. Four adult cotton aphids were put on

each leaf, and 24 h later, the adults were removed, leaving only one

nymph offspring on the leaf. Subsequently, these nymphs were

transferred onto new cotton leaf every 3-5 days and monitored on

daily basis. The development period of the 1st generation nymphs

(G1) and offspring number produced by G1 were recorded daily.

The identical experiments were performed on the second and third

generation of cotton aphids (G2 and G3) fed on cotton seedlings

treated with Ca(NO3)2 at different levels. There were 30 replicates

under each nitrogen fertilizer level treatment.
2.7 Effects of nitrogen fertilizer levels on A.
gossypii survival

On day 14 post nitrogen fertilizer treatment, the first leaf was

inserted into the 1.8% agar medium, and 10-20 adult aphids were

placed on each leaf to produce nymphs. Twenty four hours later, the

adults were removed, leaving 10 nymphs on each leaf. These

nymphs were observed, and their survival rate were recorded

every day. The cotton leaves were replaced every 3-5 days. The

experiment lasted for 15 days. The influence of nitrogen fertilizer

levels on G2 and G3 of A. gossypii was evaluated, as above

mentioned. There were 6 replicates for each treatment.
2.8 Effect of nitrogen fertilizer levels on A.
gossypii population

On day14 post nitrogen fertilizer treatment, the first leaf was

picked and inserted into the 1.8% agarose medium. Afterwards, 10-

20 adult aphids were placed onto each leaf to produce nymphs, and

24 hours later, the adults were removed, leaving 10 nymphs on each

leaf. These nymphs were observed, and their numbers were

recorded on daily basis for 30 days. There were 3 replicates for

each nitrogen fertilizer treatment.
2.9 Statistical analysis

Statistical analysis was performed with Microsoft Excel and

SPSS (IBM SPASS Statistics 24). GraphPad Prism 8 was used for

plotting. The statistical significance of differences between samples

was analyzed using One-way ANOVA. All the data were expressed

as mean ± standard error (SEM) of at least three biological

replicates. The Kaplan-Meier survival curve was plotted by SPASS

(IBM SPASS Statistics 24).
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3 Results

3.1 Effects of nitrogen fertilizer levels on
cotton plant height and leaf areas

The cotton plant height and leaf area were measured at the 7th,

14th and 30th day after nitrogen treatments, respectively. Obviously,

nitrogen fertilizer promoted the growth of cotton. At the 7th

(Figure 1A), 14th (Figure 1B) and 30th (Figure 1C) day post

exposure to gradient nitrogen fertilizer, cotton height increased

gradually with the increase of nitrogen fertilizer levels. Interestingly,

there were no significant differences in plant height at the14th and

30th day among the cotton seedlings treated with relatively high

fertilization levels of 0.9 g/kg, 2.7 g/kg, and 8.1 g/kg, but the plant

height in these 3 relatively high level groups was all significantly

higher than that in 0.3 g/kg and 0.0 g/kg nitrogen fertilizer groups

(Figures 1 B, C). Similarly, the leaf area was also increased gradually

with the rise of nitrogen fertilization levels (Figures 1D–F). Notably,

in early stage of nitrogen fertilization (on day 7), significant

differences in the leaf area were observed between treatment

groups and control group, but no significant differences in plant

height (Figures 1A, D), indicating that cotton leaf area responded to

nitrogen fertilization more rapidly than plant height. However, on

day 30 post nitrogen fertilization, no significant differences in leaf

area were observed among the groups of 0.9 g/kg, 2.7 g/kg, and 8.1

g/kg (Figure 1F), and similar results were found in plant height

(Figure 1C). Taken together, nitrogen fertilizer could promote the

cotton growth, but the promotion effect was weakened under high

nitrogen levels.
Frontiers in Plant Science 05
3.2 Effects of nitrogen fertilizer levels on
Cry2Aa toxin protein content in cotton
and A. gossypii

The influence of nitrogen fertilizer levels on Bt toxin content in

cotton seedling was obvious. The Cry2Aa toxin content in the 0.0 g/

kg, 0.3 g/kg, 8.1 g/kg groups was significantly lower that in 0.9 g/kg

and 2.7 g/kg groups at all 3 time points (day 7, 14, and 30) after

treatments (Figures 2A–C). Specifically, at day 7, 14, and 30, the

Cry2Aa toxin content in cotton reached the peak in the medium

level (0.9 g/kg) group, which was 3320.99 ng/g on day 7, 7045.51 ng/

g on day14, and 3588.19 ng/g on day 30, followed by high level (2.7

g/kg) group, which was 2662.58 ng/g on day 7, 6752.95 ng/g on day

14, and 3008.71 ng/g on day 30. The extremely high nitrogen level

(8.1 g/kg) inhibited the Cry2Aa content in cotton seedings at all test

time points (2618.21 ng/g on day 7, 3182.67 ng/g on day 14, and

2376.19 ng/g on day 30). Overall, with the development of cotton

seedlings, the Bt toxin content in all five groups exhibited the

similar change pattern, namely, first elevation, and then reaching

peak, followed by reduction, and Bt toxin content on day 30 was

close to that on day 7.

The aphids were fed with the first leaves (counted from the

plant top) after 14 days of nitrogen fertilizer treatment. The Cry2Aa

toxin was detected in aphid individuals fed on cotton treated with

0.9 g/kg and 2.7 g/kg nitrogen fertilizer, which was 9.85 ng/g and

4.05 ng/g in these two groups (Figure 2D). Unexpectedly, Cry2Aa

was not detected in the aphids fed on cotton seedlings exposed to

control (0.0 g/kg), low (0.3 g/kg), extremely high (8.1 g/kg) nitrogen

fertilizer, which might be due to relatively low Cry2Aa toxin levels
B C

D E F

A

FIGURE 1

Morphological parameters of cotton seedlings. Agronomy parameters of N15-5 cotton seedlings in plant height and leaf area index at 7th day (A, D),
14th day (B, E), and 30th day (C, F) post nitrogen fertilization under serial concentration gradients. The values are presented as mean ± SEM. Different
lowercase letters (a, b, c, d) indicate that there are significant differences between the groups at the p < 0.05 level.
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in plants. In addition, the transmission efficiency of Cry2Aa

between cotton and aphids was very low, with the transmission

efficiency below 0.3% (10 ng/g) under all nitrogen fertilizer levels.
3.3 Effects of nitrogen fertilizer levels on
cotton soluble sugar content and A.
gossypii population

The nitrogen fertilizer levels heavily influenced the soluble sugar

content in Bt cotton plant. On the 7th day after treatment, the

soluble sugar content in cotton leaves in the control (0.0 g/kg) and

low (0.3 g/kg) nitrogen fertilizer groups was significantly lower than

that in the medium (0.9 g/kg), high (2.7 g/kg), and extremely high

(8.1 g/kg) nitrogen fertilizer groups (Figure 3A). On the 14th day

after treatments, the cotton leaf soluble sugar content was

significantly higher in control (0 g/kg), low (0.3 g/kg), high (2.7

g/kg), extremely high (8.1 g/kg) nitrogen groups than in medium

nitrogen group (0.9 g/kg) (Figure 3B). More specifically, on the 14th

day after treatments, the leaf soluble sugar content in low nitrogen

group (11.13 mg/mL) was slightly higher than that in control group

(10.69 mg/mL), and medium nitrogen group exhibited the

minimum leaf soluble sugar content (9.87 mg/mL). Leaf soluble

sugar content in high and extremely high nitrogen groups was 17%
Frontiers in Plant Science 06
and 30% higher than that in medium nitrogen group, respectively.

On the 30th day after treatments, the soluble sugar content in cotton

leaves was significantly lower in the control, low, and medium

nitrogen groups than in the high and extremely high nitrogen

groups (Figure 3C). It was worth noting that the soluble sugar in the

medium nitrogen group was the minimum (7.63 mg/mL), it was the

maximum in the extremely high nitrogen group (27.96 mg/mL).

The aphids were fed with the first leaves of cotton plants treated

with nitrogen fertilizer after 14 days, and their growth status was

observed. The results showed that nitrogen fertilizer levels had

obvious effect on aphid growth. The cotton aphid growth curves

showed that cotton aphids clustered into three categories, namely,

category I (0 g/kg nitrogen fertilizer group), category II (0.3 g/kg

and 0.9 g/kg nitrogen fertilizer group), and category III (2.7g/kg and

8.1g/kg nitrogen fertilizer groups). Category III exhibited the

highest growth rate, especially on day 15, 20, 25, and 30 after

aphid feeding (Figure 3D). The differences in growth rate were

significant among these three categories. In the early stage (5th and

10th day after aphid feeding), the cotton aphid populations in all

three categories displayed a slow growth rate. Ultimately, on 30th

day, the cotton aphid population number in 8.1 g/kg, 2.7 g/kg, 0.0 g/

kg nitrogen fertilizer groups reached 313, 300, and 213, respectively,

which was significantly higher than that in 0.9 g/kg and 0.3 g/kg

groups. Compared with the other four groups, the cotton aphids in
B

C D

A

FIGURE 2

Content of Bt toxin protein in cotton leaves and A gossypii. Dynamics of Bt protein content in cotyledons of N15-5 seeding responding to nitrogen
fertilization under serial concentration gradients at 7th day (A), 14th day (B) and 30th day (C) after nitrogen fertilization. Bt protein content (D) in
cotton aphid feeding on N15-5 seeding leaves for 14 days post nitrogen fertilization under serial concentration gradients. The values are presented
as mean ± SEM. Different lowercase letters (a, b, c, d, e) indicate that there are significant differences between the groups at the p < 0.05 level.
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0.9 g/kg nitrogen fertilizer group displayed the lowest population

growth rate in the six detection time points (0th, 5th,15th, 20th, 25th,

and 30th).
3.4 Multi-generational effects of nitrogen
fertilizer levels on the development and
survival of A. gossypii

Nitrogen fertilization levels significantly influenced the duration

time of nymph stage and fecundity of cotton aphid across three

generations, but had no significant effect on the lifespan of adults

(Table 1). Compared to control (0.0 g/kg), low (0.3 g/kg), high (2.7

g/kg), extremely high (8.1 g/kg) nitrogen fertilizer groups, cotton

aphids fed on cotton leaves treated with medium nitrogen (0.9 g/kg)

had the shortest duration time of nymph stage across three

generations with a continuously shortening trend. In the five

nitrogen treatment groups, the extremely high nitrogen group

had the longest nymphal development period in all three

generations. High (2.7 g/kg) and extremely high (8.1 g/kg)

nitrogen fertilization promoted the fecundity of cotton aphids in

all three generations. Especially in the extremely high nitrogen (8.1

g/kg) treatment group, the number of cotton aphids increased from

42 in the first generation to 47 in the second generation, and

reached 58 in the third generation. Although low (0.3 g/kg) nitrogen

fertilization had no significant influence on cotton aphid fecundity
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at the 1st generation, the offspring number of 2nd and 3rd

generations was obviously larger than that in control group.

Interestingly, the fecundity of cotton aphids across successive

three generations (G1, G2, and G3) in medium nitrogen group (0.9

g/kg) was all significantly inhibited fertilization), in comparison to

control, low, high, and extremely high nitrogen groups. The

fecundity of cotton aphids in all five nitrogen treatment groups

was all gradually increased across the three generations. The

medium nitrogen fertilization obviously suppressed the

reproduction of cotton aphids, whereas the extremely high

nitrogen fertilization significantly promoted the fecundity of

cotton aphids (Table 1).

Our data also showed that nitrogen fertilizer levels had significant

effects on the survival rate of aphids (Figures 4A–C). The cotton aphid

survival rate curves across three generations showed that cotton aphids

clustered into three categories, namely, Category A (8.1 g/kg and 2.7 g/

kg nitrogen fertilization groups), Category B (0 g/kg and 0.3 g/kg

nitrogen fertilization group), Category C (0.9 g/kg nitrogen fertilization

group). Category A exhibited the highest survival rate of cotton aphids

across successive three generations, followed by Category B, and

Category C had the lowest survival rate of cotton aphids. Cotton

aphid survival rate curves showed that in G1, the three categories

obviously differentiated from 7th day, whereas in G2 and G3, they

obviously differentiated from 4th day. In G3, the aphid survival rate in

medium nitrogen fertilization group reduced sharply to 10%within five

days after aphid feeding, suggesting an obvious aphid controlling effect.
B C

D

A

FIGURE 3

Soluble sugar content at 7th day (A), 14th day (B) and 30th day (C) post nitrogen fertilization under serial concentration gradients. Population
dynamics of A gossypii feeding on cotton seedlings as description above for thirty days (D). The values are presented as mean ± SEM. Different
lowercase letters (a, b, c) indicate that there are significant differences between the groups at the p < 0.05 level.
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4 Discussion

Evidence is mounting that nitrogen fertilizer is an important

factor affecting plant growth and development in agricultural

planting system. This study revealed the interactions among

different nitrogen fertilizer levels (0.0 g/kg, 0.3 g/kg, 0.9 g/kg,

2.7g/kg, 8.1g/kg), Bt cotton, and cotton aphid (Figure 5). All the

plants exhibit some morphological changes under different levels of

nitrogen fertilization (Sakakibara et al., 2006). Our one-way

ANOVA analysis showed that there were significant differences in

cotton plant height and leaf area under different nitrogen fertilizer

levels at the seedling stage, which was consistent with previous

reports (Iqbal et al., 2020; Wang, L. et al., 2020b). Plant height and

leaf area will affect photosynthesis of crops, thus affecting the

growth and development of crops (Hutchison et al., 1990; Chen

et al., 2023). In our experiment, the plant height and leaf area of

cotton plants after nitrogen application were higher than those

without nitrogen application. With the extension of nitrogen

application time, the difference of plant height between different

treatment groups became more and more obvious (Figure 1),

indicating that nitrogen fertilizer can indeed affect the growth of
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cotton plants at seedling stage, and this change will be more obvious

with time. And with the change of nitrogen application level, the

plant height and leaf area of cotton plants also changed. As for how

nitrogen fertilizer affects plant growth and development through

molecular level, we need to further study.

Nitrogen fertilizer levels influence herbivorous insects. The

application of high nitrogen fertilizer increased the feeding ability

and fecundity of crop pests (Minkenberg and Ottenheim, 1990),

Besides, the application of high nitrogen fertilizer also can increase

the feeding ability and fecundity of crop pests (Hu et al., 2022),

which caused serious harm to the growth and yield of crops. In our

study, the growth and development of aphids were significantly

altered by the application of different levels of nitrogen fertilizer

(Carreras Navarro et al., 2020; Wang, L. et al., 2020a). Interestingly,

the aphid population number in medium nitrogen treatment group

was the smallest, even smaller than that in control group and low

nitrogen group. However, when the nitrogen fertilizer level was

higher than 0.9 g/kg, the aphid population number was sharply

increased (Figure 3D). In the three generations, cotton aphids in

medium nitrogen group exhibited the shortest duration of nymph

stage and the shortest adult lifespan, and the offspring number was
TABLE 1 Life cycle of A. gossypii.

Nitrogen treatment concentration

Generation 0 g/kg 0.3 g/kg 0.9 k/kg 2.7 g/kg 8.1 g/kg

G1

Days of nymphs 6.20 ± 2.56ab 5.80 ± 3.12ab 4.10 ± 2.55b 5.40 ± 2.42ab 7.10 ± 1.92a

Days of lifespan 35.00 ± 1.00ns 30.50 ± 4.61ns 25.50 ± 7.43ns 28.50 ± 0.87ns 30.33 ± 4.89ns

No. of offspring 30.00 ± 3.56bc 28.25 ± 4.49c 17 ± 0.71d 36.50 ± 4.50ab 42.00 ± 5.40a

G2

Days of nymphs 4.10 ± 1.87bc 5.50 ± 1.43ab 3.30 ± 1.10c 5.10 ± 1.45ab 5.70 ± 1.19a

Days of lifespan 18.00 ± 0.82ns 20.67 ± 3.30ns 19.00 ± 0.82ns 22.33 ± 1.70ns 22.00 ± 2.94ns

No. of offspring 34.00 ± 1.00c 42.50 ± 4.50ab 18.33 ± 0.47d 40.33 ± 2.05ab 47.33 ± 4.92a

G3

Days of nymphs 5.52 ± 1.03b 6.11 ± 0.74b 2.89 ± 1.59c 6.44 ± 1.17ab 7.44 ± 1.07a

Days of lifespan 18.83 ± 5.73ns 21.71 ± 5.17ns 21.71 ± 4.65ns 22.00 ± 3.61ns 21.00 ± 2.61ns

No. of offspring 34.60 ± 11.25c 41.33 ± 13.17ab 26.00 ± 5.20c 54.38 ± 7.09a 58.00 ± 15.99a
The cotton aphid nymphic duration times, adult lifespan and fecundity across successively three generations when fed on N15-5 cotton under nitrogen fertilizer of serial concentration gradients.
The values are presented as mean ± SEM (the first generation G1; the second generation G2; the third generation G3). Different lowercase letters (a, b, c, d) indicate that there are significant
differences between the groups at the p < 0.05 level, and ns indicates that there is no significant difference between the groups.
B CA

FIGURE 4

The survival rate of A. gossypii. Survival rate of cotton aphid population across successively three generations within 15 days feeding on N15-5
cotton seedling (the first generation G1, (A) the second generation G2, (B) the third generation G3, (C)).
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also the smallest in this medium nitrogen group (Table 1). However,

high nitrogen and extremely high nitrogen groups exhibited a had

relative longer nymph period and a larger offspring number. In

addition, aphids fed on cotton leaves treated with medium nitrogen

level had the lowest adult survival rate, while those treated with high

nitrogen and extremely high nitrogen exhibited the highest adult

survival rate. Considering this, excessive application of nitrogen

fertilizer not only prolongs the damage time of cotton aphids, but

also increases the population of cotton aphids, which will aggravate

the damage of cotton aphids to the growth and development of

cotton plants at the seedling stage. The medium level of nitrogen

fertilizer is the best nitrogen application level to inhibit the damage

of cotton aphids, which is extremely beneficial to the development

of cotton plants at the seedling stage.

Nitrogen fertilization can bring about changes in the content of

Bt toxin protein. It has been reported that the application

concentrations of nitrogen and phosphate fertilizers are positively

correlated with the expression of Cry1Ac protein in Bt cotton (Khan

et al., 2021), which was different from our results. In this study, the

Cry2Aa protein content in N15-5 cotton did not always rapidly rise

with the increase in nitrogen fertilizer level. In contrast, the Bt

protein content of cotton peaked at 0.9g/kg nitrogen fertilizer level,

but subsequently dropped obviously with the elevation of nitrogen

fertilizer levels (Figures 2A-C). It is well known that transgenic Bt

cotton can effectively inhibit various target pests (Kranthi and

Stone, 2020; Quan and Wu, 2023). Therefore, for the target pests

of N15-5 transgenic insect-resistant cotton, we believe that the

control effect of medium nitrogen fertilizer level (0.9 g/kg) will be

better and with the increase of nitrogen fertilizer dosage, the

decrease of Bt protein may inevitably lead to the rampant of Bt

cotton target pests. In addition, the study found that the content of

Bt protein in cotton had no significant effect on aphids (Zhao et al.,

2016). In this study, the efficiency of Cry2Aa toxin protein transfer

from cotton leaves to aphids was extremely low at all nitrogen levels

(Figure 2D), based on this result, we speculate that the change of Bt
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protein content affected by nitrogen fertilizer may have no effect on

the natural enemies of cotton aphids such as ladybugs. Besides, our

data also showed that there was no close correlation between the

changes in aphid biological parameters and the dynamic trend of Bt

protein content. The mechanism of nitrogen fertilizer affecting the

growth and development of aphids needs to be further studied, so

we detected metabolites such as soluble sugar in cotton leaves for

further exploration.

The changes of metabolites in crops affect the growth and

development of crops. Soluble sugar is an important indicator of

physiological changes in cotton. The change of fertilizer dosage can

change the soluble sugar content in cotton plants (Hu et al., 2017)

(Pan et al., 2011; Li et al., 2017, 2019). Metabolites such as soluble

sugars have an impact on crop pests (Singh et al., 2022).In our

experiment, soluble sugar contents varied with the nitrogen fertilizer

levels, which is consistent with previous research. Notably, the soluble

sugar content in cotton leaves reached its lowest level under medium

nitrogen level, and then gradually increased under high and

extremely high nitrogen levels (Figures 3B, C). Our data showed

that the dynamics of soluble sugar content in cotton (Figure 3B) are

consistent with the changes of cotton aphid growth and development

(Table 1), and the soluble sugar content was highly expressed at high

and extremely high nitrogen levels (Figure 3B), and the population of

A.gossypii also expanded rapidly (Figure 3D). It is reasonable to think

that nitrogen fertilizer can change the growth and development of

cotton aphid by changing the content of soluble sugar in cotton plant.
5 Conclusion

This study revealed that nitrogen fertilizer levels significantly

affected the cotton morphology, and medium level of nitrogen

fertilizer could make the cotton seedling grow more uniformly and

promote the Bt toxin protein (Cry2Aa) content in Bt cotton. In

contrast, high nitrogen fertilization reduced the content of Bt toxin
FIGURE 5

Interaction patterns of Bt cotton and A. gossypii under different nitrogen fertilizer levels.
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protein. Different nitrogen fertilizer levels led to variations in the

growth and development of cotton aphids by altering soluble sugar

content in cotton plants. The content of soluble sugar, a metabolite of

cotton plants, was increased in leaves at high and extremely high

nitrogen levels, which led to the obvious increase in survival rate,

reproductive capacity, and population number of A. gossypii. Under

medium nitrogen level treatment, the leaf sugar content was relatively

low, and the survival rate, reproductive capacity, and population

number of aphids were reduced. Therefore, medium-level nitrogen

fertilizer exhibited the optimal inhibitory effect on aphid growth and

development. Overall, this study provides insight into trophic

interaction among nitrogen fertilizer levels, Bt cotton, and cotton

aphid, and demonstrates the a series of effects of nitrogen fertilizer

levels on growth and development of cotton and aphids. Our findings

will contribute to the optimization of the integrated management of

Bt cotton and cotton aphid under nitrogen fertilization. Our findings

will contribute to the sustainable development of cotton production

and environmental management.
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