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In order to effectively support wheat breeding, farmland ridge segmentation can be

used to visualize the size and spacing of a wheat field. At the same time, accurate

ridge information collecting can deliver useful data support for farmland

management. However, in the farming ridge segmentation scenarios based on

remote sensing photos, the commonly used semantic segmentation methods

tend to overlook the ridge edges and ridge strip features, which impair the

segmentation effect. In order to efficiently collect ridge information, this paper

proposes a segmentation method based on encoder-decoder of network with

strip pooling module and ASPP module. First, in order to extract context

information for multi-scale features, ASPP module are integrated in the deepest

feature map. Second, the remote dependence of the ridge features is improved in

both horizontal and vertical directions by using the strip pooling module. The final

segmentation map is generated by fusing the boundary features and semantic

features using an encoder and decoder architecture. As a result, the accuracy of

the proposed method in the validation set is 98.0% and mIoU is 94.6%. The results

of the experiments demonstrate that the method suggested in this paper can

precisely segment the ridge information, as well as its value in obtaining data on the

distribution of farmland and its potential for practical application.
KEYWORDS

remote sensing, semantic segmentation, farmland ridge, strip pooling,
encoder-decoder
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1 Introduction

One of the most fundamental uses of remote sensing data in the

field of agriculture management is mapping and monitoring

farmland information. Field ridges are used in farming

information to divide farmland into several crop zones and assist

farmers in planning and managing their crops logically (Li et al.,

2020; S. Wang et al., 2023). In wheat breeding, the division of ridges

can help control the spread of pests and diseases and cross-

contamination (Jiaguo et al., 2023), and the reasonable

distribution of ridges can help provide crops with appropriate

moisture and temperature to improve crop yield and quality

(Zhang et al., 2023). Therefore, reliably and effectively extracting

farmland ridge information from low-altitude remote sensing data

is crucial for farmland management and decision-making.

More and more researchers have been utilizing remote sensing

photos to carry out in-depth research on the distribution of

farmland in recent years. When working with remote sensing

images, the process of manually drawing farmland distribution

information is easily influenced by subjective variables, and the

data sources are dispersed, which makes it difficult to meet the

demands of effective farmland management. The development of

machine learning enables the automatic segmentation of farming

data (Adebiyi et al., 2020; Kilwenge et al., 2021; Ibrahim

Mohammad Abuzanouneh et al., 2022) and provides the

corresponding algorithm support for remote sensing picture

processing. For instance, to address the issue of similar objects

having different spectra, (Xiao et al., 2019) utilized the CART

decision tree classification algorithm and produced a spatial

distribution map of farmland based on the spectral similarity

between picture pixels. A stratified object-based farmland

extraction method based on image region division was also

proposed by (Xu et al., 2019) at the same time. To divide up

farmland in remote sensing images with high spatial resolution, the

image region was divided using the grey level co-occurrence matrix

method over the whole image, and scale segmentation parameters

were computed in local regions. The concept of regional division

was also employed by (Cai et al., 2022). In the study of extracting

cropland parcels, the image was first broadly segmented into several

regions, and then the final cropland parcels were finely segmented

based on average local variance function. In order to automatically

segment and extract selected farmland regions, (Li et al., 2019)

proposed an edge-preserving smoothing method to automatically

segment and extract selected farmland regions, which segments and

extracts farmland information with different features from remote

sensing images based on the features of the ideally smoothed image,

and maintains the boundaries of the farmland regions by using a

maximum a posteriori estimation model. In order to overcome the

effects of unstructured environments like uneven illumination,

shadows and weather, (Liu et al., 2016) converted the original

color image to grayscale and minimized the intuitionistic fuzzy

divergence to obtain the ideal threshold for detecting various types

of obstacles in segmented farmland.

However, the implementation of the above methods relies more

on the similarity of pixels, and lacks the extraction of spatial and
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texture features of high-resolution images, resulting in limited

accuracy of obtained farmland information. With the rapid

development of deep learning, convolutional neural networks

have been able to extract rich semantic information, (Hamano

et al., 2023; J. Wang et al., 2023; Punithavathi et al., 2023) thereby

alleviating the above deficiencies. (Masoud et al., 2020) designed a

multiple dilation fully convolutional network to detect boundaries

of agricultural fields and achieve farmland segmentation. To achieve

pixel-by-pixel segmentation using a full convolutional network,

however, takes a lot of time and more processing resources

during training. As a result, some lightweight CNN models that

perform well and have fewer parameters have drawn a lot of

interest. Through the use of the spatial attention module and the

channel attention module, respectively, (Cao et al., 2023) based on

the Mask R-CNN network and combined with the feature pyramid

of the dual attention mechanism, realized the automatic division of

small farm farmland. In order to improve the detection of the edge

region in the task of segmenting farmland, (Huan et al., 2022)

proposed a multiple attention encoder–decoder network, designed a

dual-pooling efficient channel attention module, and added a

global-guidance information upsample module to the decoder. To

more accurately capture the detailed information and boundary

information in farmland segmentation, (Shunying et al., 2023)

created a boundary-semantic-fusion deep convolution network.

This network fused the boundary features and semantic features

together and retained the spatial details and boundary information

in the features. Despite this, when completing the task of field

segmentation, it is important to take into account the unique

characteristics of the vast span and narrow shape of the ridge.

Therefore, (Zhang et al., 2021) created the strip pooling module and

the mixed pooling module in conjunction with strip pooling in their

study of ridge and farmland vacancy segmentation, which can

capture the shape features and edge information of ridges well.

However, the model is unable to obtain rich contextual semantic

information when extracting the high-level semantic features using

downsampling due to the limitation of the receptive field, which

affects the connectivity of segmentation.

To address the above problems, this paper develops a

segmentation method based on encoder-decoder architecture of

strip pooling and atrous spatial pyramid pooling module (ASPP) to

realize the segmentation of ridge information in crop fields using

high-resolution farmland remote sensing images as a dataset. In this

study, the model is referred as ASPNet for short. By comparing with

several other existing semantic segmentation models, the model

achieves the best results in accuracy and mean Intersection over

Union (mIoU), and the output ridge shapes have good connectivity.

The main contributions of this paper are as follows:

1. An encoder-decoder architecture is utilized because of the

intricacy and irregularity of ridge edges. The architecture performs

feature fusion during upsampling and gradually restores the feature

map to the original feature map resolution size. The shallow edge

texture features are preserved during the layer-by-layer feature

fusion process.

2. Strip pooling is added to the standard decoder in response to

the ridge’s slender and narrow shape. During the fusion process, it
frontiersin.org
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can enhance the feature map’s long-distance dependence in both

the vertical and horizontal directions and capture the ridge’s strip-

like shape characteristics.

3. ASPP architecture is added at the end of the encoder since the

ridge information in remote sensing images involves a variety of

widely fields. Different receptive fields are constructed by atrous

convolution with different sampling rates to enhance the correlation

of global spatial information, thus improving the connectivity of the

ridge segmentation effect.

The rest of this paper is organized as follows. The materials and

methods are described in Section 2 of this paper. Section 3 of this

paper presents the results of experimental. The discussion of the

experimental results is presented in Section 4. Finally, Section 5

gives conclusions and suggestions for future work.
2 Materials and methods

As shown in Figure 1. This is the flowchart of the whole study.

The methodology consists of three main phases: ridge dataset

collection and processing, model design and model validation.

Detailed descriptions of these steps are given in sections 2.1-2.3.
2.1 Data collection

The image data were taken in March 2023 at Shiyezhou,

Zhenjiang, Jiangsu Province, China, covering an area of 7,063

square meters (shown in Figure 2). The shooting location was

Yangzhou University Wheat - Zhenjiang Dantu Experimental Base,

and the experimental data were provided by Yangzhou University,

Jiangsu Province, China. The shooting equipment was a DJI Mavic

3M aerial photography drone with a shooting altitude of 25 meters.

In order to solve the problem that the pixels of each image are too

large and unfavorable for training, this study adopts a random

cropping method, in which the original images are randomly

cropped into 600 images of field ridges with a size of 512 × 512

pixels, and the dataset is divided into a training set and a validation

set according to the ratio of 5:1.
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This remote sensing dataset is primarily used for farmland ridge

segmentation. As shown in Figure 2. The area of field ridges in

agricultural fields is relatively small. The ridge has a regular shape in

the whole, showing a thin and narrow strip, but still has complex

and irregular edge texture information at the edge of the ridge. At

the same time, there are tiny vacancies in the crop area of some

fields, and these vacancies will directly affect the correct detection of

ridges, thus, when marking the dataset, it is necessary to make

accurate identification and judgment of the ridge information.

Based on the characteristics mentioned above, this study labeled

the dataset using ENVI software, which has robust data processing

capabilities. The software supports users with high quality data

processing, analysis and applications. It can be accurately labeled

for high-resolution remote sensing photos and edge complex ridge

information. In this study, the fields are labeled in yellow and the

crops are labeled in black to help distinguish between the ridges and

the fields.
2.2 Experimental design

Since the connectivity of ridge shape is an important

characteristic of ridges and the edges of ridges are complex and

irregular, it makes it necessary to take into account the rich

contextual information and long-distance feature dependencies

when designing the model. For this reason, this study designs a

segmentation method based on encoder-decoder architecture with

strip pooling and ASPP to capture the complete shape of the ridge

and clearly delineate the edges of the ridge.

2.2.1 Encoder–decoder architecture
The encoder-decoder architecture used by ASPNet allows it to

combine features extracted by the encoder with features upsampled

on the decoder. Additionally, it enables the output result to retain

the effective edge texture features while restoring to the original

resolution size (Ilyas et al., 2022; Zhou et al., 2022; Ren et al., 2023).

Figure 3 depicts the structure of the model. The encoder

receives the input image initially, and the convolutional blocks in

the encoder extract and output the ridge features at various scales.
FIGURE 1

Research process flow chart.
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As the entire network is deepened, the size of the output feature

maps of each block gradually decreases. In the encoder, except for

the last layer of the feature map passed into the ASPP, the feature

maps output from the first four convolutional blocks have two
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branches, one branch is used as an input to the next convolutional

block, and the other is used for the feature fusion operation in the

decoder. The feature maps after ASPP processing are up-sampled

and used as input to the decoder. In the decoder, the up-sampled
FIGURE 3

Model structure diagram.
FIGURE 2

Data collection information.
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feature map will be feature fused with the output of the encoder.

This feature fusion operation helps the decoder to better understand

the feature information of the input image and generate more

accurate predictions. Following a strip-pooling process, the fused

features are then used as input for the subsequent up-sampling, and

so on, repeating till the output.

2.2.2 Strip pooling module
There is a high demand for the strip-shape ridge segmentation

effect in the farmland ridge segmentation scene, so the model must

accurately capture the complete shape of the ridge and distinguish

clearly between the field’s boundary and other features. The strip

pooling module in SPNet (Hou et al., 2020) is cited in this paper as

serving this purpose. To acquire dependencies over long distances,

strip pooling uses 1×N or N×1 strip pooling kernels. It differs from

traditional pooling processes, which based on square windows to

extract valid features from input images and demand a significant

amount of computation to create associations at pertinent regions.

However, in some application scenarios such as roads and farmland

ridges that have narrow and large spans, conventional pooling is

difficult to capture the remote context information of features,

which causes the model to miss some of the features during

processing. When the input image’s features are long and narrow,

strip pooling can capture their relationship in both the horizontal

and vertical directions, combine them, and establish remote

dependencies throughout the entire scene. It also prevents

irrelevant regions from interfering with feature learning.

As shown in Figure 4, in order to average all the features in a

row or column during a certain operation phase, the strip pooling

module moves the strip-shaped pooling kernel in two directions,

horizontal and vertical, respectively. The output of the above-

mentioned pooling is then afterwards enlarged by convolution in

the corresponding up-down and left-right directions. Following

expansion, two H×W feature maps are created, and an H×W feature

map is created by performing a pixel-by-pixel summing operation

on the features corresponding to the identical positions in the two

expanded feature maps. After applying a layer of convolution and

sigmoid activation function processing, the output of the module is
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obtained by multiplying with the corresponding pixels of the

original input feature map.

2.2.3 ASPP
Due to the narrow shape, vast span and wide coverage of the

ridge in the image, the standard convolution procedure is

constrained by the receptive field and is unable to capture the

rich contextual information. As a result, the atrous spatial pyramid

pooling module is utilized to widen the receptive field (Chen et al.,

2018), which can enhance the connectivity of ridge detection and

better capture the whole contour of the ridge.

To collect multi-scale contextual data, this module employs

atrous convolution with various sampling rates. The output feature

maps from each atrous convolution operation are then spliced and

fused after the convolution operations with various sampling rates

are conducted on distinct branches. Without introducing additional

parameters, the expansion of the modular receptive field is

achieved. The first is a 1×1 standard convolutional branch, while

the following three are 3×3 convolutional branches with various

sampling rates to create convolutional kernels with various

receptive fields, as illustrated in Figure 5. In order to improve

perceptual ability and semantic information, the ASPP is positioned

after the encoder to process the encoder’s deepest feature output.
2.3 Network training and
performance evaluation

A computer with a processor of Inter(R) Core(TM) i7-11700k

@3.60GHz, 32G RAM, and a graphics card of NVIDIA GeForce

RTX 3070 (8G RAM) was used in this study. The software

environment consists of Python 3.8, CUDA 11.4, Linux 10, and

PyTorch 1.8.0. This study set the starting learning rate to 0.01, the

initial batch size of all the datasets to 4, the input image resolution

size to 512×512, and the epoch to 100 for training the model.

Additionally, the model uses SGD as the optimizer to get better

training results because SGD has good randomness and simplicity

in updating the learning rate, and it can have better stability
FIGURE 4

Schematic illustration of the strip pooling.
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throughout the model training process. This prevents the model

from fitting too quickly in the early stages of training, which can

result in overfitting.

The cross-entropy loss function is used in this work to quantify

the discrepancy between model predictions and actual results

(Zhang et al., 2021). The loss function (Equation 1) looks like this:

loss(x, class) = −x½class� + log(o
j
exp(x½j�))   (1)

Where, x denotes the input vector and each value in the vector

denotes the model predicted value. class denotes the labeled values

of the different classes and a label value of 0 denotes the background

and 1 denotes the ridge information.

Four quantitative criteria were employed in this study to assess

the segmentation findings. The segmentation performance (Zou

et al., 2022; Shunying et al., 2023) is assessed and compared using

the following metrics: overall pixel accuracy (Acc), precision (Pr),

recall (Re), and intersection ratio union (IoU) (Equations 2-5). The

test set’s photos are averaged for Acc, Pr, Re, and IoU.

Acc = oTP +oTN

oTP +oTN +oFP +oFN
� 100%   (2)

Pr = oTP

oTP +oFP
� 100%   (3)

Re = oTP

oTP +oFN
� 100%   (4)

IoU = oTP

oTP +oFN +oFP
� 100%   (5)

In the above formula, TP is true positive, the model prediction is

the positive example, and the label is the positive example; FP is

false positive, the model prediction is the positive example, and the

label is the negative example. FN is false negative, the model

prediction is the negative example, and the label is the positive

example. TN is true negative, the model predicts the negative

example, and the reality is the negative example.
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3 Results
3.1 Training process presentation

In order to validate the effectiveness of the models proposed in

this study, ASPNet is compared with DeepLabv3 (Chen et al., 2018),

FC-Densenet (Jegou et al., 2017), PSPNet (Zhao et al., 2017),

DenseASPP (Yang et al., 2018) and SPNet. To achieve a fair

comparison, the same training dataset and validation set are used.

Figure 6 shows the variation of the loss function of the above models

during the training process. In the graph, the training batch is taken

as the horizontal coordinate and the corresponding loss and acc

values are taken as the vertical coordinates.

As demonstrated in Figure 6A, the loss function values of FC-

DenseNet, SPNet, DeepLabv3 and our proposed ASPNet, are high

when the model is first trained. As the model is trained, the loss

function values decrease, with ASPNet being the first to converge to

the lowest values. While PSPNet and DenseASPP exhibit an

undulating trend during training, this indicates that the model’s

training is unstable and susceptible to overfitting. On the whole, the

loss function value of the ASPNet tends to be stable during training

rather than experiencing significant up or down swings. It indicates

that the model is not easily affected by outliers, and the fitting to the

noisy data is smoother and more stable, with good robustness.

Figure 6B shows the variation of model accuracy during

training. As shown in the figure, the model recognition accuracies

of the three models, SPNet, DeepLabv3, and our proposed ASPNet,

show an overall upward trend during validation. While the

segmentation accuracies of PSPNet and DenseASPP fluctuated

significantly in the first 80 batches and gradually stabilized in the

last 20 batches. The accuracy scores after stabilization, although

between 0.9 and 1, are still lower than the ASPNet and SPNet

accuracy values. FC-DenseNet has the most obvious oscillation

trend, and combined with the gradual smoothing of its loss curve, it

can be seen that the model is overfitted during the training process,

ignoring some of the main features of the dataset. In summary,

compared with other models, ASPNet reaches the highest accuracy

the fastest during the training process and tends to stabilize with an

upward trend, which shows that ASPNet can learn the feature
frontiersin.or
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Schematic illustration of the ASPP.
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information of ridge quickly.
3.2 Evaluation of segmentation

In order to verify the generalization and superiority of the

proposed model, this study evaluates ASPNet and the above

comparative models on a validation set. Table 1 displays the

segmentation performance scores for the various models based on

the four assessment criteria Accuracy, mIoU, Precision, and Recall.

As shown in Table 1, in terms of the segmentation performance

of the agricultural ridge region, the proposed model ASPNet

achieves the accuracy of 98.0%, the mIoU of 94.7%, the precision

of 94.3%, and the recall of 96.5%. In order to get a more intuitive feel

of the performance effects of the models on different evaluation

metrics, this study further presents a visualization comparison of

the segmentation effects of different models by line chart. Combined

with the line chart in Figure 7, it can be seen that in terms of

Accuracy, the model in this study achieved an improvement relative

to DeepLabv3, FC-Densenet, PSPNet, DenseASPP, and SPNet

model, with an improvement of 3.2%, 0.5%, 2.1%, 2.3%, and

0.7%, respectively. In terms of mIoU metrics, the model in this

study also showed superiority, improving by 7.4%, 1.5%, 5.5%,

5.7%, and 1.9% with respect to DeepLabv3, FC-Densenet, PSPNet,

DenseASPP, and SPNet model, respectively. For recall, the models

in this study improved 3.4%, 3.3%, 8.2%, 7.6%, and 3% relative to

DeepLabv3, FC-Densenet, PSPNet, DenseASPP, and SPNet model,

respectively. Notably, the model proposed in this study scored 0.7%
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lower than FC-Densenet on Precision, but the error is within 1%,

which is within the acceptable range.
3.3 Visualization results

Results of segmentation for ASPNet and comparative models

are provided in this paper. As seen in Figure 8. Among them, the

group of Figure 8A shows the input images used to test the

segmentation effect, and all of these farmland images have

different ridge distributions, but have obvious horizontal or

vertical strip-like features. Some of the ridges in the images have

distinctive features and cover a large area, while others are thin and

narrow between crops. In addition, there are some tiny vacancies in

two crop fields, which can be used as interference information in the

ridge prediction segmentation process. This provides an intuitive

reference basis for observing the segmentation effect in this study.

The areas in the label and segmentation result map, with the

exception of the ridge, are painted in black as the background in

order to make the segmentation effect more obvious. In Figure 8,

group (B) shows the ridge data labels, group (C) shows the

segmentation results of ASPNet, the model proposed in this

study, and group (D)-(H) shows the segmentation results of the

comparison model.

According to the segmentation results of different models, in the

segmentation results of groups (D) and (E), DeepLabv3 and

PSPNet’s prediction of narrow field ridge information between

crops is incomplete. Some of the ridge information is therefore
TABLE 1 Evaluation of segmentation results of different segmentation methods.

Methods Accuracy (%) mIoU(%) Precision(%) Recall(%)

DeepLabv3 94.8% 87.3% 84.4% 93.1%

FC-Densenet 97.5% 93.2% 95.0% 93.2%

PSPNet 95.9% 89.2% 92.0% 88.3%

DenseASPP 95.7% 89.0% 91.0% 88.9%

SPNet 97.3% 92.8% 93.6% 93.5%

ASPNet (Ours) 98.0% 94.7% 94.3% 96.5%
The bold values represent the highest values for each column of evaluation index.
A B

FIGURE 6

(A) shows the changes in loss during the training process. (B) is the change in accuracy during the training process.
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missing in the segmentation map since they are unable to accurately

detect the ridge information in the image. As demonstrated in

group (F), FC-DenseNet improperly segments the interference

information of fine vacancies on the field into ridge categories, as

well as the segmentation outcomes of DenseaASPP in group (H). It

also fails to accurately distinguish parts of the fine and narrow ridge

information. This shows that the model only picks up on a limited

number of characteristics during training, and that it struggles to

pick up on the spatial aspects characteristics of the ridges. As a

result, the model’s judgment of the interference information during

the detection segmentation phase is not accurate enough, which

leads to low model robustness. The model is not fine enough to

segment the ridge boundary, as shown by the SPNet segmentation

results in group (G). And the effect of the model proposed in this

study is shown in (C), the segmentation results are very similar to

the markers in the labels, the model is able to exclude the

interference of small vacancies in the agricultural field blocks,

even the shape of thin and narrow ridges can be recognized and

marked by the model, and it has the ability to capture the complex

boundaries of the ridges.
3.4 Results of Large-farmland

Considering that in practical application scenarios, ridge

segmentation is required for large-area farmland. In this study,

based on the above small-resolution ridge segmentation process, the

farmland image with a resolution of 10752×8704 is segmented to

realize the acquisition of ridge distribution information for

farmland covering an area of about 7000 square meters. The

ASPNet proposed in this study is primarily for the segmentation

of 512×512 resolution images due to assure the processing speed

and accuracy of the model. In order to be able to adapt to the needs

of ridge segmentation in a larger area, this study has considered the
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reliability and applicability of the actual segmentation results in

designing the segmentation task for large-area farmland. The whole

segmentation process firstly splits the input image into n×m small

blocks with the resolution of 512×512; then inputs each small block

into the model of this study for segmentation; and finally splices the

n×m small blocks together to create the segmentation result of the

large-area farmland. This end-to-end farmland ridge segmentation

method makes the processing flow simpler while guaranteeing

accurate segmentation. The segmentation process is shown

in Figure 9.

During the above data processing, it took 26.115 seconds to cut

the large farmland image into small resolution images. All small

resolution images were transferred into the model for processing in

24.148 seconds, with an average processing time of 0.047 seconds

per small resolution image. 4.729 seconds were used in stitching

into a large agricultural field ridge segmentation map. It can be seen

that the model proposed in this study can extract ridge information

accurately and efficiently from farmland images of about 7000

square meters in one minute. In addition, the ridge segmentation

was also tested in another experimental field in this study. The

experimental field is located in Wanfu Experimental Base in

Yangzhou City, Jiangsu Province, covering an area of 1,314

square meters with a shooting height of 20 meters. The

segmentation results are shown in Figure 10.
4 Discussion

A segmentation model that can learn accurately on small

datasets must be designed in order for the model to accurately

and efficiently identify the ridge information because the use of

remote sensing equipment carried by unmanned aerial vehicles

(UAVs) to acquire remote sensing data of field ridges necessitates

consideration of geographic and time scale issues as well as seasonal
FIGURE 7

Line chart of different evaluation results.
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variations. The convolutional neural network is one of the most

utilized machine learning models today that can accurately perform

farmland segmentation. (Potlapally et al., 2019), in order to advance

the automated analysis of remote sensing data for land use, used

Mask R-CNN to classify and segment farmland of various crop

types, which is a model that adds pixel-level segmentation of each

target instance on the basis of target detection. Additionally, the

encoder-decoder architecture provides a method for pixel-by-pixel

segmentation that is efficient. To help the model better capture

detail information and increase segmentation accuracy, it fuses the
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low-level features of the encoder with the high-level features of the

decoder. (Wang et al., 2023) inspired by the encoder-decoder

architecture, proposed a multi-task deformable UNet

combinatorial enhancement network based on UNet, which

consists of a shared universal encoder part and three independent

decoder parts, to realize high-precision segmentation of farmland

boundaries, effectively preserving the edge texture information.

Therefore, this study adopts the encoder-decoder architecture to

accurately and efficiently realize the pixel-by-pixel segmentation of

the whole image. In the encoder stage, conventional convolution is
A

B

D

E

F

G

H

C

FIGURE 8

Segmentation results of different models. (A) Original image, (B) ground truth, and (C) visual results of our proposed, and (D) for the visual results of
DeepLabv3, (E) visual results of PSPNet, (F) visual results of FC-DenseNet, (G) visual results of SPNet, and (H) visual results of DenseASPP.
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used for local feature extraction. The features output from the

encoder are then mixed with those from the decoder, and the output

is up-sampled to return to the original input resolution size. The

issue of pixel space information loss can be effectively dealt with by

making good use of the shallow texture information and deep

semantic information of the feature map.

However, the above improved models based on Mask R-CNN

and U-Net lack the extraction of information between different

receptive fields during feature extraction. The appearance of atrous

convolution can help the model to establish the connection between

different receptive fields in the feature map. In the study of farmland
Frontiers in Plant Science 10
segmentation by (Du et al., 2019), the DeepLabv3+ model with

atrous convolution is used to extract and map the distribution of the

crops in order to accurately describe the small and irregular fields in

the farmland. It is demonstrated by experimental comparisons that

DeepLabv3+ with atrous convolution is effective in obtaining the

information about the distribution of the farmland. In order to

increase the precision of farmland segmentation, (Sun et al., 2022)

suggested a DeepLabv3+ based deep edge enhanced semantic

segmentation network. While keeping the atrous convolution,

they added supplementary labels to strengthen the model’s

learning capabilities and increase the performance of ridge and
FIGURE 10

Result of ridge segmentation in another experimental field.
FIGURE 9

Operational flow of large-area farmland segmentation.
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cropland recognition. Considering the effectiveness of atrous

convolution, this study adds ASPP module in the middle of

encoder and decoder. By using the atrous convolution in ASPP to

widen the receptive field, the model is better able to capture the

overall contour of the ridge.

The pooling kernel in traditional convolutional neural networks

is typically square and only takes into account local contextual

information, neglecting the interdependence of distant features. A

novel pooling processes called strip pooling is presented in the

paper by (Hou et al., 2020). To represent remote dependencies, it

utilizes a long and narrow pooling kernel. By contrasting strip

pooling with conventional spatial pooling, the study highlights the

extraction capability of strip pooling on banded features (Mei et al.,

2021). (Zhang et al., 2021) applied strip pooling module in ridge

segmentation to capture the effective information of ridges. By

contrasting it with well-known semantic segmentation models, the

study showed the strip pooling module’s dependability in ridge

segmentation settings. Therefore, considering that stripes are one of

the main features of ridges in ridge segmentation scenarios, this

study adds the strip pooling module to the decoder to enhance the

extraction of strip features of ridges and to delineate the edges of

ridges from other elements.

In summary, we propose a ridge segmentation method based on

an encoder-decoder architecture, which incorporates an ASPP

module after the encoder and the strip pooling modules in the

decoder. The experimental results demonstrate that this method has

good segmentation effect in ridge segmentation scenarios.
5 Conclusion

In this study, a segmentation method for farmland ridges is

proposed for the characteristics of narrow shape, complex and

irregular edges. Firstly, in order to provide effective data support, the

ridge dataset from remote sensing images of agricultural fields was

collected and produced in this study. Then, a segmentation method

based on encoder-decoder architecture with strip pooling and ASPP is

designed to achieve accurate segmentation of ridge information in

agricultural fields. Finally, the model is evaluated based on the

validation set, and the evaluation results show that the model

outperforms the comparison model in terms of ridge segmentation

effect, in which the accuracy reaches 98% and the mIoU score is 94.6%.

In practical application scenarios, it can quickly realize the accurate

segmentation of ridges in large-area farmland images and output the

segmentation results of complete farmland. The method can not only

accurately segment the shape information and fine edge information of

field ridges, but also avoid the interference caused by the tiny vacancies

between farm fields. In addition, it can promote the optimal use of

resources by farmers, thus improving productivity as well as reducing

environmental impact and accelerating the realization of unmanned

farmland management.

Since producing a dataset for segmentation of agricultural field

ridges is labor-intensive and time-consuming, in future research, we

expect to combine semi-supervised and unsupervised learning

approaches to achieve segmentation of agricultural field ridges

using a small number of datasets. And the model can be
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lightweighted so that make it more easily applicable to edge

devices in farmland for completing mechanical work.
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