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Combining machine learning and
remote sensing-integrated crop
modeling for rice and soybean
crop simulation
Jonghan Ko1*, Taehwan Shin1, Jiwoo Kang1, Jaekyeong Baek2

and Wan-Gyu Sang2

1Department of Applied Plant Science, Chonnam National University, Gwangju, Republic of Korea,
2Crop Production and Physiology Division, National Institute of Crop Science, Wanju-gun,
Jeollabuk-do, Republic of Korea
Machine learning (ML) techniques offer a promising avenue for improving the

integration of remote sensing data into mathematical crop models, thereby

enhancing crop growth prediction accuracy. A critical variable for this

integration is the leaf area index (LAI), which can be accurately assessed

using proximal or remote sensing data based on plant canopies. This study

aimed to (1) develop a machine learning-based method for estimating the LAI in

rice and soybean crops using proximal sensing data and (2) evaluate the

performance of a Remote Sensing-Integrated Crop Model (RSCM) when

integrated with the ML algorithms. To achieve these objectives, we analyzed

rice and soybean datasets to identify the most effective ML algorithms for

modeling the relationship between LAI and vegetation indices derived from

canopy reflectance measurements. Our analyses employed a variety of ML

regression models, including ridge, lasso, support vector machine, random

forest, and extra trees. Among these, the extra trees regression model

demonstrated the best performance, achieving test scores of 0.86 and 0.89

for rice and soybean crops, respectively. This model closely replicated

observed LAI values under different nitrogen treatments, achieving Nash-

Sutcliffe efficiencies of 0.93 for rice and 0.97 for soybean. Our findings show

that incorporating ML techniques into RSCM effectively captures seasonal LAI

variations across diverse field management practices, offering significant

potential for improving crop growth and productivity monitoring.
KEYWORDS

crop, leaf area index, machine learning, modeling, remote sensing, rice, soybean,
vegetation index
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1 Introduction

Crop models have traditionally been designed to simulate the

impact of various environmental conditions on crop growth. These

conventional models are invaluable for studying ideal growing

conditions and guiding the best management practices

(Lövenstein et al., 1992). However, they often rely on complex

equations and parameters, which can result in discrepancies

between the model’s predictions and actual field data (Maas,

1993; Ahuja et al., 2000). A well-calibrated model should

accurately represent the growth and developmental stages of

crops, provide precise yield predictions, and adapt its outputs

based on relevant environmental variables (Ahuja et al., 2000).

Process-based crop models are particularly effective at

simulating continuous crop development, growth, and yield using

mathematical procedures and specific crop-related parameters.

However, they struggle with complex spatial inputs and require

extensive data on phenological and environmental variables

throughout the growing season (Cao et al., 2021). These models

frequently incorporate variables like the leaf area index (LAI) and

various vegetation indices (VIs) derived from remote sensing (RS)

data (Doraiswamy et al., 2005; Jeong et al., 2018; Nguyen et al.,

2019; Shawon et al., 2020b). The use of the LAI and VIs helps

minimize the effort and resources required to provide model inputs

due to the benefits of RS that allows the observation of crop

conditions. The benefits of this technique include real-time crop

monitoring and the acquisition of various information depending

on the radiometric sensors equipped with the instrument

(Campbell and Wynne, 2011). RS techniques are helpful in

scouting crop growth and its environments as they allow the

observation of detailed information within a scene. RS methods

can be applied to various aspects of monitoring and estimating crop

conditions, including as an efficient estimation method of crop

growth characteristics (Liu et al., 2022; Liu et al., 2023a). A

weakness of RS is that it explains seasonal changes in crop

conditions less than crop models. Integrating a crop model with

RS information may enhance each other’s advantages and

compensate for their weaknesses (Maas, 1993; Nguyen et al., 2019).

On the other hand, empirical regression methods offer a more

simplified approach, relying on single or multiple regression

techniques, but often fail to capture the complex, nonlinear

relationships between environmental variables and crop

performance (Nguyen et al., 2019; Sun et al., 2019).

A common challenge in crop models that integrate remote

sensing data is the formulation of the LAI, which is often based on

its linear relationship with VIs (Jin et al., 2018; Huang et al., 2019).

These models face complications due to the dimensional differences

between the 3-D LAI and 2-D VIs, variations across remote sensing

platforms, and stage-specific differences in crop species (Huang

et al., 2016; Nguyen et al., 2019). Recent advancements in machine

learning (ML) techniques, such as the development of support

vector machines (SVM), random forests (RF), one-dimensional

convolutional neural networks (1D-CNN), and long-short-term

memory (LSTM) networks, offer promising alternatives that may

improve the accuracy of crop yield predictions (Cai et al., 2019; Van

Klompenburg et al., 2020).
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We believe that the integration of ML techniques can enhance

the predictive accuracy of existing process-based crop models.

Although initial efforts have incorporated crop model variables

into ML frameworks, the comprehensive integration of ML

algorithms into mathematical crop models has not been fully

explored. Our study aims to fill this gap by introducing a novel

methodology for LAI estimation using ML algorithms. In this study,

we objectively compared the various ML (including deep neural

network) regressors for simulating rice and soybean and then

combined the selected one into the RSCM to evaluate the

performance of the LAI simulation module. Specifically, we target

rice (Oryza sativa) and soybean (Glycine max), for which accurate

LAI estimation is critical yet challenging due to variable

environmental and developmental factors.
2 Materials and methods

2.1 Field experiment data

Several datasets were used in this study to formulate ML and deep

neural network (DNN) models and evaluate the selected ML scheme

and the ML-combined remote sensing-integrated crop model (RSCM)

performance. To develop an ML or a DNN scheme for the

relationships between the LAI and VIs of rice and soybean

(Supplementary Figures 1 and 2), we used rice data (n = 552)

obtained with proximal and remote sensing methods from 2011 to

2014 (Yeom et al., 2021) and soybean data (n = 556) obtained with

proximal sensing methods from 2017 to 2018 (Shawon et al., 2020a).

The model evaluation datasets were obtained from the

Chonnam National University (CNU) experimental field (35°10’

N, 126°53’ E), Gwangju, and the National Institute of Crop Science

(NICS) experimental field (35°50’ N, 127°02’ E), Wanju, Jeonbuk

province, from 2021 to 2022. The rice cultivar ‘Shindongjin’ was

cultivated at the CNU field (~1,400 m2), which was divided into

three different nitrogen (N) treatments (no N, heavy N, and full N),

and at the NICS field (~1,200 m2), divided into two N treatments

(no N and full N). The soybean cultivar ‘Daepung’ was grown at the

NICS field (~2,000 m2) with three N treatments (0 kg ha−1, 24 kg

ha−1, and 48 kg ha−1). Crop management practices during the

seasons followed the standard NICS cultivation procedures for each

crop. Weather conditions at the NICS study site were automatically

recorded using a mechanical MetPRO (Campbell, Logan, UT, USA)

weather station. Weather data for the CNU study site were obtained

from the Open MET Data Portal (https://data.kma.go.kr, accessed

on September 14, 2023) of the Korea Meteorological

Administration (KMA). The KMA weather station is adjacent

(within ~1 km) to the experimental field. From 20 May to 20

October, the daily average mean temperature, solar radiation, and

precipitation at CNU were 24.21°C, 17.04 MJ m−2 d−1, and 5.67 mm

d−1, respectively, during the 2021 season and 24.39°C, 17.28 MJ m−2

d−1, and 3.47 mm d−1, respectively, during the 2022 season. During

the same period at NICS, the daily average mean temperature, solar

radiation, and precipitation were 23.99°C, 16.04 MJ m−2 d−1, and

7.22 mm d−1, respectively, in 2021 and 23.92°C, 16.31 MJ m−2 d−1,

and 5.08 mm d−1, respectively, in 2022.
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The LAI and canopy reflectance data for rice and soybean were

measured using an LI-2200C (LiCor, Inc., Lincoln, NE, USA) and a

hand-held multispectral radiometer, MSR16R (CropScan, Inc.,

Rochester, MN, USA). An LAI-2200C can accurately measure

canopy LAI in diffuse sunlight using light-scattering correction.

The MSR16R had 16 waveband filters in the 450−1,750 nm region,

equipped with upward and downward sensors (http://

www.cropscan.com/, accessed on January 21, 2024). This design

allows for simultaneously measuring both incoming and reflected

radiation, providing valid reflectance readings in lightly cloudy

conditions with incident irradiance down to approximately 300

W m−2. The canopy reflectance data were obtained during the crop

growing seasons at the study sites, six times in 2021 on day of year

(DOY) 194, 210, 224, 238, 259, and 273 and five times in 2022 on

DOY 203, 230, 244, 263, and 280. All field measurement operations

to determine crop canopy reflectance were conducted in the clear

sky within an hour of the local solar noon (12:40 pm KST) to

minimize potential influences of perspective on the remote imaging

of plants.

The canopy reflectance data were arithmetically transformed to

get the VIs of interest for simulating LAI. These VIs included the

modified triangle vegetation index 1 (MTVI1; Equation 1)

(Haboudane et al., 2004), normalized vegetation index (NDVI;

Equation 2) (Rouse et al., 1974), optimized soil adjusted

vegetation index (OSAVI; Equation 3) (Rondeaux et al., 1996),

and renormalized difference vegetation index (RDVI; Equation 4)

(Roujean and Breon, 1995). The VI equations were determined

using reflectance values at 560 nm (R560), 660 nm (R660), and 800

nm (R800):

MTVI1 = 1:2(R800 − R660) − 2:5(R660 + R560) (1)

NDVI = (R800 − R660)=(R800 + R660) (2)

OSAVI = (R800 − R660)=(R800 + R660 + 0:16) (3)

RDVI = (R800 − R660)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(R800 + R660)

p
(4)

The relationships between the LAI and the VIs of rice

(Supplementary Figure 1) and soybean (Supplementary Figure 2)

were investigated to determine the optimal LAI estimation

algorithms out of the various ML regression models described in

the following subsection.
2.2 ML and DNN models

In this study, we explored various ML algorithms, including

polynomial regression, ridge regression, least absolute shrinkage

and selection operator (LASSO) regression, support vector

regression (SVR), RF, extra trees (ET), and gradient boosting

(GB) and its variants, histogram-based gradient boosting (HGB),

extreme gradient boosting (XGB), and light gradient boosting

machine (LightGBM). These algorithms are available through the

Python-based scikit-learn library. In addition, we utilized the feed-

forward DNN, implemented using the Keras framework (https://
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keras.io, accessed on September 14, 2023) in Python (https://

www.python.org, accessed on September 14, 2023).

Polynomial Regression extends the capabilities of least-squares

linear regression by applying an nth-degree polynomial, improving

performance over standard linear regression. Ridge and LASSO

regression methods further optimize performance by incorporating

l2 and l1 norms to reduce overfitting (Diebold and Shin, 2019;

Emami Javanmard et al., 2021).

The SVR method defines a specific error tolerance and identifies

an optimal hyperplane in a higher-dimensional space, providing

advantages in classification and prediction tasks. However, it is

computationally intensive, and the outcomes are less easily

interpretable (Khosla et al., 2020).

The RF algorithm employs an ensemble of decision trees for

better generalization and is relatively robust against overfitting, and

ET adds an element of randomness to each decision tree split,

thereby reducing bias and variance (Wang et al., 2019). Unlike RF,

ET does not utilize bootstrap sampling. The GB algorithm and its

advanced forms (i.e., HGB, XGB, and LightGBM) augment

performance by focusing on training speed and reducing

overfitting (Ustuner and Balik Sanli, 2019).

For the DNN model, we increased predictive accuracy by

adding multiple hidden layers between the input and output

(Supplementary Figure 3). Despite its high performance, the

DNN model must be revised for interpretation. It should be

noted that traditional ML models may outperform DNNs when

the dataset is small (Jeong et al., 2022b).

The dataset was split into training and testing subsets using an

80:20 ratio through the scikit-learn package. All ML and DNN

models were fine-tuned to identify optimal hyperparameters. For

ridge and LASSO regressions, alpha values of 0.1 and 0.01 were

chosen based on a grid search. The DNN model employed a

rectified linear unit (ReLU) activation function consisting of six

fully connected layers ranging from 100 to 1,000 units

(Supplementary Figure 3). A dropout rate of 0.17 and the

“Adam” optimizer with a learning rate of 0.001 were applied over

1,000 epochs, with a batch size of 100.
2.3 Process-based crop model

This study employed an RSCM augmented with ML to simulate

crop growth (specifically LAI), as depicted in Figure 1. Following an

evaluation of various ML and DNN regressors, detailed in the

subsequent subsection, we integrated a selected ML algorithm into

the RSCM framework. This ML integration was designed to

enhance the regression methods for assessing the relationship

between remotely sensed VIs and LAI.

The RSCM is a process-oriented model (Table 1) crafted to

assimilate data collected through remote sensing, enabling

researchers to simulate and scrutinize potential crop development

(Nguyen et al., 2019). Four mathematical procedures were

employed in the crop modeling: (1) daily change in growing

degree days (GDD), (2) absorption of incident solar radiation, (3)

daily increase in above-ground dry mass, and (4) daily LAI increase.

The RSCM uses daily maximum and minimum temperatures and
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http://www.cropscan.com/
http://www.cropscan.com/
https://keras.io
https://keras.io
https://www.python.org
https://www.python.org
https://doi.org/10.3389/fpls.2024.1320969
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ko et al. 10.3389/fpls.2024.1320969
solar radiation as input variables to determine GDD and solar

radiation absorption by the crop canopy. Crop-specific coefficients

were adopted from those obtained earlier by Nguyen et al. (2019)

for rice and Shawon et al. (2020a) for soybean (Table 2).

The RSCM can incorporate remote sensing information for its

in-season calibration process (Maas, 1993). In this process,

predicted LAI metrics are juxtaposed with their observed

counterparts. The calibration uses four specific parameters—L0, a,

b, and c—to model crop growth dynamics based on optimizing the

LAI through the Powell procedure (Press et al., 1992). Moreover,

Bayesian methods can be applied to these parameters for

calibration, leveraging prior distributions inferred from previous

research to yield acceptable parameter values (Ko et al., 2015;

Nguyen et al., 2019). In this study, we employed exponential

regressions to determine the LAI and VI relationships of rice and

soybean (Supplementary Table 1).

All the parameters were objectively reparametrized to match the

predicted LAI with the RS- or ML-based LAI. The converged

parameter values after the in-season calibration are shown for rice

in Supplementary Table 2 and for soybean in Supplementary

Table 3. For this study, we used consistent initial settings and

parameters to fine-tune the RSCM specifically for rice and soybean
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crop modeling (i.e., L0 =0.2, a = 3.25 × 10−1, b = 1.25 × 10−3, and

c = 1.25 × 10−3).
2.4 Statistical evaluation of
simulation performances

Model assessments were achieved by comparing the simulated

or predicted values to the observed values in the testing subset. For

the statistical evaluation, we employed the root mean square error

(RMSE; Equation 5), the mean absolute error (MAE; Equation 6),

and the Nash–Sutcliffe efficiency (NSE; Equation 7) (Nash and

Sutcliffe, 1970):

RMSE =
1
no

n

i=1
(Si − Oi)

2

" #0:5

(5)

MAE = o
n
i=1Si − Oi

n
(6)

NSE = 1 −o
n
i=1(Si − Oi)

2

on
i=1(Oi − �O)2

(7)

where Si represents the simulated value at measurement point i and

n, Oi, and �O represent the total number of data points, the observed

TABLE 1 Equations applied in the remote sensing-integrated
crop model.

Equations Variable descriptions

DD = MAX
[T − Tb, 0]

DD, daily change in growing degree days (GDD); T, daily
mean temperature; Tb, crop-specific base temperature

Q = b ∙ R ∙ (1
− e−k∙LAI)

Q, absorption of incident solar radiation (R); b, fraction of R
(i.e., 0.45); k, crop-specific light extinction coefficient; LAI, leaf
area index

DM = e ∙ Q
DM, daily increase in above-ground dry mass; e, radiation
use efficiency

DL = DM ∙ P1
∙ S

DL, daily LAI increase; P1, fraction of DM allocated to new
leaves; S, specific leaf area

P1 = Max [1
− a ∙ eb∙D,0]

P1, dimensionless leaf allocation function; a and b, parameters
controlling magnitude and shape of the process; D,
cumulative GDD
FIGURE 1

Diagrammatic representation of the remote sensing (RS)-integrated crop model combined with a machine learning (ML) method for predicting the
leaf area index (LAI) based on vegetative indices (VIs). Adapted from Nguyen et al., 2019. PAR stands for photosynthetically active radiation.
TABLE 2 Parameter values used for the remote sensing-integrated
crop model.

Symbol Description Unit
Value

Rice Soybean

e Radiation
use efficiency

g MJ−1 3.49 1.65

k Light
extinction
coefficient

na 0.60 0.71

S Specific leaf area m2 g−1 0.016 0.017

Tb Base temperature °C 12.0 10.0
fr
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value at measurement point i, and the mean of the observed values,

respectively. The RMSE and the MAE quantify the average variance

between the simulated and the observed values on the metric scale of

the respective model, and the NSE evaluates model performance

efficiency with an index ranging from −∞ to one (unitless). A

suitable fit between the simulated and the observed data is indicated

by RMSE and MAE values close to 0 and NSE values close to 1.0.
3 Results

In this study, we successfully developed ML models to estimate

the LAI for two significant staple crops: rice and soybean. We tested

these models across two different study sites with varying N

treatments by integrating them into the RSCM scheme.
3.1 LAI estimation using ML and
DNN models

The test scores for the ten selected ML regression models ranged

from 0.783 to 0.859 for rice and from 0.770 to 0.889 for soybean

(Table 3). The ET regressor outperformed other algorithms,

achieving test scores of 0.859 and 0.889 for rice and soybean,

respectively. We also found that most other ML algorithms

performed comparably to the ET regressor.
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In testing the ET regressor, the RMSE was 0.46 m2 m−2, the

MAE was 0.29 m2 m−2, and the NSE was 0.89 for rice (Figure 2).

These metrics were superior to those from the DNN model.

Similarly, for soybean, the ET model achieved an RMSE of 0.71

m2 m−2, an MAE of 0.50 m2 m−2, and an NSE of 0.86,

outperforming the DNN model (Figure 3).
3.2 Evaluation and application of the
ML model

We demonstrated that the ET model could accurately simulate

seasonal LAI variation for rice under different N treatments. The

model was tested in two different fields during 2022: the CNU

experimental field and the NICS experimental field. The LAI values

simulated using the CNU field conditions agreed with the

corresponding observed LAI values in the field, achieving an

RMSE of 0.32 m2 m−2, an MAE of 0.18 m2 m−2, and an NSE of

0.93 (Figure 4). In the equivalent model evaluation using the NICS

field dataset (Supplementary Figure 4), the simulated LAI values

again matched with the observed values, with an RMSE of 0.20 m2

m−2, MAE of 0.14 m2 m−2, and NSE of 0.85.

As with rice, the ETmodel effectively predicted seasonal variation in

soybean LAI at the NICS experimental field in 2022. The predicted LAI

values agreed with the corresponding observed LAI values, with an

RMSE of 0.25m2m−2,MAE of 0.22m2m−2, andNSE of 0.97 (Figure 5).

We found the ET regressor outperformed the Bayesian-based

regression (BR) model in the both crops (Figure 6). Simulated rice

LAI values agreed with the observed rice LAI values with an RMSE of

0.28, MAE of 0.18, and NSE of 0.88 for ET compared with an RMSE of

0.70, MAE of 0.57, and NSE of 0.29 for the BR model. In soybean,

simulated LAI values matched the observed LAI values with an RMSE

of 0.72, MAE of 0.47, and NSE of 0.75 for ET compared with an RMSE

of 1.03, MAE of 0.89, and NSE of 0.49 for the BR model.

We showed that the RSCM assimilated with the ET regressor

could closely predict seasonal variations in rice LAI under different

N treatments at both the CNU (Figures 7 and 8) and NICS

(Supplementary Figures 5 and 6) fields during 2021 and 2022.

The RSCMmodel attained an RMSE of 0.13, MAE of 0.11, and NSE

of 0.95 in 2021 and an RMSE of 0.19, MAE of 0.16, and NSE of 0.97

in 2022 at the CNU field (Figures 7 and 8). At the NICS fields, the

RSCM model attained an RMSE of 0.05, MAE of 0.04, and NSE of

0.99 in 2021 and an RMSE of 0.09, MAE of 0.07, and NSE of 0.98 in

2022 (Supplementary Figures 5 and 6).

We also demonstrated that when the ET algorithm was

incorporated into the RSCM, it could closely replicate seasonal

variations in soybean LAI across multiple years and N treatment

conditions (Figures 9 and 10). The RSCM model produced an

RMSE of 0.31, MAE of 0.25, and SE of 0.94 in 2021 and an RMSE of

0.61, MAE of 0.51, and NSE of 0.77 in 2022.
4 Discussion

Our research explored the advantages of integrating ML and

DNN techniques into existing process-based crop models. This
TABLE 3 Training and test scores for the regression analyses between
leaf area index and vegetation indices for rice and soybean using 10
machine learning models.

Regressor*

Rice Soybean

Training
score

Test
score

Training
score

Test
score

Polynomial
Linear

0.776 0.783 0.852 0.770

Ridge 0.823 0.834 0.852 0.773

Lasso 0.781 0.791 0.776 0.741

Support Vector 0.823 0.837 0.853 0.791

Random Forest 0.978 0.844 0.982 0.882

Extra Trees* 0.999 0.859 0.999 0.889

Gradient
Boosting

0.959 0.831 0.966 0.872

Histogram-
based

Gradient
Boosting

0.931 0.851 0.938 0.839

XGBoost 0.999 0.842 0.999 0.878

LightGBM 0.925 0.848 0.929 0.836
* The bold characters represent the select regressor and scores.
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integration aims to address the complex equations and parameters

that often result in discrepancies between simulated and actual field

data. By combining traditional crop modeling with advanced ML

and DNN methods, we achieved a higher level of predictive

accuracy and reliability for simulating the LAI of rice and

soybean crops.

Our study found that the ET regressor was the most effective

MLmodel for simulating LAI values with the 0.89 NSE test score for

rice and the 0.86 NSE test score for soybean, surpassing the DNN-

based model and the Bayesian-based regression method (see

Figure 6). We hypothesize that the improved accuracy of the ET

regressor may be due to a nonlinear relationship between VIs and

LAI. This is similar to a recent report on the relationship between

VI and aboveground biomass by Liu et al. (2023b). These findings

corroborate recent studies (Jeong et al., 2022a; Shin et al., 2022) but

contradict earlier research suggesting the superiority of DNN

techniques (Bui et al., 2020; Sahoo et al., 2020). This discrepancy
Frontiers in Plant Science 06
may highlight the limitations of our dataset’s scope and specific

characteristics in determining simulation effectiveness. It is

conceivable that applying a more diverse dataset in future

research could potentially yield results affirming the efficacy of

DNN-based regressors.

We also evaluated the revised RSCM, which integrates both

proximal and RS data. This innovative framework successfully

predicts spatiotemporal variations in rice and soybean growth at

the field scale. Incorporating RS data streamlines data collection and

enhances the model’s simulation performance, making it applicable

across different geographic regions. However, limitations, such as

the partial capture of RS data, still exist and may lead to

forecasting inaccuracies.

Incorporating RS data into process-based crop models,

specifically within the framework of the RSCM, confers several

notable benefits. Firstly, this approach significantly streamlines the

range of input parameters and variables required. Rather than
A B

FIGURE 3

Simulated (Sim) versus observed (Obs) leaf area index (LAI) values for soybean in the tests of the (A) extra trees and (B) deep neural network
regressors. The diagonal dashed reference lines represent the 1:1 relationship. RMSE, MAE, and NSE stand for root mean square error, mean absolute
error, and Nash–Sutcliffe efficiency.
A B

FIGURE 2

Simulated (Sim) versus observed (Obs) leaf area index (LAI) values for rice in the tests of the (A) extra trees and (B) deep neural network regressors.
The diagonal dashed reference lines represent the 1:1 relationship. RMSE, MAE, and NSE stand for root mean square error, mean absolute error, and
Nash–Sutcliffe efficiency.
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relying on a cumbersome array of factors, the model accepts existing

remotely sensed and proximal data as pivotal elements for depicting

the environmental context accurately. This has the effect of

simplifying the data acquisition process, making it more

manageable and less resource-intensive since the current

methodology can be directly applied to those using the other RS

platforms. These include operational optical satellite sensors, e.g.,

Jeong et al. (2022a) and remote-controlled aerial systems, e.g.,

Shin et al. (2022). Secondly, integrating RS data directly

translates to enhanced simulation performance in the RSCM

system. Including this data enables the model to generate more

accurate, reliable, and nuanced forecasts of crop growth patterns

and yields, thereby improving its utility and predictive capabilities.

Thirdly, this methodology allows for the assimilation of RS

information sourced from a diverse array of operational optical

sensors with differing spatial resolutions. These sensors could be

from a variety of platforms, including those on satellites

(Yeom et al., 2018; Nguyen et al., 2019; Yeom et al., 2021) as well

as those mounted on remotely piloted aerial systems (Jeong et al.,

2018). This flexibility dramatically enriches the dataset that the

RSCM can draw from, leading to more comprehensive and

holistic analyses. Lastly, the adaptability of the RSCM framework

makes it universally applicable across different geographical locales,

even in regions where data might be sparse or in physically
Frontiers in Plant Science 07
inaccessible areas (Yeom et al., 2018; Jeong et al., 2020). The only

requisite is the availability of satellite imagery, which is generally

accessible globally.

Despite these advantages, it is worth noting that the RSCM

optimization technique has limitations. Among these are the

incomplete or partial capture of RS data and the potential for

restricted proximal data during the crop’s growing cycle. These

constraints may result in discrepancies between predicted outcomes

and actual observations and, thus, inaccuracies in crop growth and

productivity forecasting.
5 Conclusion

This study evaluated the ability of multiple ML models to

simulate LAIs using VIs from proximal data sources and found

the ET model to be the most effective for both rice and soybean

crops. Our findings demonstrate the viability of integrating ML and

DNN methodologies into a process-based crop model that uses RS

data. These integrated models can improve crop growth and

productivity monitoring. Although this research lays a foundation

for integrating ML into the RSCM framework, further work is

needed to extend these methodologies, particularly in simulating

other variables like carbon and water fluxes.
A B

C D

FIGURE 4

Simulated (Sim) versus observed (Obs) leaf area index (LAI) values of rice grown with different nitrogen (N) treatments at the Chonnam National
University’s experimental field in 2022. Seasonal variations in the Sim and Obs LAI values with (A) full nitrogen (FN), (B) heavy nitrogen (HN), and
(C) no nitrogen (NN) treatments are shown along with (D) a comparison between the Sim and Obs LAI values including all three N treatments. The
diagonal dashed reference line in (D) represents the 1:1 relationship, and the root mean square error (RMSE), mean absolute error (MAE), and Nash–
Sutcliffe efficiency (NSE) values for the predictions are displayed.
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FIGURE 5

Simulated (Sim) versus observed (Obs) leaf area index (LAI) values of soybean grown with different nitrogen (N) treatments at the National Institute of
Crop Science’s experimental fields in 2022. Seasonal variations in the Sim and Obs LAI values with the nitrogen treatments at (A) 0 kg ha−1 (N0),
(B) 24 kg ha−1 (N24), and (C) 48 kg ha−1 (N48) are shown along with (D) a comparison between the Sim and Obs LAI values including all three N
treatments. The diagonal dashed reference line in (D) represents the 1:1 relationship, and the root mean square error (RMSE), mean absolute error
(MAE), and Nash–Sutcliffe efficiency (NSE) values for the predictions are displayed.
A B

FIGURE 6

Comparison of extra trees (ET) and Bayesian-based regression (BR) models in leaf area index (LAI) simulation performances for rice (A) and soybean
(B). The modeling capabilities were investigated with root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE)
between simulated (Sim) and observed (Obs) LAI values using the evaluation data applied in this study.
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FIGURE 7

Predicted (PLAI) versus observed (OLAI) leaf area index (LAI) valuesof rice grown with different nitrogen (N) treatments at the Chonnam National
University’s experimental fields in 2021. Seasonal variations in LAI values with (A) no N, (B) basal N, and (C) full N treatments are shown along with
(D) a comparison between PLAI and OLAI including all three N treatments. The diagonal dashed reference line in (D) represents the 1:1 relationship,
and the root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE) values for the predictions are displayed.
A B

C D

FIGURE 8

Predicted (PLAI) versus observed (OLAI) leaf area index (LAI) valuesof rice grown with different nitrogen (N) treatments at the Chonnam National
University’s experimental fields in 2022. Seasonal variations in LAI values with (A) no N, (B) full N, and (C) heavy N treatments are shown along with
(D) a comparison between PLAI and OLAI including all three N treatments. The diagonal dashed reference line in (D) represents the 1:1 relationship,
and the root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE) values for the predictions are displayed.
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FIGURE 9

Predicted (PLAI) versus observed (OLAI) leaf area index (LAI) valuesof soybean grown with different nitrogen (N) treatments at the National Institute of Crop
Science’s experimental field in 2021. Seasonal variations in LAI values with (A) no N, (B) 24 kg N ha−1, and (C) 48 kg N ha−1 treatments are shown along with
(D) a comparison between PLAI and OLAI including all three N treatments. The diagonal dashed reference line in (D) represents the 1:1 relationship, and the
root mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE) values for the predictions are displayed.
A B

C D

FIGURE 10

Predicted (PLAI) versus observed (OLAI) leaf area index (LAI) valuesof soybean with different nitrogen (N) treatments at the National Institute of Crop Science’s
experimental field in 2022. Seasonal variations in LAI values with (A) no N, (B) 24 kg N ha−1, and (C) 48 kg N ha−1 treatments are shown along with (D) a
comparison between PLAI and OLAI including all three N treatments. The diagonal dashed reference line in (D) represents the 1:1 relationship, and the root
mean square error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE) values for the predictions are displayed.
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