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Introduction: In order to solve the problem of precise identification and

counting of tea pests, this study has proposed a novel tea pest identification

method based on improved YOLOv7 network.

Methods: This method used MPDIoU to optimize the original loss function,

which improved the convergence speed of the model and simplifies the

calculation process. Replace part of the network structure of the original

model using Spatial and Channel reconstruction Convolution to reduce

redundant features, lower the complexity of the model, and reduce

computational costs. The Vision Transformer with Bi-Level Routing Attention

has been incorporated to enhance the flexibility of model calculation allocation

and content perception.

Results: The experimental results revealed that the enhanced YOLOv7 model

significantly boosted Precision, Recall, F1, and mAP by 5.68%, 5.14%, 5.41%, and

2.58% respectively, compared to the original YOLOv7. Furthermore, when

compared to deep learning networks such as SSD, Faster Region-based

Convolutional Neural Network (RCNN), and the original YOLOv7, this method

proves to be superior while being externally validated. It exhibited a noticeable

improvement in the FPS rates, with increments of 5.75 HZ, 34.42 HZ, and 25.44 HZ

respectively. Moreover, the mAP for actual detection experiences significant

enhancements, with respective increases of 2.49%, 12.26%, and 7.26%.

Additionally, the parameter size is reduced by 1.39 G relative to the original model.
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Discussion: The improved model can not only identify and count tea pests

efficiently and accurately, but also has the characteristics of high recognition

rate, low parameters and high detection speed. It is of great significance to

achieve realize the intelligent and precise prevention and control of tea pests.
KEYWORDS

pest identification, improved Yolov7, MPDIou, Spatial and Channel Reconstruction
Convolution, vision transformer with Bi-Level Routing Attention
GRAPHICAL ABSTRACT
1 Introduction

The Yunnan tea-producing area is situated in a transitional

zone between the tropical and subtropical regions. This region

boasts an ample amount of rainfall, high temperatures, and a

multitude of diverse landforms. These favorable conditions foster

the growth and preservation of a wide array of resources,

particularly the bountiful population of large-leaved tea trees

(Yawen et al., 2001; Chen et al., 2005). However, it also creates

favorable conditions for the growth and propagation of tea pests,

and traditional pest monitoring and management methods were

insufficient to meet the current demands of Yunnan tea gardens in

terms of efficiency, coverage, and cost-effectiveness (Yunchao et al.,

2023), resulting in the prevalence of multiple types and rapid

proliferation of these pests. Additionally, this circumstance results

in a reduction of both tea yield and quality (Hazarika et al., 2009).

Therefore, there is an urgent need for intelligent and precise pest

control in Yunnan’s tea plantation management.
02
To achieve intelligent and precise pest prevention and control,

the foremost challenge to address is the accurate identification and

precise positioning of pests (Teske et al., 2019; Tang et al., 2023).

The conventional target recognition algorithm primarily relies on

analyzing the distribution attributes of pixels, such as color, texture,

and edges within an image, to establish a comprehensive visual

feature expression model. However, traditional image processing

methods have limited capabilities in feature representation, only

allowing for shallow vision expression. In addition, they suffer from

issues such as poor generalization ability and lack of robustness, the

applicability of it in complex scenarios has been constrained

(Fengyun et al., 2023), making it impossible to achieve rapid and

accurate identification of tea pests(Cheng et al., 2017; Kasinathan

and Uyyala, 2021).

In recent years, the field of pest identification has experienced

significant advancements thanks to the rapid development of

machine vision, deep learning, and related technologies.

Consequently (Hill et al., 1994; Kriegeskorte and Golan, 2019),
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neural network models have become widely popular and accepted

in this domain. Xu Lijia et al. optimized the YOLOX network model

by introducing a lightweight feature extraction network and

combining the high-efficiency channel attention mechanism. The

established pest detection model of Papilionidae has a recognition

rate of up to 95% (Xu et al., 2023). Gong He et al., based on Fully

Convolutional Networks, introduced a new DenseNet framework of

Efficient Channel Attention, and established a rice pest detection

model with a recognition rate of 98.28% (Gong et al., 2023). Qiang

Jun et al. used the improved SSD (Single Shot Multibox Detector)

model of the dual backbone network to detect citrus pests with an

accuracy of 86.01% (Qiang et al., 2023). Jia-Hsin Huang et al.

implemented a termite classification system based on the deep

learning model MobileNetV2, and the detection accuracy of soldiers

and workers reached 94.7% and 94.6%, respectively. Despite the

high accuracy demonstrated in the aforementioned research on pest

identification, notable challenges persist, including the extensive

computational requirements and associated costs (Huang

et al., 2021). The existing pest identification mainly focuses on

large-sized and easy-to-identify pests. Most of the current research

on small pests still uses a large-area pest identification method.

However, there are only small variations in appearance among

different types of pests, such as Empoasca pirisuga Matumura and

Arboridia apicalis. On the other hand, there are substantial

differences in appearance between different growth stages of the

same types of pests, for example, Toxoptera aurantia larvae and

adults. Consequently, the recognition accuracy of tea micro-insects

is quite low.

Based on the aforementioned issues, this study focuses on the

identification of tea pests as the primary objective and enhances the

existing model by incorporating the YOLOv7 network to achieve

faster and more accurate detection (Wang et al., 2023). To enhance

the efficiency of the calculation process and accelerate the

convergence speed of the model, MPDIou was utilized for

optimizing the initial loss function (Siliang and Yong, 2023; Xing

et al., 2023). Additionally, to maximize the model’s efficiency by

minimizing redundant features and reducing complexity and

computational costs, we introduced Spatial and Channel

Reconstruction Convolution. This method replaced a portion of

the network structure in the original model (Ma et al., 2019; Liu

et al., 2023). At the same time, vision transformer with Bi-Level

Routing Attention was further added to make the model calculation

allocation and content perception more flexible, so as to enhance

the recognition efficiency of body-impaired pests (Zhu et al., 2023).
2 Materials and methods

2.1 Image acquisition

The images used in this study were collected at the Hekai base of

Yuecheng Technology Co., Ltd., Menghai County, Xishuangbanna

Prefecture, Yunnan Province (Latitude 21.5, Longitude 100.28).

Image acquisition equipment is Magnification 200X, Lens

structure4 elements in four groups, Coating Multilayer, Input 5V/
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1A macro lens. During the image acquisition stage, we employed

additional measures to address the challenge of capturing small

pests. In conjunction with collecting pest images on leaves, we pre-

hang yellow pest boards on tea trees to effectively attract pests.

When the insect board attracted a large number of pests, they were

captured in photographs using a macro lens attached to a mobile

device. To ensure accuracy in the recognition model, this study

employed various mobile devices like the iPhone 14 Pro Max and

Redmi K50 for data collection.
2.2 Image preprocessing

In the original images provided, we have classified images of

four different pests: Empoasca pirisuga Matumura (Yin et al., 2021),

Toxoptera aurantii (Li et al., 2019), Xyleborus fornicatus Eichhoff

(Sivapalan, 1977), and Arboridia apicalis (Zhou et al., 2018). Among

them, a set of high-quality images was selected as the initial dataset,

including 112 images of Empoasca pirisuga Matumura, 115 images

of Toxoptera aurantii, 92 images of Xyleborus fornicatus Eichhoff,

and 98 images of Arboridia apicalis.

To address the problem of overfitting in the network caused by

a limited number of training images, this study utilized image

enhancement technology to augment the original data. By

employing techniques like cropping (Zhang et al., 2005), rotation

(Sun et al., 2019), local enlargement (Taniai et al., 2017), exposure

adjustment (Graham-Bermann and Perkins, 2010), and adding

Gaussian noise (Nataraj et al., 2009), the original dataset was

expanded by a factor of 11, resulting in a total of 4,587 images.

The specific operations conducted can be observed in Figure 1.

Subsequently, we deleted 501 low-quality images (insects

accounting for less than 20% of the image, extremely blurred,

etc.) that were generated during the image enhancement process.

Finally, a total of 1,008 images of Empoasca pirisuga Matumura,

1,033 images of Toxoptera aurantii, 1,024 images of Xyleborus

fornicatus Eichhoff, and 1,021 images of Arboridia apicalis were

successfully obtained. These images served as the essential datasets

utilized in the present study.

In this study, the Labeling tool was utilized to accurately label

the images in the dataset. Empoasca pirisuga Matumura was

assigned the label “A,” Toxoptera aurantii was assigned the label

“B,” Xyleborus fornicatus Eichhoffr was assigned the label “C,” and

Arboridia apicalis was assigned the label “D.” After completing the

annotation process, the TXT and XML files were generated. These

files include the name and size of the pest, as well as the location

information of the pest within the image. The image dataset was

constructed as a training set, a test set and a verification set in a ratio

of 6:2:2, and the specific division is shown in Table 1.
3 Improvement of YOLOv7 algorithm

To enhance the convergence speed of the model, streamline the

calculation process, diminish redundancy, decrease complexity, and

minimize computational expense, the present study has made
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advancements to the YOLOv7 network. These improvements aim

to facilitate greater flexibility in model calculation distribution and

content perception. In this study, MPDIou was used to optimize the

original loss function and Spatial and Channel reconstruction

Convolution was used to replace part of the network structure of

the original model, and vision transformer with Bi-Level Routing

Attention was further added. The improved network structure is

shown in Figure 2.
3.1 YOLOv7 network

YOLOv7 implemented a streamlined network architecture

comprising Input (Jiang et al., 2022), Backbone, Neck, and Head

components. This lightweight structure enables efficient and

effective object detection and recognition. The Input layer plays a

critical role in data preprocessing, encompassing various tasks such

as data enhancement, image size scaling, and predefined candidate

box size calculation. The Neck layer is a neck network that connects

feature layers of different scales and performs feature fusion, while
Frontiers in Plant Science 04
the Head layer is a head network, and the regression loss value is

calculated by the loss function. The network effectively utilizes

parameters and computational resources, resulting in decreased

parameter count, improved inference speed, and heightened

detection accuracy (Fan et al., 2023).
3.2 Improvement of loss function

IoU (Intersection over Union) is a simple function to calculate

the location loss (Cheng et al., 2021), and the overlap degree of the

two bounding boxes is evaluated by calculating the intersection over

union. Currently, several enhanced versions of the location loss

calculation method have emerged, namely, GIoU (Rezatofighi et al.,

2019), DIoU (Zheng et al., 2020), and CIoU (Wang and Song,

2021). The original YOLOv7 algorithm uses the CIoU function to

calculate the positioning loss. The expression of CIoU is shown in

Equation (1):

LOSSCIoU = 1 − IoU +
r2(b, bgt)

c2
+ av                                       (1)

where b and bgt are the predicted box and the ground truth

box, r2(b, bgt) represents the Euclidean distance between the

two, and c denotes the diagonal distance of the minimum

closure region that can contain both the prediction box and

the true box. V and a are the evaluation parameters and the

balance factor of the length-width ratio, respectively. The

formulas are shown in Equations (2, 3):

  v =
4
p2

(arctan
wgt

hgt
− arctan

w
h
)  2 (2)

a =
v

1 − IoU + v
(3)
TABLE 1 Dataset partitioning.

Pest name
Testing
sets

Training
sets

Validation
sets

Empoasca
pirisuga Matumura

605 202 201

Toxoptera aurantii 620 207 206

Xyleborus
fornicatus Eichhoffr

614 205 204

Arboridia apicalis 613 204 204

Total 2452 818 815
FIGURE 1

Image enhancement results.
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Although CIoU considered the intersection area of the bounding

box, the distance from the center point, and the aspect ratio of the

bounding box, it used the different measurement method of length-

width ratio instead of the real difference between width and confidence,

which reduces the convergence speed of the model. Based on this, the

study applies the latest MPDIoU loss function to enhance the original

loss function. The structure of the improved loss function is illustrated
Frontiers in Plant Science 05
in Figure 3. To simultaneously address the regression of overlapping

and non-overlapping bounding boxes, while considering the center

point distance and the deviation of width and height, author adopted

an approach that is called MPDIoU. This method utilizes a bounding

box similarity measure based on the minimum point distance. By

implementing this technique, the calculation process is simplified to a

certain extent, the model’s convergence speed is enhanced, and the

regression results will be more accurate. Its expression is shown in

Equations (4–7):

LMPDIoU = 1 −MPDIoU (4)

MPDIoU =
A∩B
A∪B

−
d21

w2 + h2
−

d22
w2 + h2

(5)

d21 = (xB1 − xA1 )
2 + (yB1 − yA1 )

2 (6)

d22 = (xB2 − xA2 )
2 + (yB2 − yA2 )

2 (7)

where A and B denote the prediction box and the true box, (xA1 ,

yA1 )and(x
A
2 , y

A
2 ) denote the upper left and lower right corner coordinates

of bounding box A, respectively. (xB1 , y
B
1 ) and (x

B
2 , y

B
2 ) denote the upper

left and lower right corner coordinates of bounding box B.
3.3 Spatial and Channel
Reconstruction Convolution

In order to diminish redundant features and reduce the complexity

and computational cost of the model, this study implemented Spatial
FIGURE 3

MPDIou structure diagram.
FIGURE 2

Improved YOLOv7 network structure diagram.
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and Channel Reconstruction Convolution to replace a portion of the

original YOLOv7 network structure. The Spatial and Channel

Reconstruction Convolution consists of two components, SRU

(Spatial Reconstruction Unit) and CRU (Channel Reconstruction

Unit) (Li et al., 2023). The core of SRU is to suppress the spatial

redundancy of feature map by means of separation–reconstruction,

while CRU further reduces the channel redundancy of feature map by

means of segmentation–conversion–fusion.

The structure of Spatial and Channel reconstruction

Convolution, SRU, and CRU is shown in Figure 4. For the input

feature map, the Spatial and Channel Reconstruction Convolution

first adjusts the number of channels through the convolution of 1�
1 and then uses SRU to operate the intermediate input features in

the bottleneck residual block to generate spatial refinement features.

Next, CRU is used to operate the spatial refinement features to

generate channel refinement features. Finally, the number of

channels in the feature map is restored by a 1 � 1 convolution

and the residual operation is performed.

The separation operation of SRU primarily utilizes the scaling

factor of Group Normalization to assess the information content of

the feature map (Wu and He, 2018). This allows for improved

separation of feature maps with varying levels of information,
Frontiers in Plant Science 06
ensuring the retention of feature maps with rich information and

filtering out those with lesser information. Its expression is shown

in Equation (8). The reconstruction operation is founded on the

cross-reconstruction technique, which aims to merge the

informative and less informative features. This is accomplished by

enhancing the information flow between the two, resulting in the

generation of more comprehensive information features while

conserving space. Its expression is shown in Equation (9).

Xout = GN(X) = g
X − mffiffiffiffiffi
s2

p
+ ϵ

+ b (8)

Xw
1 = W1 ⊗X,

Xw
2 = W2 ⊗X,

 Xw
11 ⊕ Xw

22   = Xw1,

 Xw
21 ⊕ Xw

12   = Xw2,

Xw1 ∪ Xw2 = Xw :

                                                                 

8>>>>>>>><
>>>>>>>>:

(9)

Among them, ⊗ represents element-by-element multiplication,

⊕ represents element-by-element addition, ∪ represents splicing, m
and s are the mean and standard deviation of X, respectively. e is a
FIGURE 4

Spatial and Channel reconstruction Convolution overall structure diagram.
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small positive number added to stabilize division. g and b are

trainable affine transformations, W is the weight value of the

feature map, W1 is the weight with rich information, and W2 is the

weight with not rich information.

The Split operation of CRU is to improve the computational

efficiency of the model by dividing the spatial refinement features

generated by SRU into two parts: Xup and Xlow, and using 1 � 1

convolution to compress them respectively. The Transform

operation uses different convolutions to extract the features of Xup

and Xlow obtained by the segmentation operation, so as to obtain two

sets of feature maps with different information richness. The

expressions are shown in Equations (10–11). The fusion operation

is to extract the spatial channel information of the feature maps Y1

and Y2 by Pooling, and merge the features Y1 and Y2 in the form of

channels to generate Channel-Refined Feature Y. Its expression is

shown as Equations (12–14).

Y1 = MGXup +MP1Xup (10)

Y2 = MP2Xlow ∪ Xlow (11)

Sm = Pooling(Ym) =
1

H �Wo
H

i=1
o
W

j=1
Yc(i, j),m = 1, 2           (12)

b1 =
es1

es1 + es2
, b2 =

es2

es1 + es2
, b1 + b2 = 1                             (13)

Y = b1Y1 + b2Y2 (14)

Among them, MG, MP1 and MP2 are learnable weight matrices in

convolution operations, and b1 and b2 are feature importance vectors.
3.4 Vision transformer with Bi-Level
Routing Attention

Attention is a fundamental element of the visual converter and a

crucial tool for capturing long-term dependencies (Han et al., 2021;
Frontiers in Plant Science 07
Zhou et al., 2021). In this study, it was observed that YOLOv7, when

employed for pest recognition training, did not exhibit satisfactory

performance in identifying images of body-impaired pests. Therefore,

this study has enhanced the YOLOv7 network by incorporating vision

transformer with Bi-Level Routing Attention. This integration has

aimed to facilitate better computing allocation and enhance content

perception, resulting in improved flexibility. The image has been divided

into S� S non-overlapping regions by vision transformer with Bi-Level

Routing Attention, and the region-level features have been calculated by

average pooling. Then, perform coarse-grained regional-level routing,

calculate and retrieve affinity. Next, perform public key normalization

and aggregate the tensor of key-value pairs. Finally, during the collection

and dispersion of key-value pairs, perform fine-grained token-to-token

attention calculation, and the structure is depicted in Figure 5.

After the pest image is divided into S � S non-overlapping

regions, the feature vector contained in each region is H�W
S2 . Here, H

is the height of the original image, W is the width of the original

image, and Q, K, V are obtained by linear mapping of the feature

vectors. Its expression is as shown in Equation (15), where Xr ∈
RS2�HW

S2
�C , Xr r denotes the input image after segmentation,Wq,Wk,

and Wv denote the weight projection of query, key, and value,

respectively. The region-level features are calculated by average

pooling, and the average value of each region is calculated. Qr ,Kr ∈
RS2�C , and the adjacency matrix of the inter-regional correlation

between Qr and Kr is calculated. The expression is shown in

Equation (16), where Ar represents the adjacency matrix of the

correlation, Qr represents the region-level query, Kr represents the

region-level key, and T represents the transpose operation.

The coarse-grained region-level routing calculation uses the

routing index matrix Ir ∈ NS2�k to save the index of the first k

links row by row, so that only the first k connections of each region

are used when pruning the correlation graph. The expression is

shown in Equation (17). The public key normalization operation is

to aggregate the tensors of key and value, and the aggregation

formula is shown in Equations (18, 19). Among them, Kg

represents the tensor after the key aggregation, K represents the

key, Ir represents the routing index matrix, Vg represents the tensor
FIGURE 5

Vision transformer with Bi-Level Routing Attention Structure Diagram.
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after the value aggregation, andV represents the value. Collecting the

scattered key-value pairs is to use the attention operation on the

aggregated K–V pairs to perform fine-grained label-to-label

attention calculation, and its expression is shown in Equation (20).

Here, O represents fine-grained mark-to-mark attention, and LCE

(V) represents local context enhancement.

Q = XrWq,K = XrWk,V = XrWv   (15)

Ar = Qr(Kr)  T (16)

Ir = topkIndex(Ar)                                                    

(17)

Kg = gather(K , Ir) (18)

Vg = gather(V , Ir) (19)

O = Attention(Q,Kg ,Vg) + LCE(V) (20)
4 Model training and result analysis

To assess the detection capabilities of the enhanced YOLOv7

algorithm on microscopic tea pests, this study established three groups

of comparative experiments. Four networks, namely, improved YOLOv7,
Frontiers in Plant Science 08
original YOLOv7, faster-RCNN (Cheng et al., 2018), and SSD (Liu et al.,

2016), were employed to train and evaluate the model using various

datasets. To ensure the scientificity and rigor of the model test results, the

hardware equipment and software environment employed in this study

are identical. The model was trained using the Windows 11 operating

system. The running host was configured with a 12th Gen Intel (R) Core

(TM) i7-12700 H 2.30 GHz processor, 512 GB solid-state drive and

NAIDIA GeForce RTX 3070 laptop GPU graphics card, 16 GB RAM,

NVIDIA 528.24 driver, CUDA 1.3.1 version, and network development

was performed using Python 3.7 and Pycharm 2017.
                   
4.1 Training results and analysis

The loss function serves as an indicator for quantifying the disparity

between the predicted and actual outcomes of a model (Zhao et al.,

2015; Zhao et al., 2016). It is of paramount importance as it enables

evaluation of the model’s performance. The lower the loss function

value is, the closer the model prediction result is to the actual result, and

the better the model performance is. As depicted in Figure 6, it can be

observed that the gradient descent rate of the loss function was

significantly accelerated during the initial phase of model training in

the improved YOLOv7 model. However, as the training progresses to

the 100th round, the rate at which the loss function decreased started to

slow down considerably. Additionally, the curve exhibited a distinct

oscillation pattern, becoming notably prominent. As the training

progressed, the curve observed a gradual stabilization phase after 200
FIGURE 6

Loss function curve change.
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rounds. Moreover, the loss function started to converge, resulting in the

final total loss stabilizing below 3.4%. By comparing the loss function

change curves between the original YOLOv7 and the improved version,

we could observe a considerable decrease in the prediction box position

loss, prediction box confidence loss, and classification loss in the

improved YOLOv7. Among them, the position loss of the prediction

box decreased most significantly, with a decrease of more than 15% on

the training set and the test set.

In order to comprehensively evaluate the detection accuracy of

the enhanced model, this study incorporated several evaluation

metrics including Precision (Streiner and Norman, 2006), Recall

(Gillund and Shiffrin, 1984), F1 (Yacouby and Axman, 2020), AP

(average precision)(He et al., 2018), and mAP (mean average

precision) (Henderson and Ferrari, 2017). The corresponding

expressions are presented as Equations (21, 25).

  Precision =
TP

TP + FP
                                                    (21)

 Recall =
TP

TP + FN
                                                          (22)

  F1   = 2� Precision� Recall
Precision + Recall

                                    (23)

 AP =
Z 1

0
  Precision(Recall)dRecall                         (24)
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 mAP = o
C
i=1AP(i)

C
                                                          (25)

Among them, TP represents the number of correct recognition,

FP represents the number of recognition errors, FN represents the

number of undetected, and C is the number of detected categories.

From a predictive standpoint, accuracy serves as a statistical

indicator. It represents the proportion of samples that are

correctly classified, that is, they are predicted to belong to a

certain classification and indeed do. The recall rate is a vital

indicator that measures the model’s proficiency in accurately

retrieving samples from the entire set of classifications. The

balanced score is derived from a comprehensive evaluation of

both accuracy and recall rate, combining them through the use of

harmonic average. As shown in Figure 7, compared with the

original YOLOv7 model, the improved YOLOv7 in this study

made significant progress in the detection effect. After

improvement, the Precision metric exhibited an increase of

5.68%, while the Recall metric showed an increase of 5.14%.

Additionally, the F1 metric witnessed an increase of 5.41%.

AP is a widely employed metric for evaluating positioning

accuracy and prediction accuracy. The AP value is determined

based on the Precision and Recall of the model. By drawing the PR

curve, Precision is set as the horizontal axis, and Recall is set as the

vertical axis. The AP value can be obtained by measuring the area

under the PR curve, and mAP is the average value of all kinds of AP.

According to Figure 8, the improved model utilized in this study

demonstrated advancements in recognizing Empoasca pirisuga
FIGURE 7

Precision, Recall, F1 Score Curve. Light blue represents Empoasca pirisuga Matsumura, orange represents Toxoptera aurantia, green represents
Xyleborus fornicatus, red represents Arboridia apicalis, and dark blue represents all types of pests.
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Matumura when compared to the original YOLOv7, faster RCNN,

and SSD. Specifically, there was a notable improvement of 2.26%

when compared to the original YOLOv7, a significant enhancement

of 9.23% as compared to faster RCNN, and a substantial progress of

5.68% in contrast to SSD. In terms of Toxoptera aurantii

identification, the AP improvement was 2.72%, 9.4%, and 5.63%,

respectively. For the identification of Xyleborus fornicatus Eichhoff,

the AP improvement was 2.07%, 9.34%, and 7.93%, respectively.

For the identification of Arboridia apicalis, there was an increase in

AP of 3.26%, 10.27%, and 8.04%, respectively. The final mean mAP

increases were 2.58%, 9.26%, and 6.82%, respectively.
4.2 Model detection experiment

In this study, the improved model’s advantages were further

verified through the detection and identification of Empoasca

pirisuga Matumura, Toxoptera aurantii, Xyleborus fornicatus

Eichhoffr, and Arboridia apicalis pest images with single-target and

multi-target limb impairments, under varying light intensities. In order

to guarantee the reliability of the results, the external verification sets

used in the training and testing of the improved YOLOv7, YOLOv7,

faster RCNN, and SSD networks were the same, and the training

platform configuration was also consistent. The final comparison

results were shown in Figure 9. A represents Empoasca pirisuga

Matumura, B represents Toxoptera aurantii, C represents Xyleborus

fornicatus Eichhoffr, and D represents Arboridia apicalis.

The experimental results that the model tested in this study can

successfully detect single target and multi-target when the pest’s

body in the detection image was complete, and there was sufficient

lighting. Notably, the improved YOLOv7 exhibited the highest

confidence in its detection results, while the Faster-RCNN
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showed the lowest confidence. Moreover, the improved YOLOv7

exhibited an average confidence increase of over 2% when

compared to the original YOLOv7. When the insect’s body in the

image remained undamaged but the light intensity was low, both

the improved YOLOv7 and the original YOLOv7 algorithms can

still produce detection results with the highest confidence. However,

the average confidence level of the improved YOLOv7 model was

considerably lower compared to the original YOLOv7. When the

degree of physical disability of the detected pest was less than 50%,

the tested model can still perform single-target and multi-target

detection, but the confidence levelsignificantly reduced; among

them, the improved YOLOv7 maintains the highest detection

confidence; compared to the original YOLOv7, the confidence has

been augmented by 7.8%. When the body degree of the detected

pests was greater than 50%,theimproved YOLOv7 was still capable

of detecting targets and had high detection confidence, while other

models except improved YOLOv7 exhibited significant omission

and recognition errors.

In the external verification of the model, the improved YOLOv7

showed significant advancements compared to the original

YOLOv7, faster RCNN, and SSD. The improved YOLOv7

achieved an increase in frames per second by 5.75 HZ, 34.42 HZ,

and 25.44 HZ, respectively, compared to the other models.

Additionally, the mAP in actual detection improved by 2.49%,

12.26%, and 7.26%, respectively. Furthermore, the improved

YOLOv7 managed to reduce the parameters by 1.39 G, building

upon the foundation of the original YOLOv7. After conducting a

comprehensive comparison, it was evident that the enhanced

YOLOv7 utilized in this study surpassed the original YOLOv7 in

terms of both detection accuracy and speed. Consequently, this

improvement made it more advantageous for deploying the latter

model on mobile terminals.
FIGURE 8

Different model AP and mAP comparison.
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5 Discussion

5.1 Effect of loss function improvement on
YOLOv7 network

The loss function in machine learning plays a crucial role in

evaluating the discrepancy between the predicted value and the

actual value. An enhanced loss function can effectively enhance the

precision and robustness of the model, subsequently influencing

the training and detection performance of the YOLOv7 network.

The MPDIoU employed a bounding box similarity measurement

that builds upon the minimum point distance concept, thereby

yielding a faster convergence speed in comparison to the CIoU

within the YOLOv7 network. This approach not only simplified the

calculation process to a certain degree but also improved the

model’s convergence speed while producing more accurate

regression results.
5.2 The impact of Spatial and Channel
reconstruction Convolution on
YOLOv7 network

Currently, existing deep learning algorithms used for tea pest

identification suffer from issues of complexity and high

computational cost, leading to an abundance of redundant
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features. However, through the implementation of the Spatial and

Channel Reconstruction Convolution, these redundant features

within the feature map can be effectively mitigated. This can be

achieved through the utilization of two key components: the SRU

and the CRU. By incorporating these components, the complexity

and computational cost of the model can be significantly reduced.

Notably, this study successfully diminishes the complexity and

computational expenses of the YOLOv7 network model by

introducing the Spatial and Channel Reconstruction Convolution.

This development holds immense importance for future

implementation on mobile devices.
5.3 The impact of vision transformer with
Bi-Level Routing Attention on
YOLOv7 network

The incomplete limbs lead to the loss of crucial information

about the target pests, hindering the deep learning model from

obtaining a complete understanding of the pest characteristics and

resulting in recognition errors and omissions. In this study, we

found that the vision transformer with Bi-Level Routing Attention

offered a superior recognition effect on limb-impaired pests.

Addit ionally , i t provided more flexible al locat ion of

computational resources and improved content perception.

Moreover, the memory occupancy rate and computation
FIGURE 9

Different model detection results comparison.
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requirements were lower compared to the traditional self-attention

mechanism. The inclusion of vision transformer with Bi-Level

Routing Attention in this study significantly enhanced the

confidence in assessing the degree of physical disability among

detected pests, regardless of whether it was below or above 50%.

Although the visual recognition algorithm of this study can

accurately identify tea pests, the collected area during the data

acquisition process is relatively small, consisting of samples from

only one base in Menghai County, Xishuangbanna Dai

Autonomous Prefecture, Yunnan Province. Additionally, due to

the diverse climate in Yunnan Province, the appearance of tea pests

may vary. Therefore, in the future, our team will further expand the

collection, no longer limited to one location, and collect pest data

from different periods and more types to construct a network model

with a wider applicability. In future work, we will also further train

and deploy the improved YOLOv7 network model on edge devices

and apply it to the production and management of Yunnan tea

gardens, enabling accurate and fast identification and treatment of

tea pests.
6 Conclusion

This study achieved further optimization of the original loss

function by employing MPDIou, which accelerated the convergence

speed of the model, simplified the computational process, and

improved the regression accuracy. The replacement of certain

network structures with Spatial and Channel reconstruction

Convolution reduced the redundant features of the model,

decreased its complexity, and computational cost. The

incorporation of vision transformer with Bi-Level Routing

Attention enabled more flexible computational allocation and

content awareness. The experimental results demonstrated that

the improved YOLOv7 network performed well on the tea

pest dataset.

The final total loss of the improved YOLOv7 network stabilized

below 3.4%, a decrease of 0.8% compared to the original YOLOv7

network. Furthermore, the improved YOLOv7 model exhibited

significant decreases in bounding box position loss, bounding box

confidence loss, and classification loss, with the most remarkable

decrease in bounding box position loss, which exceeded 15% on

both the training and testing sets. Compared to the original

YOLOv7 model, the improved YOLOv7 in this study showed

significant progress in detection effectiveness, with a precision

improvement of 5.68%, recall improvement of 5.14%, F1

improvement of 5.41%, and ultimately an mAP improvement of

2.58%. Additionally, when detecting limb-deficient pests, the

improved YOLOv7 model still maintained higher detection

accuracy and confidence compared to traditional deep learning

models such as YOLOv7, faster RCNN, and SSD.

This study provided a feasible research method and important

reference for addressing key issues in tea pest recognition, such as

small datasets and difficulty in extracting pest features.
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