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Introduction: Rice (Oryza sativa) serves as a vital staple crop that feeds over half

the world's population. Optimizing rice breeding for increasing grain yield is

critical for global food security. Heading-date-related or Flowering-time-related

traits, is a key factor determining yield potential. However, traditional manual

phenotyping methods for these traits are time-consuming and labor-intensive.

Method: Here we show that aerial imagery from unmanned aerial vehicles

(UAVs), when combined with deep learning-based panicle detection, enables

high-throughput phenotyping of heading-date-related traits. We systematically

evaluated various state-of-the-art object detectors on rice panicle counting and

identified YOLOv8-X as the optimal detector.

Results: Applying YOLOv8-X to UAV time-series images of 294 rice recombinant

inbred lines (RILs) allowed accurate quantification of six heading-date-related

traits. Utilizing these phenotypes, we identified quantitative trait loci (QTL),

including verified loci and novel loci, associated with heading date.

Discussion: Our optimized UAV phenotyping and computer vision pipeline may

facilitate scalable molecular identification of heading-date-related genes and

guide enhancements in rice yield and adaptation.
KEYWORDS

Oryza sativa, UAV, objective detection, panicle, heading date, QTL
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2024.1327507/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1327507/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1327507/full
https://www.frontiersin.org/articles/10.3389/fpls.2024.1327507/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2024.1327507&domain=pdf&date_stamp=2024-03-06
mailto:zqiang@ncgr.ac.cn
mailto:bhan@ncgr.ac.cn
https://doi.org/10.3389/fpls.2024.1327507
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2024.1327507
https://www.frontiersin.org/journals/plant-science


Chen et al. 10.3389/fpls.2024.1327507
1 Introduction

Oryza sativa is a staple food crop that feeds billions of people

worldwide. Optimizing rice yield is critical for global food security, and

heading date - the transition from vegetative to reproductive growth - is

a key factor determining yield potential. However, traditional manual

phenotyping methods for obtaining rice heading-date-related traits are

extremely labor-intensive, time-consuming, error-prone, and

insufficient for large-scale phenotyping.

Recent advances in computer vision offer transformative

potential for fully automatic, high-throughput, and accurate

estimation of heading-date-related traits from digital images.

Object detection models have proven highly effective for

localizing and counting objects in natural images. Leading

approaches fall into two main categories: two-stage detectors like

Faster R-CNN (Ren et al., 2017) that are accurate but slow, and one-

stage detectors such as YOLO (Redmon et al., 2016) that are fast but

can struggle with small objects. However, recent advancements in

one-stage detectors have narrowed down this accuracy gap,

especially in the YOLO family. Newer transformer-based

approaches like DETR (Carion et al., 2020) remove hand-

designed components like NMS but suffer from convergence

issues. Subsequent works have addressed this problem, making

the DETR series an attractive model choice overall.

Several studies have already applied these cutting-edge models

for analyze rice panicles for traits related to heading date and yield.

For instance, Zhou et al. proposed a pipeline using YOLOv5,

DeepSORT for tracking identical panicles over time-series images

and quantifying the effects of nitrogen on flowering duration and

timing (Zhou et al., 2023). The improved Cascade R-CNN is used to

detect rice panicles and recognize growth stages from smartphone

images under complex field conditions (Tan et al., 2023). The

estimated heading dates by counting flowering panicle regions in

ground images under an indirectly image classification manner is

also performed (Desai et al., 2019). A lightweight model called

TinyCCNet for rice panicle segmentation in UAV images is

developed, showing potential for agricultural UAVs with limited

computing resources (Ramachandran and K.S., 2023). The Res2Net

model has been used to classify growth stages and partial least

squares regression to estimate heading date from UAV time series

images, achieving high accuracy (Lyu et al., 2023). Overall, these

studies demonstrate deep learning and computer vision techniques

enable accurate, automatic analysis of panicle development from

both aerial and ground-based imagery.

However, some obstacles persist in applying off-the-shelf

detectors to new specialized domains like panicle counting. Large

annotated image datasets are imperative for training high-

performing models, but expensive and time-consuming to obtain

for niche applications. Different model architectures are often

compared only on generic datasets like COCO (Lin et al., 2015),

rather than domain-specific tasks like panicle counting. Finally,

optimal models for a given application are unclear.

In this paper, we leveraged UAV high-throughput aerial image

combined with a semi-automatic annotation workflow to

systematically evaluate various state-of-the-art detectors on rice
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panicle counting. Our comparative analysis identified YOLOv8-X

as the top-performing model for our specific application.

Subsequently, we utilized YOLOv8-X to extract multiple heading-

date-related traits from UAV time-series images with high

throughput and accuracy. With these obtained traits, we were

able to identify reliable genetic variants using QTL mapping.

Some of these variants were consistent with previously published

studies, while others facilitated the exploration of novel candidate

genes. Our optimized UAV phenotyping and deep learning pipeline

helps overcome key limitations, enabling scalable dissection of the

genetic basis of rice heading-date-related traits. All relevant code

can be accessed at https://github.com/r1cheu/phenocv.
2 Materials and methods

2.1 Rice planting and field image collection

Derived from the crossing of Nipponbare (Oryza sativa ssp.

japonica) and 93–11 (Oryza sativa ssp. indica), a total of 294 RILs of

rice (Huang et al., 2010) were cultivated in Ling Shui, Hainan

province at an 18-degree north latitude. The rice was sown in plots

measuring 2×1.1m, accommodating 18 plants per plot.

During the rice growth process in 2023, a total of 42 aerial

flights were conducted using the DJI Matrice M300 equipped with

the ZENMUSE H20 (DJI, Shenzhen, China), which integrated a 20-

megapixel zoom camera. Operating at a flight altitude of 18 meters,

H20 effectively utilizes its 10x zoom capability to capture clear and

detailed imagery of each individual rice panicle within the expansive

paddy field.
2.2 Locating plot region

The original images captured by the H20 centered on an

individual plot but covered a larger area. Therefore, as a

preprocessing step, we extracted the region that only included the

central plot from each original image. We first calculated the

expected plot width and length based on a known planting

density (30cm between plants, 50cm between plots). We used

3800 × 2000 pixels in this work. Next, we binarized the images

using OTSU (Otsu, 1979) threshold with the color index of

vegetation (CIVE) (Equation 1) (Kataoka et al., 2003). Then, the

numbers of white pixels (representing vegetation) per row/column

were calculated. The result was smoothed by moving average with a

window size of 100. Finally, we defined the row/column that

contained the fewest white pixels as the boundary of the plot,

since the boundary should contain the minimum number of plant

pixels (Equations 2, 3).

The Locating workflow was implemented in Python using the

NumPy and OpenCV libraries and is described in Figure 1.

0:441� R − 0:811� G + 0:385� B + 18:78754 (1)

Row of  Plot = min(Rowi + Rowi+2000) (2)
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Column of  Plot = min(Coli + Coli+3800) (3)

Where R, G and B are the pixel values for the corresponding

red, green, and blue channels. Rowi denotes the count of white

pixels in the i-th row.
2.3 Annotation workflow

In the annotation workflow, to reduce labor costs and accelerate

annotations, we utilized the Label Studio interface with the Segment

Anything Model (SAM) as the inference backend. SAM can

precisely label a panicle using a single-point prompt, thereby

allowing for the creation of bounding box around panicle with

just one click.

The general annotation workflow is illustrated in Figure 2.

Initially, we used a sliding window with the shape of 1000×1000

pixels and a stride of 1000×1000 pixels to divide the 3800×2000 plot

images into smaller subimages of 1000 × 1000 pixels. Subsequently,
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we iterated between model-generated pseudo-labeling, human

correction, and model retraining until the dataset was fully

labeled or the model’s performance met our requirements. This

iterative process began with the training of a Faster R-CNN model

using approximately 50 labeled images.

In total, we annotated 1852 images and randomly divided them

into three datasets with an 8:1:1 ratio. More specifically, we

allocated 1530 images for the training set, 161 for the validation

set, and another 161 for the test set. Additionally, within the test set,

we selected both early-stage and late-stage panicles, creating two

subtest sets to ensure a thorough evaluation.
2.4 Prediction workflow

The prediction workflow also commenced from the plot image

as depicted in Figure 3. To begin with, each plot image was split into

overlapping sub-images with an overlap ratio of 0.25 and window

size of 1000 × 1000 pixels. Next, the model detected panicles within
FIGURE 2

Semi-automatic annotation workflow. The workflow begins with plot images which are patchified into smaller sub-images. These patches undergo
semi-automatic labeling using Label Studio interfaced with the SAM model for automated suggestions. The labeled sub-images are used to train a
model, which is evaluated to determine if performance is sufficient. If not, the model generates pseudolabels on unlabeled data, which re-enters the
semi-automatic labeling stage. When the model evaluation is acceptable, the loop breaks and the final model is produced.
FIGURE 1

Plot extraction workflow. Follow the direction of arrow, the original UAV image (top left) was first binarized using CIVE index and OSTU’s
thresholding. Next, under a fixed box width of 3800 and height of 2000, the box was moved over the entire image to found the row/column
containing the fewest white pixels, thus, locating the boundary. Finally, the plot was cropped from the original image.
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each sub-image. Lastly, the predictions from the same plot image

were merged by employing non-maximum suppression with a

threshold of 0.25.

The workflow was implemented in Python using Sahi (Akyon

et al., 2022), Pytorch, TorchVision, OpenCV (Bradski, 2000), and

NumPy (Harris et al., 2020).
2.5 Model experimental settings

In general, we followed the default training strategies

provided by the MMdetection (Chen et al. , 2019) and

Ultralvtics (Jocher et al., 2023) libraries, which are highly

recommended, optimized, and consistently delivered stable

performance. The software environments utilized in this paper

include Python 3.9, PyTorch 2.0.1, CUDA 11.8, MMdetection

v3.10 and Ultralvtics v8.0.158. All the models were trained on 8

NVIDIA A40 GPUs.

2.5.1 Models
We investigated various objective detection models, including

Faster R-CNN (Ren et al., 2017), Cascade R-CNN (Cai and

Vasconcelos, 2019), YOLO v5 (Jocher, 2020), YOLO v8 (Jocher

et al., 2023), RT-DETR (Lv et al., 2023), DINO (Zhang et al., 2023)

with different backbones and model sizes, as outlined in Table 1.

The implementations of Faster R-CNN, Cascade R-CNN, and

DINO utilized the MMdetection library, while the YOLO series

and RT-DETR were implemented using the Ultralytics library. All

the models were initialized with pretrained weights provided in

respective library.
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2.5.2 Learning rate scheduling
For Faster R-CNN, Cascade R-CNN with ResNet as backbone, we

followed the 2× schedule (He et al., 2019), which entailed fine-tuning

for 24 epochs with learning rate drop of 10× at epoch 16 and epoch 22.

However, for Faster R-CNN and Cascade R-CNN with the

ConvNext-tiny backbone, we extended the training epoch to 36, and

decreased the learning rate at epoch 27 and epoch 33 by a factor of 10×.

As for DINO, it was fine-tuned for 24 epoch, with learning rate

decay of 10× at epoch 20.

When it comes to the YOLO series and RT-DETR, we adopted

the OneCycle learning rate schedule (Smith and Topin, 2017),

which is the default schedule in Ultralytics. We used this schedule

for fine-tuning over 100 epochs.

2.5.3 Hyper-parameters
For Faster R-CNN and Cascade R-CNN with ResNet as the

backbone, we utilized the SGD optimizer with the following

hyperparameters: an initial learning rate of 0.02, 500 steps of

linear warm-up, weight decay of 0.0001, and a momentum of 0.9.

For Faster R-CNN with ConvNext-tiny as the backbone, we

employed the AdamW optimizer with a learning rate of 0.0001,

betas set to (0.9, 0.999), weight decay of 0.05, and a decay rate of

0.95 for layer-wise learning rate decay, with 6 top layers.

For Cascade R-CNN with ConvNext-tiny as the backbone, the

learning rate was set to 0.0002, and the decay rate for layer-wise

learning rate decay was set to 0.7. Other hyperparameters were

consistent with Faster R-CNN using ConvNext-tiny.

As for DINO, we used AdamW with a learning rate of 0.0001 and

weight decay of 0.0001, clip gradients with a maximum norm of 0.1

and norm type 2. The learning rate for the backbone was set to 0.00001.
FIGURE 3

Predicting panicle counts from plot images using overlap sliding window approach. Follow the direction of arrow, the plot image was divide into
smaller sub-image using a slide window approach. The sub-images were then fed into objective detection model to predict the location of panicles.
Subsequently, the predictions from all sub-images were merged using non maximum suppression to remove the redundant prediction.
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Regarding the YOLO series and RT-DETR, we utilized the

AdamW optimizer with the following hyperparameters: a max

learning rate of 0.000714, initial learning rate factors of 0.1, final

learning rate factor of 0.0005, weight decay of 0.937, and beta1 of

0.1. The anneal strategy was linear, with 3 warm-up epochs, an

initial warm-up momentum of 0.8, and an initial bias learning rate

of 0.1.

All the models were trained on 8 GPUs with a mini-batch size of

2 per GPU. During model validation, confidence score thresholds

and IoU thresholds for Non-Maximum Suppression (if the model

required NMS) were set to 0.05 and 0.5, respectively. For

predictions, these thresholds were adjusted to 0.3 and 0.5.

All unmentioned hyperparameters are set to default values

in Pytorch.

2.5.4 Data augmentation
To improve model robustness and increase data diversity, we

applied various data augmentation techniques, such as vertical and

horizontal flipping, HSV color space enhancement, blur, median

blur, and CLAHE. For the YOLO series, we also incorporated

mosaic and random affine transformations. A detailed

configuration is available in Table 2.
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2.6 Metrics for evaluation

We employed four metrics to assess count performance, which

include the Root Mean Squared Error (RMSE), the Coefficient of

Determination (R2), Mean Average Precision (mAP@50:5:95), and

Average Precision at IoU 50 (AP@50). The definitions of RMSE, R2,

mAP@50:5:95, AP@50 are given in Equations 4-10.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − ŷ i)

2

r
(4)

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

IoU =
area   of   overlap
area   of   union

(8)
TABLE 1 Performance of detecors on early heading stage, later heading stage, and full test set.

Model
Test Early Late

mAP50:5:95 AP50 R2 RMSE R2 RMSE R2 RMSE

Faster RCNN-R50 0.571 0.868 0.907 3.894 0.957 2.687 0.821 4.818

Faster RCNN-R101 0.568 0.865 0.900 4.026 0.952 2.833 0.811 4.950

Faster RCNN-CN-t 0.596 0.887 0.818 5.442 0.921 3.638 0.664 6.797

Cascade RCNN-R50 0.588 0.866 0.880 4.416 0.941 3.152 0.775 5.402

Cascade RCNN-R101 0.588 0.865 0.873 4.545 0.931 3.387 0.769 5.474

Cascade RCNN-CN-t 0.618 0.880 0.805 5.636 0.926 3.507 0.604 7.175

YOLOv5-n 0.613 0.875 0.912 3.794 0.948 2.950 0.845 4.490

YOLOv5-m 0.667 0.895 0.908 3.862 0.966 2.378 0.813 4.930

YOLOv5-x 0.675 0.898 0.906 3.918 0.966 2.401 0.807 5.006

YOLOv5-n-P6 0.660 0.892 0.920 3.618 0.950 2.889 0.862 4.230

YOLOv5-m-P6 0.673 0.892 0.922 3.574 0.965 2.429 0.848 4.441

YOLOv5-x-P6 0.677 0.899 0.923 3.531 0.962 2.526 0.857 4.316

YOLOv8-n 0.621 0.879 0.918 3.653 0.952 2.846 0.856 4.318

YOLOv8-m 0.666 0.893 0.921 3.590 0.955 2.744 0.859 4.285

YOLOv8-x 0.674 0.897 0.927 3.442 0.963 2.477 0.864 4.200

RT-DETR-l 0.630 0.887 -0.389 15.041 0.499 9.156 -1.850 19.245

DINO-R50 0.612 0.885 0.770 6.118 0.910 3.881 0.538 7.751

DINO-Swim-L 0.677 0.914 0.818 5.545 0.913 3.797 0.655 6.697
Where R50, R101, CN-t, Swim-L, stand for ResNet50 (He et al., 2016), ResNet101, ConvNext-Tiny (Liu et al., 2022), Swim Transformer-Large (Liu et al., 2021). All RCNN models use Feature
Pyramid Networks (Ren et al., 2017). P6 represents six stages in the backbone and uses the image size of 1280 × 1280 pixels as inputs, while other YOLO models use the 640 × 640 pixels image
as inputs.
Bold indicates that the value is the best metric value in this column.
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AP@ k =
Z 1

0
P(R)dR, IoU = k (9)

mAP@50 : 5 : 95 =
1
9 o
k∈50,55…95

AP@ k (10)
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Where n represents the number of test images, yi denotes the

panicle number counted manually, and ŷ i signifies the panicle number

derived from the prediction of YOLOv8-X. TP, FP, and FN denote the

number of true positives, false positives, and false negatives,

respectively. In this study, TP refers to bounding boxes that correctly

detected rice panicles. FP represents bounding boxes that erroneously

identified background regions as rice panicles. FN signifies ground

truth rice panicles that were missed by the detection algorithm.
2.7 Heading-date-related traits extraction

After counting the number of panicles in each plot, we created

growth curves represented the panicle count in each plot over time

(Figure 4A). These growth curves served as the basis for extracting five

static traits and one dynamic trait, as illustrated in Figure 4B. The

extraction procedure is described as follows: Firstly, we determined the

maximum panicle count. Next, we identified specific developmental

stages, which correspond to 10%, 30%, 50%, and 80% of the maximum

panicle count. For each of these stages, we used Equation 11 to calculate

the date at which each stage was reached. The dynamic trait, the

heading stage or heading rate, was defined as the difference between the
A

B

FIGURE 4

Panicle counts over time. (A) displays panicle counts over time for 15 RILs. Each colored line represents the panicle counts for a single RIL.
(B) depicts trait extraction example, including: heading date, duration of heading stage, and maximum panicle counts.
TABLE 2 Data augmentation configuration.

Data Aug. Config(Prob./Frac.)

Horizontal/Vertical Flipping 0.5

HSV-Hue 0.015

HSV-Saturation 0.7

HSV-Value 0.4

RandomAffine 1.0

Mosaic 1 (1-90 epochs), 0(90-100 epochs)

Blur 0.01, limit=(3, 7)

MedianBlur 0.01, limit=(3, 7)

CLAHE 0.01, clip limit=(1, 4), tile grid
size=(8, 8)
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date of reaching 10% of the maximum panicle count and the date of

reaching 80% of the maximum panicle count.

y   heading date = arg  min
x
( panicle counts of x − y �Maximumj j),
y ∈ 10%, 30%, 50%, 80%f g

(11)

Where x denotes the date.
2.8 QTL mapping

The static and dynamic traits were validated through QTL

mapping using the UAV-measured heading date-related genetic

traits and manually-scored traits collected from RILs. Sequencing

and genotyping for the 191 homozygous RILs were conducted using

a published pipeline and SEG-MAP (Zhao et al., 2010). Composite

interval mapping for QTL analysis was performed using Windows

QTL Cartographer version 2.5 (Wang, et al., 2012). The Logarithm

of the Odds (LOD) value was calculated to indicate the possibility of

QTLs based on likelihood ratio tests.
3 Results

3.1 Collected 2D aerial images

We used the DJI M300 drone, equipped with the H20 camera, to

monitor rice experiments from February 26 to April 9, 2023. During

this period, we systematically generated 42 series of 2D aerial images

for each experimental plot. As a result of all the flight operations, we

produced a substantial 160 GB of high-quality 2D imagery.
3.2 Models performance comparison

In order to find the model that best fits panicle detection, we selected

several models from three main categories of object detection models.

We trained Faster R-CNN, Cascade R-CNN, YOLOv5,

YOLOv8, RT-DETR and DINO with different model sizes and

backbones. The performance evaluation was conducted on one

main test set and two sub-test sets. These sub-test sets, derived from

the main test set, contained early-stage rice panicles and late-stage

rice panicles, respectively (refer to Table 1).

Our results indicated that the performance of models aligned with

our expectations regarding the Average Precision(AP) metric. Models

with more parameters and advanced backbones consistently delivered

superior results on this metric. Faster RCNN and Cascade RCNN,

which employed ConvNext as their backbone, had higher AP values

compared to those using ResNet. Similarly, the AP value of the YOLO

series showed an increase as the model size grew. Furthermore,

YOLOv5-P6, which employed a larger image resolution as input,

performed an additional downsampling, and utilized a higher-level

feature map, achieved better performance compared to YOLOv5. The

situation in the DETR series mirrored that of the R-CNN and YOLO

series, with DINO, which used Swim-L as the backbone, achieving the

highest AP value among all models.
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The AP metric didn’t exhibit a strictly positive correlation with

the R2 and RMSE metrics across various model architectures. This

phenomenon was particularly noticeable within the DETR series.

For instance, when RT-DETR and DINO-R50 achieved a

comparable AP to other models, their R2 values were significantly

lower than those of the YOLO and R-CNN series. DINO-Swim-L,

despite attaining the highest AP, only exhibited performance levels

on par with the Faster RCNN series in terms of R2 and RMSE.

Surprisingly, RT-DETR-L even yielded a negative R2 value. After

comprehensive consideration of these metrics, our choice for a

detector fell on YOLOv8-X. On the test set, early test set, and late

test set, its R2 and RMSE values stood at 0.927, 3.442, 0.963, 2.447,

0.864, and 4.200, respectively. Furthermore, it achieved mAP@

50:5:95 and AP@50 values of 0.674 and 0.897 on the test sets.
3.3 Time-series image detection

After a comparative evaluation, we employed the YOLOv8-X

model for panicle counting. Following the methodology described in

the Methods section, we generated curves illustrating panicle counts

over time for 15 out of 294 lines (Figure 4A) and successfully obtained

six traits, comprising five static traits and one dynamic trait (Figure 4B).

These traits included maximum panicle counts, four heading dates at

10%, 30%, 50% and 80% panicle counts, and the duration of the

heading stage (defined as the period between the 80% heading date and

the 10% heading date) (Figure 4B). Notably, we were able to capture the

dynamic trait of heading stage duration, which was previously

unattainable through manual phenotype analysis.

Moreover, we compared the 10% and 30% heading dates with

manually recorded heading dates (Figure 5) for validation purposes.

The R2 values for these two developmental stages were 0.9387 and

0.9301, respectively, providing strong support for the validity of

our methodology.
3.4 QTL mapping using heading-date-
related traits

To assess the biological significance of UAV-evaluated traits in

genetic mapping studies, we employed a set of 191 homozygous RILs

for genetic linkage analysis. The UAV-based evaluation of heading-

daterelated traits was utilized to map QTLs within the population. The

genetic distance along the x-axis of 12 chromosomes and the LOD

(logarithm of odds) value along the y-axis were used for graphical

representation. A threshold value of 3.0 (indicated by the red horizontal

line) was employed, and known loci were denoted by red arrows.

Among the traits analyzed, including manual heading date

(Figure 6A), UAV-evaluated heading date at 10% panicle counts

(Figure 6B), and UAV-evaluated heading date at 30% panicle

counts (Figure 6C), we identified three consistent QTLs. Notably,

in Figure 6B, the most significant QTL (LOD = 10.26) was located

on chromosome 7, approximately 417 kb away from the known

gene Ghd7.1. This gene, as reported by Yan et al (Yan et al., 2013),

plays a crucial role in grain productivity and rice heading.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1327507
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen et al. 10.3389/fpls.2024.1327507
The second highest peak, observed using the heading date (10%)

trait, was found on chromosome 3 (LOD = 7.3), approximately

609 kb away fromHd6 (Ogiso et al., 2010), a gene known to regulate

rice flowering and dependent on a functional Hd1 gene.

Furthermore, the third highest peak, identified using the heading

date (10%) trait, was situated on chromosome 6 (LOD = 3.84),

approximately 263 kb away from Hd1, a gene responsible for

promoting flowering (Zong et al., 2021). In the trait analysis of

UAV-evaluated heading date at 50% panicle count (Figure 6D), we

identified two QTLs located on chromosome 3 and 7, as described

above. In Figure 6E, we detected a QTL (LOD = 4.58) on

chromosome 3, approximately 30 kb away from the Hd9 gene,

which controls rice heading date (Hongxuan et al., 2002).
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In addition to static traits, we utilized the dynamic trait, UAV-

evaluated heading stage (from 10% panicle counts to 80% panicle

counts), to map QTLs, resulting in the identification of two QTLs

(Figure 6F). The first QTL was located approximately 140 kb away

from Ghd7 (LOD = 3.99), a gene known to delay heading under

long-day conditions while increasing plant height and panicle size

(Hu et al., 2020). The second QTL was found approximately 7.1 Mb

along chromosome 6 (LOD = 8.24) and was not associated with any

known gene. Subsequently, we conducted a QTL mapping using

UAV-evaluated panicle count per plant (Figure 6G), we identified a

QTL located approximately 706 kb away from the known gene

Ghd7.1. A comprehensive list of all QTLs identified through QTL

mapping is provided in Table 3.
4 Discussion

This study underscores the potential of integrating UAV imagery

and object detection models for high throughput, field-based

phenotyping of agronomic traits in rice. By harnessing the capabilities

of theM300 UAV, equipped with an H20 camera, we are able to swiftly

capture images for 294 RILs. This operation, requiring only a single

operator, can be completed within a two-hour timeframe. The

application of the cutting-edge YOLOv8-X model on UAV-acquired

images with a simple image process pipeline, enables the rapid

extraction of panicle count data at various developmental timepoints.

Additionally, our semi-automatic labeling pipeline reduces the labor

cost needed for training a usable object detection model. In summary,

our comprehensive approach facilitates cost-effective analysis of six

crucial heading-date related traits. Without this approach, a comparable

scale of analysis would require a prohibitively extensive investment of

time and labor for manual measurements.

Indeed, the application of deep learning to plant phenotyping is

becoming increasingly common today. There are several works that

focus on panicle detection and heading date estimation using deep

learning methods. For instance, in (Zhou et al., 2019), the authors

proposed an improved R-FCN for detecting panicles from different

stages of rice growth, achieving a precision of 0.868 on their held-out

test set. Taking into account the popularity and representativeness of

the models, we have not tested the model on our dataset.

Teng integrated several object detection models, such as Faster

RCNN and YOLOv5, into a single web platform. These models were

used to detect panicles and calculate the panicle number per unit

area (PNpM2). They also proposed a tailored YOLOv5 model called

Panicle-AI, which has a better AP@.5 of 0.967 than the original

YOLOv5 (0.954) on their test set (Teng et al., 2023).In this paper, we

not only obtained panicle counts per plant, similar to the panicle

number per unit area, but also extracted five additional traits related

to heading dates based on time-series images.

Instead of focusing on model modification, some researchers direct

their attention to the improvement of NMS, an important part of the

objective detection algorithm. This has been proven to perform better

in removing redundant bounding boxes under crowded conditions,

thereby improving detection accuracy. In our method, we used

standard NMS; therefore, there may be an improvement in accuracy

when using their method (Wang et al., 2022).
A

B

FIGURE 5

Comparison between Manual and UAV-evaluated heading dates
(n=294 RILs). Data points represent single RIL measurements. The
red line represents the regression line. (A) heading date at 10%
panicle counts versus Manual heading date, (B) heading date at 30%
panicle counts versus Manual heading date.
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Another work also focuses on the heading date, but uses a

paradigm proposed in 2013 (Girshick et al., 2014), which was no

longer used within two years. They concentrate on detecting flowers

to estimate the heading date, and their method has not been tested

on a large scale population (Desai et al., 2019).

Some other methods do not use object detection, simply

employing backbones like ResNet for regression tasks. Guo et al.

used a modified DenseNet to directly predict the panicle ratio from

images. They achieved an R2 of 0.992 in their estimation of the

heading date. However, their labeling process requires a significant

amount of labor to count the number of panicles and the number of

tillers via a field survey. Our method requires much less labor,

estimating different stages of the heading date based on the panicle
Frontiers in Plant Science 09
number, and further validating through QTL mapping (Guo

et al., 2022).

Returning to our result, the high R-squared achieved by the

model in panicle counting demonstrates a strong alignment between

model predictions and ground truth data. However, it’s worth noting

that the metric AP, typically employed to assess detection models,

exhibits a negative correlation with some models, and it may not

comprehensively represent model performance for agricultural tasks

such as panicle counting. In the future, adopting metrics like RMSE

and R-squared, computed against the ground truth panicle counts for

model selection, or devising a tailored loss function that accommodates

counting errors, could potentially enhance performance in the panicle

counting task (Huang et al., 2016).
A B

D

E F

G

C

FIGURE 6

Genetic linkage analysis of various UAV-evaluated heading date related traits and manually recording in a population of 191 homozygous
recombinant inbred lines (RILs). Red arrows indicate known genes associated with significant single-nucleotide polymorphisms (SNPs).The x-axis
represents the genetic distance of the 12 chromosomes, while the y-axis represents the logarithm of the odds (LOD) value. The red horizontal line
indicates the significant threshold set at 3.0. (A) QTLs identified using Manual heading date. The identified QTLs are close to the Hd6 gene
(chromosome 3), the Hd1 gene (chromosome 6) and the Ghd7.1 gene (chromosome 7). (B) QTLs identified using UAV-evaluated heading date at
10% panicle counts. (C) QTL for UAV-evaluated heading date at 30% panicle counts. Similar to (A), the QTLs identified using UAV-evaluated heading
date at 10% and 30% panicle counts are also located in the vicinity of the Hd6, Hd1, and Ghd7.1 genes. (D) QTL for UAV-evaluated heading date at
50% panicle counts. (E) Three loci associated with UAV-evaluated heading date at 80% panicle counts, including one located near Hd9
(chromosome 3), and another two significant loci on chromosome 5 and 7 that are not associated with any known gene. (F) Two QTLs for UAV-
evaluated heading stage (date of 80% - date of 10%). The major QTL is not associated with any known gene, while the other is close to the GHd7
gene. (G) QTL for UAV-evaluated panicle counts per plant. The major QTL co-locates with Ghd7.1 gene.
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Nevertheless, the associations established between the traits

extracted from UAV imagery and genetic markers affirm the

reliability of our phenotyping methodology. This analysis revealed

numerous noteworthy QTLs, encompassing both newly discovered loci

and loci corresponding to well-known heading-date genes. Notably, the

QTLs identified for the 10% and 30% heading dates coincided with

those determined through manual heading date assessment, further

validating the effectiveness of our UAV-based phenotyping approach.

Particularly, in the later stage (heading date 80%), we unveiled new

QTLs. Of significant importance is the successful capture, for the first

time, of the dynamic trait—the duration of the heading date, which

unveiled previously undiscovered QTLs. These novel QTLs suggest the

involvement of additional candidate genes that potentially regulate

variations in heading-date-related traits.

To advance this research, ongoing refinement of the detection

models is essential to maximize accuracy and generalizability. The

semi-automatic annotation workflow introduced in this study has the

capacity to streamline the labeling of field images, leading to the

creation of more extensive training datasets. This, in turn, holds the

promise of progressively boosting model performance in a cost-

effective manner. In summary, this study underscores the powerful

synergy between UAV and computer vision technologies as a

promising framework for expediting genetics research and breeding

programs focused on crucial agricultural traits in rice and other crops.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

RC: Writing – original draft, Writing – review & editing, Data

curation, Formal Analysis, Methodology. HL: Writing – original
Frontiers in Plant Science 10
draft, Writing – review & editing, Data curation, Formal Analysis,

Methodology. YW: Writing – review & editing, Data curation. QT:

Writing – review & editing. CZ: Writing – review & editing.

AW: Writing – review & editing. QF: Writing – review & editing.

SG: Writing – review & editing. QZ: Writing – review & editing,

Conceptualization, Funding acquisition, Supervision. BH:Writing –

review & editing, Conceptualization, Supervision.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by grants from the Strategic Priority Research

Program of the Chinese Academy of Sciences (Precision Seed

Design and Breeding, XDA24020205); The National Key Research

and Development Program of China (2020YFE0202300); National

Natural Science Foundation of China (Grant No. 31871268).
Acknowledgments

The authors would like to thank all members of National Center

for Gene Research (NCGR, China) for their assistance during

laboratory works and for fruitful discussions. In particular, the

authors would like to thank Zhou Ji at the Nanjing Agricultural

University (NAU, China) for valuable discussion.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
TABLE 3 Quantitative trait loci (QTLs) for heading date, heading stage, and panicle count identified in 191 rice RILs using manual and
UAV phenotyping.

Traits Chr Peak gent. Pos. IRGSP1.0 (Mb) LOD R2 Add. Genes

Manual heading date
3
6
7

271.51
124.31
202.91

30.9
9.6
29.2

3.8
3.4
8.0

5.8%
4.9%
12.6%

2.52
2.47
3.62

Hd6(31.51M)
Hd1(9.34M)

Ghd7.1(29.62M)

UAV-evaluated heading date(10%)
3
6
7

271.51
124.31
202.91

30.9
9.6
29.2

4.6
3.8
10.3

6.4%
5.2%
15.3%

2.14
1.94
3.35

Hd6(31.51M)
Hd1(9.34M)

Ghd7.1(29.62M)

UAV-evaluated heading date(30%)
3
6
7

271.51
124.31
202.91

30.9
9.6
29.2

4.4
3.2
9.9

6.0%
4.4%
14.7%

2.00
1.74
3.20

Hd6(31.51M)
Hd1(9.34M)

Ghd7.1(29.62M)

UAV-evaluated heading date(50%) 3
7

271.51
202.91

30.9
29.2

3.8
8.9

5.5%
13.8%

1.73
2.78

Hd6(31.51M) Ghd7.1(29.62M)

UAV-evaluated heading date(80%)
3
5
7

8.61
218.01
182.21

1.3
26.5
26.2

4.6
4.1
4.9

7.2%
6.8%
7.7%

1.71
1.77
1.82

Hd9 (1.27M)
Unknown
Unknown

UAV-evaluated heading stage(10%-80%) 6
7

97.61
79.61

7.1
9.3

8.2
4.0

13.9%
6.5%

-1.69
1.73

Unknown Ghd7(9.15M)

UAV-evaluated Panicle Count per plant 7 201.31 28.9 7.8 12.1% -1.85 Ghd7.1(29.62M)
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