AUTHOR=Hong Qingqing , Zhu Yue , Liu Wei , Ren Tianyu , Shi Changrong , Lu Zhixin , Yang Yunqin , Deng Ruiting , Qian Jing , Tan Changwei TITLE=A segmentation network for farmland ridge based on encoder-decoder architecture in combined with strip pooling module and ASPP JOURNAL=Frontiers in Plant Science VOLUME=15 YEAR=2024 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2024.1328075 DOI=10.3389/fpls.2024.1328075 ISSN=1664-462X ABSTRACT=

In order to effectively support wheat breeding, farmland ridge segmentation can be used to visualize the size and spacing of a wheat field. At the same time, accurate ridge information collecting can deliver useful data support for farmland management. However, in the farming ridge segmentation scenarios based on remote sensing photos, the commonly used semantic segmentation methods tend to overlook the ridge edges and ridge strip features, which impair the segmentation effect. In order to efficiently collect ridge information, this paper proposes a segmentation method based on encoder-decoder of network with strip pooling module and ASPP module. First, in order to extract context information for multi-scale features, ASPP module are integrated in the deepest feature map. Second, the remote dependence of the ridge features is improved in both horizontal and vertical directions by using the strip pooling module. The final segmentation map is generated by fusing the boundary features and semantic features using an encoder and decoder architecture. As a result, the accuracy of the proposed method in the validation set is 98.0% and mIoU is 94.6%. The results of the experiments demonstrate that the method suggested in this paper can precisely segment the ridge information, as well as its value in obtaining data on the distribution of farmland and its potential for practical application.