Phytobiomes have a significant impact on plant health. The microbiome of
A multi-factorial metagenomic study was conducted with three cannabis genotypes and two soil sources, which were tested both before and after autoclave sterilization. Seedlings were grown on soil, then rinsed and surface-sterilized, and 16S rDNA amplicons from seedling endophytes were sequenced, taxonomically classified, and used to estimate alpha- and beta-diversity in Qiime2. The statistical significance of differences in seedling microbiomes across treatments was tested, and PiCRUST2 was used to infer the functional relevance of these differences.
Soil was found to have a profound effect on the alpha-diversity, beta-diversity, relative abundance, and functional genes of endophytic bacteria in germinating cannabis seedlings. Additionally, there was a significant effect of cannabis genotype on beta diversity, especially when genotypes were grown in sterilized soil.
The results indicated that a component of cannabis seedling endosphere microbiomes is seed-derived and conserved across the environments tested. Functional prediction of seedling endophytes using piCRUST suggested a number of important functions of seed-borne endophytes in cannabis including nutrient and amino acid cycling, hormone regulation, and as precursors to antibiotics. This study suggested both seed and soil play a critical role in shaping the microbiome of germinating cannabis seedlings.