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Assessing green manure
impact on wheat productivity
through Bayesian analysis
of yield monitor data
Niko Gamulin*, Miroslav Zorić , Ðura Karagić and Sreten Terzić

Agro R&D, Login EKO d.o.o., Aradac, Serbia
Agronomy research traditionally relies on small, controlled trial plots, which may

not accurately represent the complexities and variabilities found in larger, real-

world settings. To address this gap, we introduce a Bayesianmethodology for the

analysis of yield monitor data, systematically collected across extensive

agricultural landscapes during the 2020/21 and 2021/22 growing seasons.

Utilizing advanced yield monitoring equipment, our method provides a detailed

examination of the effects of green manure on wheat yields in a real-world

context. The results from this comprehensive analysis reveal significant insights

into the impact of green manure application on wheat production,

demonstrating enhanced yield outcomes across varied landscapes. This

evidence suggests that the Bayesian approach to analyzing yield monitor data

can offer more precise and contextually relevant information than traditional

experimental designs. This research underscores the value of integrating large-

scale data analysis techniques in agronomy, moving beyond small-scale trials to

offer a broader, more accurate perspective on agricultural practices. The

adoption of such methodologies promises to refine farming strategies and

policies, ultimately leading to more effective and sustainable agricultural

outcomes. The inclusion of a Python script in the appendix illustrates our

analytical process, providing a tangible resource for replicating and extending

this research within the agronomic community.
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1 Introduction

Green manure is the practice of incorporating plants into the soil as a nutrient source,

has gained increasing attention in recent years due to its potential to enhance soil fertility,

improve crop productivity, and promote sustainable agricultural practices Ye et al.

(2014); Cai et al. (2019); Ma et al. (2021). Additionally, the escalating expenses linked

with chemical fertilizers have underscored the significance of exploring and
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implementing green manure practices Tanveer et al. (2019); Li

et al. (2020); Lei et al. (2022). Green manure offers ecological

services by harnessing the power of natural processes to protection

against soil erosion, reduction of nutrient losses, improvement of

soil and water quality, and to some extent, the reduction of

occurrence of pests and weeds Dabney et al. (2001); Hartwig

and Ammon (2002); Ryder and Fares (2008); Dorn et al. (2015).

Crops such as leguminous species have been used widely as green

manures to increase the available nitrogen in the soil and organic

matter in general Vyn et al. (2000); Thorup-Kristensen

et al. (2003).

The positive impact of field peas as green manure crops on

wheat yield and quality is well-established. Wheat stands as a

pivotal crop in human civilization, being the most extensively

cultivated cereal globally, with over 220 million hectares planted

annually across various climatic zones on all continents. Therefore,

even a modest enhancement in wheat production sustainability,

such as through greenhouse gas emission reduction, can exert a

significant impact on the global environment. However, the effects

of legume crops on subsequent cereals are highly variable

Kirkegaard et al. (2008); Preissel et al. (2015) and pose challenges

in predictability. This variability can be attributed to diverse

environmental conditions and agronomic practices.

Agricultural researchers traditionally conducted small-scale

field trials using appropriate experimental designs in order to

evaluate or compare the performance of different treatments, crop

varieties, or management practices. Classical experimental designs

are based on Fisher’s principles: randomization, replication and

local control Fisher et al. (1960). Statistical analysis employed by

appropriate linear model approaches is based on the key

assumption that the model errors are independent, identically

distributed and with constant variance Piepho et al. (2013).

Frequently, all these assumptions are violated due to omnipresent

within-field spatial variability. It implying the presence of the small

scale variability or among plot correlation. Gilmour et al. (1997)

divided the experimental design variation into three meaningful

types of variation i.e., (i) local trend which reflect small variations in

soil fertility and moisture; (ii) large scale variation reflects the global

trend of variation typically along the row or column directions and

(iii) extraneous variation caused from agricultural management

practices that may have a recurrent pattern (for example,

direction of planting or harvesting). Availability of the linear

mixed models lead the development of the powerful

methodologies and approaches for analysis of data from well-

designed randomized experiments Besag and Kempton (1986);

Grondona et al. (1996) which gained in precision and power of

the conclusions Marchant et al. (2019).

In contrast to small-scale field trials, the large-scale field or on-

farm trials are more variable and less precise but more

representative when compared with a standard agronomic

practice in a given production region Piepho et al. (2011).

Intensive developments in the field of precision agriculture open
Abbreviations: MCMC, Markov Chain Monte Carlo, NUTS, No-U-Turn

Sampler; TF, Test Fields; CF, Control Fields.
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the possibilities for conducting of the on-farm experiments to

compare the different agronomic practices or to test the

conclusions from a small-scale field experiments with advanced

possibilities in data collection with a spatial resolution such as the

yield monitor data throughout the standard machineries Paccioretti

et al. (2021); Hegedus et al. (2023).

Previously mentioned techniques for analysis small-scale

experiments cannot be readily applied for data analysis of the on-

farm experiments due to their complexity, heterogeneity and spatial

scale variability. There are large number of methodological

approaches for the analysis of on-farm experiments ranging from

geospatial regression models to Bayesian statistical methods

Kyveryga (2019); Cho et al. (2021); Paccioretti et al. (2021);

Hegedus et al. (2023).

Bayesian statistics is a “yet another” and powerful framework

for making informed decisions from the data Kruschke (2015). It

allows researchers to incorporate existing knowledge, beliefs, or

previous data into the model. For example, existing a priori

knowledge about physiological parameters of the crop, soil

properties, as well as weather variables can be used for the

improvement of the prediction accuracy. Furthermore, Bayesian

statistics provides a framework for explicit modeling uncertainty of

various sources such as weather conditions or occurrence of pests

and plant diseases Bi and Chen (2011).

Bayesian statistics played a crucial role in our proposed model

for estimation of the green manure effect on the commercial crop.

Our approach, which involves updating the probability for a

hypothesis as more evidence or information becomes available,

allowed us to incorporate both the inherent variability in data and

the uncertainty in our prior beliefs into Bayesian model. This

provided a distinct and robust understanding of the effectiveness

of green manure, and allowed us to make more informed

recommendations for its use on production fields.

Green manure is an important natural and sustainable tool for

maintaining the production of the healthier food while reducing the

negative environmental impact of agriculture on living

environment and making agriculture more resilient on climate

change. To our best knowledge this is first large-scale study to

compare the effectiveness of the green manure on yield of

commercial crop using Bayesian estimation model and spatial

resolution of yield monitor data. The primary objective of this

study is to demonstrate the proposed model functionality using

three real field datasets from two growing seasons. Secondly, the

theoretical behind of our proposed Bayesian model will be outlined.

The Python script for the easy implementation of the proposed

model will be described.
2 Materials and methods

2.1 Site description

The sites (Figure 1) climatic zone is characterized by a long-

term annual average temperature of 11.1°C and a frost-free period

extending over 180 days. The region typically receives an annual

precipitation sum of 580 mm. However, the year 2021 experienced
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precipitation levels exceeding this multi-year average by 88 mm.

Despite this overall increase, a critical drought period lasting from

late May through June significantly affected the critical growth

stages of wheat, namely flowering and grain filling, due to reduced

nutrient availability and constrained yields. This drought was

exacerbated by an increase in the annual air temperature by 1.4°C

above the long-term average, further stressing the crops. In contrast,

2022 saw a reduction in precipitation, with the Mužlja (MU) and

Ðurdevo¯ (DJ) locations receiving 153 mm and 175 mm less than

the multi-year average, respectively. Drought periods were notably

severe, especially fromMay to June and June-July for MU, and from
Frontiers in Plant Science 03
May through the first decade of August for DJ. The annual

temperature also increased by 2.1°C, affecting both soil moisture

and air humidity (Figure 2).

The soil across the experimental sites is classified as Pellic

Vertisol (Aric, Mollic, Gleyic, Raptic) (VR-pe-ai.mo.gl.rp)

according to the WRB classification. This heavy clay soil, with a

combined silt and clay content ranging from 76-85%, exhibits

significant physical characteristics that influence its agricultural

potential. Detailed information on the soil texture is provided in

Table 1. The soil’s structurelessness when wet and its propensity to

crack deeply (up to 50 cm) when dry, alongside high bulk density,
FIGURE 1

Aerial view of agricultural fields in Mužlja and Ðurđevo Vojvodina, Serbia, where data was analyzed for the year 2022. The legend differentiates
between fields treated with green manure (Test) and untreated fields (Control), providing a visual representation of the experimental design for the
assessment of green manure’s impact on crop yield.
FIGURE 2

Comparison of seasonal weather data for MU (2021 and 2022) and DJ (2022), illustrating average monthly air temperatures, precipitation sums, and
freeze probabilities. The x-axis categorizes months alongside freeze probabilities, while dual y-axes display temperatures and
precipitation, respectively.
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substantial total porosity, and very low water infiltration rates,

underscore a prevalence of micropores. These features contribute

to its high water holding capacity, as detailed in Table 2, yet hinder

drainage and soil aeration. During spring, the soil remains cool and

moist for an extended period, effectively shortening the

vegetation season.

Acidic in nature, the soils at both locations have a very low

calcium carbonate (CaCO3) content and a moderate to high level of

organic matter, contributing to their fertility profile. Available

phosphorus levels are very low, while potassium levels are

adequate (Table 3). It is important to note that the last

application of synthetic mineral fertilizers occurred in the autumn

of 2018, as part of the transition to organic farming practices,

ensuring that residual effects on soil nutrient status during our

study period were minimized.
2.1.1 Plant material description
2.1.1.1 Green manure crop

Field peas (Pisum sativum var. sativum), the local cultivar NS

Mraz, were utilized as a green manure crop. This cultivar is a winter

semidwarf field pea variety, characterized by the development of

lush vegetative biomass reaching an average height of 75-80 cm at

the flowering stage (BBCH-scale 65). It is an early-maturing variety,

with relatively thick and sturdy stems, exhibiting good standing

ability and favorable tolerance to major pea diseases. Additionally, it

demonstrates excellent tolerance to low temperatures, even in the

absence of snow cover. The achieved yields of green biomass, dry

matter, content of key macroelements, and ash are presented

in Table 4
2.1.1.2 Wheat crop

The French winter soft wheat (Triticum aestivum L.) variety

Solenzara has been utilized across all environments. It is recognized

for its notable yield potential and good disease tolerance. It

demonstrates satisfactory performance even in heavy clay soils
Frontiers in Plant Science 04
and semi-arid climates, making it a viable option for various

agricultural conditions, including organic farming systems.
2.2 Data

Our study meticulously curated yield monitoring data from

agricultural fields for a detailed analysis of crop yields influenced by

green manure application. The initial phase in 2021 concentrated on

fields within MU, where we established two sets of fields: test fields

(TF) which had green manure applied, and control fields (CF) which

did not, to set a benchmark for yield comparison within this locale.

For the 2022 season, we extended our observation to include a

different set of fields in MU, alongside newly incorporated fields

from DJ, maintaining the division into TF and CF in both areas for

our comparative study. These fields were selected based on their

historical management sequences being consistent across both TF and

CF, ensuring comparability with the sole variable being the application

of green manure. This selection process, in conjunction with aerial

imagery presented in the article, allowed for a detailed bifurcated

analysis of two geographically proximate locations—separated by

roughly six kilometers—thereby enhancing the robustness of our

comparative framework. The dataset’s comprehensive details, such

as the number of measurements, field counts, and total area sizes for

each location, are systematically listed in Table 5.

To further refine our experimental design, as depicted in

Figure 3, the fields were segmented into precisely measured

polygons to serve as distinct observational units. These polygons

were dimensioned to align with the width of the harvesting

equipment and the length determined by the interval of

measurement combined with the harvester’s speed. This granular

method of field division was critical in capturing the subtle

variances within each field. Through this structured approach, we

ensured that the fields within each pair—TF and CF—were not only

similar in terms of past management practices and soil types, with

slight variations between MU and DJ, but also that they were

geographically aligned to minimize environmental variability.

Thus, our experimental design allowed for a nuanced analysis

that could accurately evaluate the impact of green manure on

crop yield variations, control l ing for other potential

confounding factors.

2.2.1 Data preparation
2.2.1.1 Filtering

Our data filtering process aimed to bolster the reliability and

validity of the subsequent analysis. Initially, outliers were rigorously
TABLE 2 Physical attributes of soil up to 30 cm in depth.

Location

Physical Properties Water retention (% weight)

Specific weight
(g cm-3)

Bulk density
(g cm-3)

Porosity total
(vol. %)

Filtration
(K-Darcy
(cm s-1)

33 kPa 625 kPa 1500 kPa

MU 2.38 1.55 30.16 5.43x10-4 47.24 40.34 35.61

DJ 2.52 1.38 35.13 9.16x10-4 45.55 41.67 28.82
TABLE 1 Soil texture (%) up to 30 cm in depth.

Location Coarse
sand
(2-
0.2
mm)

Fine sand
(0.2-
0.02
mm)

Silt
(0.02-
0.002
mm)

Clay
(<0.002
mm)

MU 0.60 13.90 24.07 61.44

DJ 1.09 22.43 26.68 49.80
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identified by applying a statistical threshold based on the 3-sigma

rule. This rule posits that in a normal distribution, nearly all values

(99.7%) lie within three standard deviations (sigma) of the mean.

Measurements falling outside this range were deemed outliers and

excluded from the datasets. This criterion was chosen as it effectively

removes extreme deviations that could disproportionately influence

the analysis, ensuring a focus on data that accurately represents the

central tendency and variability of our sample populations.
2.2.1.2 Sampling

In MU22 and DJ22 datasets, we encountered a significant

disparity in area sizes between TF and CF, which necessitated the

implementation of a sampling process to equilibrate the

representation of each field within our analysis. For MU22, we

had 423 measurements for the TF and 188 for the CF, while for

DJ22, both the TF and CF contained 964 measurements each.

To address this, we employed a stratified random sampling

technique. Each field, whether a test or control, was treated as a

stratum from which we randomly selected a proportional number

of measurements. This approach ensured that each field contributed

equally to the final analysis, irrespective of its size, thus maintaining

the integrity of the comparison between the TF and CF groups. For

MU22, this meant random sampling from the TF and CF

measurements to balance the two groups. In contrast, for DJ22,

since the number of measurements was already balanced, we

ensured that the selection was random and representative.

This sampling strategy served three key purposes:
Fron
1. It guaranteed that each field, regardless of acreage, had an

equivalent influence on the overall results, thereby

preventing larger fields from unduly affecting the

analytical outcome.

2. It reduced the potential for bias that might favor the test

group if the TF areas were significantly larger, as larger

sample sizes can lead to overestimation of effects.

3. It increased the comparability between the TF and CF

groups, thereby enhancing the reliability and validity of

the study’s conclusions.
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In summary, this meticulous filtering and sampling process was

designed to refine our datasets, ensuring that they accurately reflect

the true effects of green manure application on crop yield without

distortion from outliers or uneven field representation.
2.3 Theoretical framework

2.3.1 Bayesian analysis and Markov Chain Monte
Carlo techniques

In our study, we employed Bayesian analysis, a statistical

approach that combines prior knowledge with observed data to

update the probability of a hypothesis Kruschke (2015); West

(2016). This method is particularly advantageous when dealing

with complex systems or limited data, as it facilitates a more

comprehensive interpretation of results Kruschke (2010).

We also utilized Markov Chain Monte Carlo (MCMC)

techniques, a class of algorithms designed to approximate

complex probability distributions often encountered in Bayesian

analysis Besag et al. (1995). MCMC methods generate random

samples from a target distribution by simulating a Markov chain, a

sequence of random variables where each variable depends solely on

its immediate predecessor Karras et al. (2022). Over time, the chain

converges to the desired distribution, enabling the estimation of

various quantities of interest Robert (1995).

In the context of evaluating the effectiveness of green manure,

these statistical techniques were instrumental in analyzing the

extensive yield monitor data. Traditional agronomic research

often relies on comparing control and test groups comprising

microplots, which may not adequately account for field

heterogeneity or other factors influencing crop yields.

By harnessing the capabilities of Bayesian analysis and MCMC

techniques, our study surmounted these limitations. The extensive

yield monitor measurements offered a more detailed and accurate

representation of each field, facilitating a deeper understanding of

the relationships between green manure application and crop yields.

This approach allowed us to account for field heterogeneity and

other confounding factors, yielding more robust and statistically

significant results.
TABLE 4 Winter field peas, cv. NS Mraz, aboveground biomass yield and chemical composition at flowering stage (BBCH-scale 65).

Location Fresh matter yield
(kg m−2)

Dry matter yield
(kg m−2)

Macronutrients content (%) Ash content (%)

N P K C

MU21 2.20 0.431 3.867 0.29 2.081 41.74 9.64

MU22 2.48 0.610 3.58 0.43 2.69 39.04 9.79

DJ22 2.83 0.481 3.977 0.334 2.014 42.01 9.27
TABLE 3 Chemical attributes of soil up to 30 cm in depth.

Location pH in
1M KCl

ECe 25°C
dS/m

CaCO3

(%)
SOC
(%)

Total N
(%)

AL-P2O5

(mg/100g)
AL-K2O

(mg/100g)

MU 5.05 0.479 0.11 4.07 0.261 4.74 33.86

DJ 5.71 0.502 0.24 3.38 0.17 3.04 23.19
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2.3.1.1 Estimating priors

In this study, the posterior distribution is derived from the dry

yield measurements observed in both scenarios - with and without

the application of green manure. Each measurement is modeled as a

function of the mean (µ) and standard deviation (s). These
parameters, µ and s, are priors that are computed given the

posterior, under the assumption that the distribution follows a

Normal (Gaussian) pattern. The direct analytical calculation of

prior values µ and s can be complex. Therefore, it is standard

practice to estimate these values using MCMC methods, which

provide a powerful and efficient approach for approximating

these parameters.

MCMC methods are a class of algorithms for sampling from a

probability distribution Van Ravenzwaaij et al. (2018). They

construct a Markov chain that has the desired distribution as its

equilibrium distribution. The states of the chain, after a large

number of steps, are then used as samples from the

desired distribution.

The MCMC method operates in the following manner:
Fron
1. Initialization: Start from any position. This could be a

random position or an educated guess.

2. Iteration: For each iteration of the algorithm, propose a new

position. The method to propose new positions is specific

to the MCMC algorithm being used.

3. Acceptance or rejection: Based on the likelihood of the new

position (which is calculated from the desired distribution),

decide whether to move to the new position or stay at the

current position. This decision is made using the

acceptance rule, which, in the case of the Metropolis-

Hastings algorithm, for example, accepts movements that

increase the likelihood and also sometimes accepts

movements that decrease it.
This process is repeated many times. The positions form a

Markov chain, where each position is dependent only on the

previous one, and after a large number of iterations, the

distribution of positions will approximate the desired distribution.

In the context of Bayesian inference, MCMC is used to sample

from the posterior distribution of the parameters. In the provided

code, the No-U-Turn Sampler (NUTS) Hoffman et al. (2014), an

extension of the Hamiltonian Monte Carlo, is used for this purpose.

The foundation of MCMC technique is anchored in Bayes’ theorem

Harney (2003), as presented in Equation (1).
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P(qjD) = P(Djq)P(q)
P(D)

(1)

The components of Equation (1) can be delineated as:
• P(q|D) is the posterior distribution of the parameters (q)
given the data (D). This is what we want to compute.

• P(D|q) is the likelihood of the data given the parameters.

• P(q) is the prior distribution of the parameters.

• P(D) is the probability of the data, also known as

the evidence.
MCMC methods, including NUTS, make it possible to sample

from the posterior distribution without needing to compute the

evidence P(D), which can be computationally expensive or

even intractable.

By employing MCMC on the dry yield measurements, we can

derive estimates for the most probable values of µ and s. In essence,

the absolute discrepancy between the reconstructed dry yield values

and the observed measurements should be minimized. This process

allows us to achieve an optimal estimation of the parameters,

thereby providing a robust model for the underlying dry

yield distribution.

2.3.1.2 Calculating contrast distribution

Upon determining the statistical properties of the yield

measurements distribution for both scenarios-with and without

the application of green manure - simulations were conducted to

reconstruct the statistics for both cases. The effectiveness of green

manure was evaluated by comparing the mean values of posterior

distributions, achieved by calculating the contrast distribution.

The process of calculating the contrast distribution of the mean

for dry yield data in test and control groups of wheat fields is

outlined in the provided Python code snippet (Listing 2). The

process commences with the extraction of the necessary dry yield

data, followed by the establishment of probabilistic models for both

the test and control groups. Subsequent to the generation of samples

from the posterior distributions of these groups, the computation of

the contrast distribution of the mean is concluded.

F4 illustrates the reconstructed dry yield distributions for wheat

fields MU21, comparing fields that utilized green manure (TF) to

those that did not (CF). The central image represents the contrast

distribution, alternatively referred to as the posterior distribution of

the difference. On the right, the posterior contrast is displayed,

signifying the likelihood of measurements in the TF surpassing
TABLE 5 Summary of dataset characteristics per location.

Season
Location Number of fields

Abbrev.
Total area

(ha)
Total number of meas.

Sample size

2021 MU 21 MU21 190 15847 Test: 1104, Ctrl.: 644

2022 MU 13 MU22 110 80137 Test: 964, Ctrl.: 964

2022 DJ 4 DJ22 110 40959 Test: 423, Ctrl.: 188
In this table, “Abbrev.” stands for abbreviation, “Meas.” stands for Measurements, AND “Ctrl.” stands for Control.
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those in the CF. Essentially, this illustrates the proportion of Test

group measurements that exceed those of the CF.

The posterior distribution of the difference between the TF and

CF groups serves as a robust metric, accurately quantifying the

effectiveness of the treatment administered to the Test group in

contrast to the CF. It is not permissible to simply compare the

overlap in distributions. The contrast distribution indeed embodies

this difference.

When evaluating the wheat fields MU22, the mean difference

value between fields with and without wheat stands at 2860, a value

significantly and reliably above zero. However, it is important to

note that the overlapping distributions of the TF and CF groups do

not denote a reliable difference. The contrast distribution essentially

comprises the distribution of the difference between the simulated

measurement pairs for the TF and CF groups. Furthermore, the

overlap of distributions should not be misconstrued as an indication

of identical distributions.

2.3.1.3 Statistical considerations of the impact of the
unobserved factors

It is important to note that the yield data we analyzed were not

direct observations of the actual yield, but rather of yield monitor

measurements. As such, there is a potential for error introduced by

the yield monitor system. However, the precision of the yield

monitor system is sufficiently high, minimizing the impact of this

potential error impact on our analysis.

In addition to yield monitor error, we also considered the

heterogeneity of the observed fields and other unobserved factors

such as variations in humidity and other environmental conditions.

These factors can significantly influence crop yields and, if not

properly accounted for, could introduce bias into results.

To mitigate the impact of these unobserved factors, we adopted

a comparative approach for each observation. Specifically, we

compared neighboring fields, ensuring that any unobserved

factors would have a similar impact on both the test and control

sets. This approach allowed us to isolate the effect of green manure
Frontiers in Plant Science 07
appl icat ion on crop yie ld from the effects of these

unobserved factors.

To further address field heterogeneity, we divided each field into

smaller polygons (Figure 3, with each polygon represented by a

single yield monitor measurement. This approach allowed us to

compare yields at the polygon level rather than at the field level,

effectively canceling out the impact of field heterogeneity on

our results.

By adopting these strategies, we were able to conduct a more

robust and accurate analysis of the impact of green manure on crop

yields, accounting for potential sources of error and bias. This

rigorous approach to data analysis underscores the validity of our

findings and their implications for sustainable agricultural practices.
3 Results

The results of our methodology are summarized in Table 6 and

Figures 4–6, including mean yield values for both the TF and CF

groups, as well as the contrast mean for MU21, MU22, and DJ22. In

each case, the mean values are accompanied by the percentage of

the total observed area where the effects are statistically evident,

leaving the remaining percentage not statistically discernible due to

other factors affecting yield.

For the growing season of MU21, the application of green

manure resulted in a TF yield average of 3540 kg/ha, compared to

the CF average of 2550 kg/ha. The calculated contrast mean yield,

standing at 1034 kg/ha, represents the mean of the differences

between matched pairs of TF and CF, rather than the difference of

the group means. This nuanced approach, which is discernible

across 68% of the observed area, underpins the agronomic benefits

of green manure, as evidenced in Figure 4.

Moving on to MU22, the mean yields for the TF and CF groups

were 5990 kg/ha and 3220 kg/ha, respectively. The contrast mean

was notably higher at 2620 kg/ha, with the effects being statistically

evident in an impressive 87% of the observed area. This season’s

results, depicted in Figure 5, further corroborate the efficacy of

green manure in enhancing crop productivity.

Lastly, in DJ22, the mean yields for the TF and CF groups were

2480 kg/ha and 1170 kg/ha, respectively. The contrast mean here

was 1263 kg/ha, and the effects were statistically discernible in 80%

of the observed area, as illustrated in Figure 6.

The central panel in each of Figures 4–6 represents the contrast

distribution - a Bayesian estimation of the difference between yields

in TF and CF, computed for each matched pair rather than derived

from the simple difference in group means. This estimation

accounts for the variability within each pair, providing a more

accurate depiction of the effect size. The figures printed on the

central panel indicate the HDI, which contains the range of most

credible values for the contrast mean.

The right-most panels in these figures reflect the posterior

distribution of the contrast estimates, with the percentages

indicating the probability of the TF yields exceeding the CF

yields. It’s noteworthy that these distributions appear non-

normal, which may be attributed to the Bayesian estimation

process that accounts for prior information and the data’s
FIGURE 3

This image showcases the meticulous segmentation of agricultural
fields into discrete polygons, illustrated by a detailed example with a
yield of 4040 kg/ha over an 86.6 m2 area. Such precise partitioning
is vital for capturing the subtle variability across the field, allowing
for a nuanced analysis of crop yield determinants.
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inherent variability, rather than assuming a normal distribution for

the yield data.

These comprehensive results, through rigorous statistical

analysis, consistently reinforce the positive impact of green

manure on crop yields across different locales and seasons. The

visual comparison provided in Figure 7 through box plots of the

yield values for the TF and CF in MU21, MU22, and DJ22, conveys

the substantial and consistent yield improvement associated with

green manure application, underscoring its potential as a

sustainable agronomic practice.
4 Discussion

In this research, we endeavored to elucidate the effects of green

manure application on wheat yields over two consecutive growing

seasons, integrating novel methods that move beyond traditional

trial plots to encompass larger field scales. Our results affirm the

benefits of green manure, echoing the findings of N’Dayegamiye

and Tran (2001), who reported similar enhancements in wheat

yields and nitrogen uptake.

Mineral nitrogen provision is a key factor in the response of

cereals following legumes compared with cereals following non-

legumes Peoples and Herridge (1990); Chalk (1998); Evans et al.

(2001); Peoples et al. (2009). However, the response in wheat grain

yield may not be entirely due to plant available N. Improvements in

soil structure, phosphorus mobilization, the breaking of pest and

disease cycles which afflict cereal monoculture, and phytotoxic and

allelopathic effects of different crop residues have all been implicated

in the yield response Ma et al. (2021). The yield benefits, which
Frontiers in Plant Science 08
encompass a wide range of experimental results, vary from -0.2 to

+3.1 Mg/ha extra yield (-11 to +156% of the reference yield) for

temperate sites and from -2.1 to +3.0 Mg/ha extra yield (-44 to

+265% of the reference yield) for Mediterranean sites Preissel et al.

(2015). Peoples and Herridge (1990) cite studies by various authors

that highlight the beneficial effects of warm-season legumes used as

preceding crops on wheat grain yield. The observed increase in

wheat grain yield, compared to a cereal-cereal cropping sequence,

varied from 0.27 to 1.6 t/ha, with a relative increase ranging between

10% and 98%. In our research, as soil conditions degrade, the

efficacy of green manure application becomes increasingly

pronounced. Particularly in scenarios marked by poor soil quality,

wherein the reference grain yield of wheat notably falls below the

national average of 4,900 kg/ha Vucicevic (2023), the utilization of

green manure demonstrates remarkable effectiveness. The

amplification in wheat grain yield associated with the winter pea

green manure application spanned from 1034 to 2620 kg/ha, and

positive effects varied between 39% and 112%. Blanco-Canqui et al.

(2012) reported that summer cover crops increased crop yields,

particularly at low rates of N application. Without additional

application of N mineral fertilizer, wheat yield was increased by

1.60 times. The incorporation of green manure crops into the soil at

an optimal depth range of 20-25 cm likely indicates improved soil

management practices, which in turn lead to enhanced soil

structure, reduced compaction, and improved soil aeration

Rinnofner et al. (2008); Tanveer et al. (2019). These favorable

conditions foster the activity of microorganisms responsible for

organic matter mineralization, ultimately resulting in increased

mineral nitrogen provision Lyu et al. (2023). However, the novelty

of our work lies not merely in reinforcing the advantageous
FIGURE 4

Mean yield values for MU21, showing the TF mean (3540 kg/ha), CF mean (2550 kg/ha), and contrast mean (1034 kg/ha). The effects are statistically
evident in 68% of the total observed area.
TABLE 6 Experimental results for the effectiveness of green manure on crop yield.

Observation
Yield (kg/ha)

Gain (%)
µTest µControl µContrast mean

MU21 3540 2550 1034 39

MU22 5990 3220 2620 86

DJ22 2480 1170 1263 112
fr
ontiersin.org

https://doi.org/10.3389/fpls.2024.1323124
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gamulin et al. 10.3389/fpls.2024.1323124
outcomes of green manure but in the adoption of an innovative

approach that evaluates these effects across expansive agricultural

areas. The granularity of our field measurements, facilitated by

dividing the fields into smaller polygons, allowed for a more

detailed and accurate representation of each field, thereby

overcoming the challenge of field heterogeneity—a factor often

neglected in conventional small-scale trials. This methodological

advancement has enabled us to detect yield variations with greater

precision, as each polygon could be considered an independent

experimental unit, providing a high-resolution dataset that captures

the intricate interplays within a crop’s environment. Our use of

Bayesian analysis and MCMC techniques represents a significant

methodological leap in agricultural research. These techniques, as

applied in the works of Besag and Higdon (1999) and Rodrigues-

Motta and Forkman (2022), allow for a sophisticated interpretation

of data that classical statistical methods may not fully capture. By

integrating prior knowledge and considering the probability

distributions of our data, we have unearthed a deeper

understanding of the yield responses to green manure. It is crucial

to note that yield monitor data, while invaluable, are not infallible

proxies for actual yields. The potential errors inherent in yield
Frontiers in Plant Science 09
monitor data were assumed to be minor and comparable across

TF and CF, thus not substantially influencing the comparative

analysis. Nevertheless, this assumption warrants further scrutiny,

as any systematic discrepancies could affect the robustness of our

conclusions. Our findings contribute to a growing body of evidence

that supports the use of green manure as a sustainable agricultural

practice, capable of boosting crop yields across diverse growing

conditions. However, this study’s scope, confined to Mužlja and

Ðurđevo, suggests the need for broader research across varying soil

types, climates, and management practices to generalize these

results. Future investigations should also delve into the long-term

impacts of green manure on soil health and nutrient dynamics,

which could offer insights into the sustainability of these practices.

Moreover, advanced statistical models, such as dependency-

extended two-part models Rodrigues-Motta and Forkman (2022),

could refine our understanding of the intricate relationships within

agricultural data. In conclusion, while acknowledging the limitations

and assumptions inherent in our methodology, our research

presents a compelling case for the adoption of yield monitor data

in large-scale agricultural settings. By extending the application of

rigorous, large-scale field analyses and advanced statistical
FIGURE 6

Mean yield values for DJ22, with the TF mean (2480 kg/ha), CF mean (1170 kg/ha), and contrast mean (1263 kg/ha). The effects are statistically
evident in 80% of the total observed area.
FIGURE 5

Mean yield values for MU22, illustrating the TF mean (5990 kg/ha), CF mean (3220 kg/ha), and contrast mean (2620 kg/ha). The effects are
statistically evident in 87% of the total observed area.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1323124
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gamulin et al. 10.3389/fpls.2024.1323124
techniques, future research can continue to unravel the complexities

of sustainable farming practices, thereby enhancing the global

agricultural landscape.
5 Conclusion

This study signifies a pivotal shift in agricultural research

methodologies, integrating sophisticated statistical techniques

such as Bayesian analysis and MCMC to evaluate green manure’s

impact on large-scale fields over two growing seasons. These

methodological advancements enhance the reliability of our

findings, demonstrating the agronomic benefits of green manure

through rigorous assessment of yield monitor data and field

heterogeneity. Our results not only confirm the effectiveness of

green manure in boosting crop yields but also highlight its role in

promoting sustainable farming practices. The adoption of these

advanced statistical methods provides a more solid foundation for

decisions in sustainable agriculture, advocating for green manure’s

integration into farming systems. Looking ahead, it’s crucial to

explore green manure’s broader applications and its potential to

improve soil health and agricultural sustainability. Our study

presents a compelling case for the use of green manure as a

scientifically backed strategy to enhance both yield and

sustainability in agriculture, marking a significant advancement

towards eco-friendly farming practices.
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Appendix

Listing 1. Estimating µ and s
import pymc3 as pm

import numpy as np

# Assume that dry y i e l d measurements are stored in t h i s

numpy array dry_yield_measurements = np. array ([…]) # replace

with actual data

# Calculate prior mean and standard deviation from the

measurements

mu_prior = np. mean (dry_yield_measurements)

s t d _ p r i o r = np. std (dry_yield_measurements)

# Create a PyMC3 model

with pm. Model () as model :

# Prior for mean and standard deviation

mu = pm. Normal (‘mu’, mu=mu_prior, sd= s t d _ p r i o r)

sigma = pm. Exponential (‘ sigma ‘, 1/mu_prior)

# Likelihood (sampling d i s t r i b u t i o n) of observations

dry_yield = pm. Normal (‘ dry_yield ‘, mu=mu, sd=sigma,

observed= dry_yield_measurements)

# Perform MCMC sampling

with model :

t r a c e = pm. sample (1000, tune =1000)

# Convert the trace to a DataFrame for easier analysis

and manipulation

trace_df = pm. trace_to_dataframe (t r a c e)

Listing 2. Contrast Distribution Calculation

# Extracting the dry y i e l d data from the t e s t and

control groups

d r y _ y i e l d _ t e s t = s e l f. g d f _ y i e l d _ t e s t [‘ DryYield

‘]. to_numpy ()

dry_yield_control = s e l f. gdf_yield_control [‘ DryYield ‘].

to_numpy ()

# Calculating the prior mean and standard deviation from the

grouped dry y i e l d data

prior_mean = s e l f. gdf_dry_yield_grouped [‘ DryYield ‘].

mean ()

p r i o r _ s t d = s e l f. gdf_dry_yield_grouped [‘ DryYield ‘].

std ()

# Defining the marginal l i k e l i h o o d s for the t e s t and

control groups

m a r g i n a l _ l i k e l i h o o d _ t e s t = 1

marginal_likelihood_control = 1

# Constructing the p r o b a b i l i s t i c model for the t e s t group

with pm. Model () as test_group_model :

mu = pm. Normal (‘mu’, mu=prior_mean, sd= p r i o r _ s t d)

sigma = pm. Exponential (‘ sigma ‘, 1/prior_mean)

dry_yield = pm. Normal (‘ dry_yield ‘, mu=mu, sd=sigma,

observed= d r y _ y i e l d _ t e s t)

t r a c e _ t e s t = pm. sample (1000, tune =1000)

t r a c e _ d f _ t e s t = pm. trace_to_dataframe (t r a c e _ t e s t)

t r a c e _ d f _ t e s t [‘ c l a s s ‘] = s e l f. name_test_group

# Constructing the p r o b a b i l i s t i c model for the

control group

with pm. Model () as control_group_model :
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mu = pm. Normal (‘mu’, mu=prior_mean, sd= p r i o r _ s t d)

sigma = pm. Exponential (‘ sigma ‘, 1/prior_mean)

dry_yield = pm. Normal (‘ dry_yield ‘, mu=mu, sd=sigma,

observed= dry_yield_control)

t r a c e _ c o n t r o l = pm. sample (1000, tune =1000)

t r a c e _ d f _ c o n t r o l = pm. trace_to_dataframe (t r a c e _ c

o n t r o l)

t r a c e _ d f _ c o n t r o l [‘ c l a s s ‘] = s e l

f. name_control_group

# Concatenating the trace data frames for the t e s t and control

groups trace_df = pd. concat ([t r a c e _ d f _ t e s t, t r a c e _ d f _ c o

n t r o l])

# Generating samples for the control group using the p o s t e r i o

r d i s t r i b u t i o n

samples_control = np. concatenate (

[np. random. normal (m, s, 100) form, s in zip (t r a c e _ d f _ c

o n t r o l [‘mu ‘], t r a c e _ d f _ c o n t r o l [‘ sigma ‘])])

samples_control = np. random. choice (samples_control, size

=1000, replace =True)

# Generating samples for the t e s t group using the p o s t e r i o r

d i s t r i b u t i o n

samples_test = np. concatenate (

[np. random. normal (m, s, 100) form, s in zip (t r a c e _ d f _ t

e s t [‘mu’], t r a c e _ d f _ t e s t [‘ sigma ‘])])

samples_test = np. random. choice (samples_test, size =1000,

replace =True)

# Calculating the contrast d i s t r i b u t i o n of the mean

contrast_mean = t r a c e _ d f _ t e s t [‘mu’] − t r a c e _ d f _ c o n t r

o l [‘mu’]

contrast_samples = samples_test − samples_control
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