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Introduction: Soybean pod count is one of the crucial indicators of soybean

yield. Nevertheless, due to the challenges associated with counting pods, such as

crowded and uneven pod distribution, existing pod counting models prioritize

accuracy over efficiency, which does not meet the requirements for lightweight

and real-time tasks.

Methods: To address this goal, we have designed a deep convolutional network

called PodNet. It employs a lightweight encoder and an efficient decoder that

effectively decodes both shallow and deep information, alleviating the indirect

interactions caused by information loss and degradation between non-

adjacent levels.

Results: We utilized a high-resolution dataset of soybean pods from field

harvesting to evaluate the model’s generalization ability. Through experimental

comparisons between manual counting and model yield estimation, we

confirmed the effectiveness of the PodNet model. The experimental results

indicate that PodNet achieves an R2 of 0.95 for the prediction of soybean pod

quantities compared to ground truth, with only 2.48M parameters, which is an

order of magnitude lower than the current SOTA model YOLO POD, and the FPS

is much higher than YOLO POD.

Discussion: Compared to advanced computer vision methods, PodNet

significantly enhances efficiency with almost no sacrifice in accuracy. Its

lightweight architecture and high FPS make it suitable for real-time

applications, providing a new solution for counting and locating dense objects.
KEYWORDS

soybean pod, convolutional network, computer vision, counting and locating,
dense objects
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1 Introduction

Soybeans are renowned for their high protein content and have

become a staple in global nutrition. Approximately 40% of the

weight of soybean seeds consists of protein, making soybeans a

primary source of protein for vegetarians and strict vegans (Wiles

and Schweizer, 1999). Pod count is a critical factor influencing

soybean yield. In traditional agriculture, pod counting is typically

done manually (Uzal et al., 2018). Manual counting, however, is

subjective, tedious, error-prone, and inefficient due to human

fatigue. Over the past few decades, agricultural practitioners have

been attempting to automate this task using machine learning

methods (Ye et al., 2013; Yu et al., 2013). Unfortunately, these

methods have limited robustness and often remain confined to

controlled environments or specific applications, resulting in

continued reliance on manual counting in most parts of the world.

In recent years, with the advancement of computer vision

technology, Convolutional Neural Networks (CNNs) have been

demonstrated to be highly effective in addressing a wide range of

visual problems, making them a key factor in the success of deep

learning (LeCun et al., 2015). With the widespread availability of

low-cost digital cameras and high-performance graphics processing

units, deep learning methods have enabled the shift from traditional

manual labor to automated solutions for plant vision application.

Various methods have been developed for different applications,

such as estimating ear density (Xiong et al., 2019), locating cotton

balls (Sun et al., 2022), detecting maize tassels (Yu et al., 2023), and

counting rape flower clusters (Li et al., 2023). Lu et al. (2023)

proposed the YOLOv8-UAV model, which introduces a simple and

effective up-sampling process. Channel suppression is performed

after each up-sampling step to eliminate feature redundancy,

enhancing the perception of small-scale objects. Yang et al.

(2022b) presented a method for calculating soybean pod length

and width based on the Mask R-CNN network structure. This

approach enables rapid segmentation and effective calculation of

pod shape features from images. Ye et al. (2024) modeled a general

network architecture, PlantBiCNet, which employs a bi-directional

cascade decoding approach to fully utilize high-level semantic and

low-level spatial information, markedly enhancing the detection

and counting performance for five different crops. Shortly after, Ye

and Yu (2024) considerably improved tassel detection performance

in UAV scenes by fusing global and local information in images and

modeling an encoder network with 16x downsampling layers,

termed FGLNet. Li et al. (2019) proposed a deep learning model

called “Two-Column Convolutional Neural Network” for soybean

seed counting based on pod images. This model consists of two

parallel convolutional neural networks designed for automatic seed

counting in soybean pods.

While there have been some successes in the field, research on

soybean pod recognition and counting remains relatively limited. To

enhance accuracy, Xu et al. (2023) utilized a deformable attention

recursive feature pyramid network to improve pod counting precision.

Guo et al. (2021) directly detected soybean pods on the entire plant,

incorporating the K-means clustering algorithm and an improved

attention mechanism module, achieving an average accuracy of
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80.55%. Zhao et al. (2022) introduced a method called P2PNet-Soy,

which resulted in a significant reduction in the mean absolute error

(MAE) in soybean seed counting and localization, decreasing from

105.55 to 12.94. Yang et al. (2022a) employed a large-scale Transformer

for pod recognition. On the other hand,McGuire et al. (2021) deployed

soybean pod counting on a small mobile robot, walking autonomously

in the field, and collecting pod images for analysis. They reported a

correlation of 0.88 between automated pod counting and manual

counting. Although these existing object detection methods have

improved both counting accuracy and speed, their performance still

falls short of practical application requirements for pod recognition and

counting, especially in the following scenarios:
1) Pod Occlusion: Due to the clustered growth nature of pods,

a single region in a soybean image often contains a large

number of pods, and these pods frequently overlap with

each other. This results in convolutional neural networks

inevitably introducing noise during pod feature extraction,

affecting the final detection accuracy.

2) Uneven Pod Distribution: The branched structure of

soybeans leads to notable differences in pod density

across various regions. Models need to adapt to different

density distributions in different areas.
Moreover, these methods often require substantial

computational resources, rendering them inefficient and

inadequate for real-time tasks. In recent research, Xiang et al.

(2023) introduced an improved YOLO POD model capable of

accurate soybean pod recognition and counting without

compromising inference speed. It achieved an impressive fit with

an R2 of 0.9666. Notably, the YOLO POD model performs

approximately 394.9G floating-point operations per second

(FLOPs), requiring 0.462 seconds for inference on each high-

resolution image. This implies a processing rate of only about two

images per second, highlighting the efficiency limitations that

restrict its throughput when handling large quantities of high-

resolution images. FLOPs are a standard metric used to measure

a model’s computational complexity and resource requirements.

Higher FLOPs values indicate that the model demands more

powerful GPU or CPU support during runtime and inference,

which can pose challenges in practical model deployment.

In modern high-throughput plant phenotyping systems, rapid

processing of high-resolution images is of paramount importance.

While soybean pod recognition and counting have achieved

impressive accuracy, improving efficiency to meet the demands of

high-resolution image analysis is a natural and critical research focus.

To better address the challenges mentioned above, we propose a

deep learning-based soybean pod counting and localization method

called PodNet. It leverages a lightweight backbone CSPDarknet

(Bochkovskiy et al., 2020), and further enhances feature

information decoding using an asymptotic feature pyramid

network (AFPN) (Yang et al., 2023), which supports direct

interaction between non-adjacent levels. Our evaluation is based

on publicly available soybean pod detection and counting datasets

(Xiang et al., 2023). Currently, YOLO POD reports state-of-the-art
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counting performance, but it relies on a substantial number of

parameters and floating-point operations. Remarkably, our

proposed PodNet achieves nearly the same level of accuracy as

the SOTA model YOLO POD while having only 2.48M parameters,

which is approximately 1/22 of the YOLO POD model’s

parameters. Furthermore, the computational complexity,

measured in FLOPs, has been reduced by over 10 times. This

means that the PodNet model is relatively more lightweight in

terms of size, with a smaller parameter footprint.

In the comparison of Frames Per Second (FPS), PodNet

performs even more impressively. Even when performing

inference at a higher resolution (1440×1440 image resolution)

compared to YOLO POD, PodNet still reports a frame rate of

43.67 FPS on a budget-friendly GTX1080Ti GPU. Its efficiency

exceeds YOLO POD by an order of magnitude and is sufficient for

real-time deployment of models on inexpensive devices. Their

parameter comparison is illustrated in Figure 1.

Overall, the main contributions of this paper are three-fold:
Fron
1) PodNet: A novel deep convolutional network with a

lightweight encoder and an effective decoder for decoding

encoded features.

2) Efficiency Improvement: PodNet achieves an efficiency

improvement of over an order of magnitude when

compared to the state-of-the-art models used for soybean

pod counting.

3) Real-time Efficiency on Low-cost Devices: It reports high

real-time efficiency on inexpensive devices, providing an

effective and cost-efficient solution for modern high-

throughput plant phenotyping platforms.
The layout of this paper is as follows:

In Section 1 (this section) introduces the research background

and highlights the problem statement. Section 2 provides a detailed

introduction and description of the proposed PodNet model. In

Section 3, experiments are conducted, and comprehensive

comparative analyses with other models are performed across
tiers in Plant Science 03
various dimensions. Section 4 delves a discussion of the research,

and Section 5 concludes the study while outlining future

research directions.
2 Materials and methods

In this section, we describe the essential data collection and

preprocessing steps for this project. What’s more, we provide a

detailed introduction to the deep learning framework employed for

soybean pod counting and locating, which enables accurate pod

counting and localization.
2.1 Pod counting datasets

The dataset used in this study is sourced from Xiang et al.’s

dataset (Xiang et al., 2023), which was made publicly available in

their research and is suited for soybean pod counting tasks. The first

dataset is Chongzhou dataset, which is collected in 2021 at Sichuan

Agricultural University Chongzhou Experimental Base (103°40’E,

30°39’N). These images were taken by Canon 700D with a

resolution of 4752×3168 pixels, a total of 570 images were

acquired. The second is the Renshou dataset, collected in 2021

from Renshou Farm of Sichuan Agricultural University (104°08’E,

29°59’N), taken by Canon 750D with a resolution of 5184×2196

pixels, a total of 878 images were acquired. During the capture

process, the soybean pods were placed on non-reflective black

absorber cloth.

For model training and evaluation, we use the Chongzhou

dataset containing 570 images for training and validation. At the

same time, the Renshou dataset containing 878 images is used to

test the performance of the model.

Due to the availability of bounding box annotations in this

dataset, each pod has been labeled with a bounding rectangle. These

annotation data serve as the foundation for our model training, so

we only performed a verification check on pod annotations using
FIGURE 1

Comparison of FPS, Parameters, and FLOPs between YOLO POD and PodNet.
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LabelImg (Tzutalin, 2022) to ensure their accuracy. In each image,

the number of soybean pods varies from 15 to 185.

We believe that evaluating on these datasets can greatly

illuminate the applicability of plant counting tools in real-world

scenarios. Plant counting, nonetheless, is a challenging task,

especially when dealing with individual plants like soybean pods,

which are small and subject to various imaging factors. We

summarize the dataset’s characteristics and the key challenges of

plant counting into several types, as shown in Figure 2.
Fron
a) Pod Overlapping and Occlusion: Soybean pods can be

obscured by both other pods and plant stems, leading to

mutual occlusion between pods and between pods

and branches.

b) Large Branch Occlusion: Pods may be hidden behind or

obstructed by thicker plant stems, making it challenging for

humans to discern the exact number of pods.

c) Blur and Degraded Images: Despite high image resolution,

factors such as inaccurate focus or lens surface

imperfections like dust can result in image blurring

and degradation.

d) Pod Wilting and Loss of Plumpness: Pods may appear

wilted and less plump, especially those at the tips of

branches, often due to insufficient moisture, causing them

to lose their normal color and fullness.

e) Pose variations: Pods may exhibit different poses when

captured from various angles, making them not

necessarily flat and uniformly oriented.

f) Small pod size: Some pods may be underdeveloped or in the

early stages of growth, appearing relatively small in the

images. Identifying such small pods accurately requires a

model with high resolution and sensitivity.
It is precisely because of these challenges that we must handle

these limitations with care to ensure that our model exhibits better

robustness and strong generalization performance. In our research,
tiers in Plant Science 04
we have successfully overcome these challenges and achieved

satisfactory experimental results.
2.2 Model architecture

Estimating soybean seed yield through automatic counting and

locating of pods is a challenging computer vision task. The

complexity of this problem comes from various factors such as

cluttered visual environments, occlusion of pods in the image, and

illumination variations. However, the images in the dataset have

already been taken and cannot change their angle, thus we will take

a more optimized network model to solve these problems.

Considering the deployment requirements of edge devices in the

background of plant science, we focus on their lightweight in the

model architecture design, and effectively design the detection

network structure, making the detection network structure more

comprehensive and detailed, especially suitable for identifying small

and dense plant objects in the image. As shown in Figure 3, in the

following we present the global architecture of PodNet and

its optimization.

1) Encoder: The role of the encoder is to map the input RGB

image into feature maps. We employ CSPDarknet (Bochkovskiy

et al., 2020) as the backbone feature extraction part of the encoder.

CSPDarknet is a widely validated and used backbone network

known for its high efficiency and outstanding accuracy (Lu et al.,

2023; Ye et al., 2023; Ye and Yu, 2024; Ye et al., 2024). The entire

encoder consists of 5 convolution layers and 4 feature extraction

layers, specifically defined as C3(16)-C3(32)-M(32)-C3(64)-M(64)-

C3(128)-M(128)-C3(256)-M(256)-S5(256). Here, Ck(m) denotes

a 2D convolutional layer with m channels and a k×k filter, all

with a stride of 2. M(k) represents a feature extraction layer with k

output channels, and the final S5(256) is an Spatial Pyramid Pooling

- Fast (SPPF) (Jocher, 2022) module with an input channel count of

Cinput = 256 and a kernel size of KSPPF = 5� 5.

As described above, given an input image I ∈ RH�W�3, through

the transformation of the encoder, the input image undergoes a 32-
A

B

D

E

FC

FIGURE 2

Six Main Challenges in Pod Counting Task (A–F).
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fold down-sampling, and the feature maps are reduced to 1/32 of

the original image. By inserting the CSPLayer (Wang et al., 2020) at

different stages to extract features, each stage respectively outputs

feature maps with 32, 64, 128 and 256 channels respectively, and the

mapping information is used as the encoding set for the input

image. The feature map will be used in Decoder to obtain richer

gradient information.

In the final stage of the Encoder, we combine the SPPF module

with the CSPDarknet structure to obtain multi-scale feature

representations and address the issue of reduced spatial resolution

introduced by the SPPF module. Additionally, following the SPPF

module, we introduce Convolutional (Conv) layers to extract fine

details and enhance feature representation, thereby significantly

improving the model’s performance, especially in tasks requiring

high spatial resolution. In general, such an Encoder helps improve

object detection performance, especially when dealing with

challenges like occlusion.

2) Decoder: The role of the decoder is to combine and decode the

features from the Encoder, mapping them to the final object detection

output. In PodNet, we use the Adaptively Spatial Feature Fusion

(ASFF) proposed by Liu et al. (2019) for feature combination. ASFF

adaptively fuses spatial features from different stages to gain richer

contextual information. ASFF_2 combines features from the first and

second convolutional layers, each with 80 and 48 channels,

respectively. ASFF_3 further fuses feature from three stages, each

with 144, 80 and 48 channels. The selection of these channel numbers

aims to balance model complexity and performance, obtaining a

more comprehensive extraction of high-level semantic information.

Specifically, smaller output channel numbers make the model more

lightweight but may lead to performance degradation, while larger

output channel numbers provide richer feature representations at the

expense of increased computational burden. Including 144 channels

allows the model to capture more high-level semantic information,

while 80 and 48 channels respectively cater to intermediate and low-

level details. They will be applied in the following ASFF module

formulas Equations 1, 2:
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ASFF2 (Ip1  , Ip2 ) = s (a2  ·  Ip1  + (1 − a2 ) · Ip2 ) (1)

ASFF3 (Ip1 , Ip2 , Ip3 )

= s(a3  · Ip1  + b3  · Ip2  + (1 − a3  −b3 ) ·  Ip3 ) (2)

Among them, Ipk represents the input feature maps from the k

stage, s is the activation function, sigmoid is used to ensure outputs

between 0 and 1, and a2 , a3  are adaptive weights that adjust the

fusion ratio between two input feature maps.

Taking ASFF_2 as an example. If we designate the post-fusion

feature map as L2, we can mark the three spatial weights from the

forward propagation of F1, F2, and F3 to L2 are marked as a2, b2 and

g2, respectively. This is expressed as the following formula (Equation 3):

L2ij = a2
ij · F

1→2
ij + b2

ij · F
2→2
ij + g 2

ij · F
3→2
ij (3)

Where F1→2
ij and F3→2

ij represent the results of scale transformation,

which convert the feature vectors at position (i, j) in F1 and F3 to the

same resolution and channels as F2. It is noted that a2ij, b2
ij and g 2

ij are

scalar variables and are defined as follows by using the softmax function

(Equations 4–6):

a2
ij =

el
2
aij

el
2
aij + e

l2
bij + el

2
gij

(4)

b2
ij =

e
l2
bij

e
l2
aij + e

l2
bij + e

l2
gij

(5)

g 2
ij =

el
2
gij

el
2
aij + e

l2
bij + el

2
gij

(6)

In Equations (4–6), we have a2
ij + b2

ij + g 2
ij = 1, and a2

ij , b2
ij and

g 2
ij are all constrained within the range [0, 1]. The parameters l2

aij
,

l2
bij , and l2

gij serve as control factors for these three weights. We

compute them using 1×1 convolutions, and they can thus be

learned through standard back-propagation.
FIGURE 3

Architecture of PodNet. The number in front of the arrow indicates the number of channels in the input.
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As shown in Figure 3, PodNet combines features from two or

three levels of the encoder. ASFF can allocate different spatial weights

to features from different levels, enhancing the importance of crucial

levels and reducing the influence of conflicting information from

different levels. Beyond that, we have incorporated a non-reduction

local cross-channel interaction strategy called the Multi-Efficient

Channel Attention (Mlt-ECA) module proposed by Yu et al.

(2023). It generates feature weights by performing 1D

convolutional operations, where the kernel size K is adaptively

determined by the channel dimension C and defined as (Equation 7):

K =
log2 (c) + b

a

���� ����
odd

(7)

a and b are adjustable hyperparameters, odd indicates that k is

odd. Observing that the soybean pods in the dataset have small areas

and a substantial amount of background, and recognizing that the

background does not contribute to pod calculation, it makes sense to

apply the Mlt-ECA approach. This helps reduce the impact of the

background, allowing the model to ignore background features and

focus more on the essential pod-related information. This application

has indeed improved the model’s performance to some extent.

Next, the decoded feature maps from different stages are

merged into the original feature map, through the regression

branch, predict the distances between each anchor point and the

four edges of the object bounding box, thereby determining the

position of the object. The operation of a regression branch is

defined as follows (Equations 8–11):

b̂ x   = Sigmoid(rx) · bw + cx (8)

b̂ y = Sigmoid(ry) · bh + cy (9)

b̂ w = exp(rw) · bw (10)

b̂ h = exp(rh ) · bh (11)

where b̂ x, b̂ y, b̂w and b̂h represent the predicted values for the

center coordinates (x, y), width w and height h of the object

bounding box, rx, ry, rw and rh are the outputs of the regression

branch, and bw , bh , cx  and cy  are constants representing the

anchor’s width, height and center coordinate offset.

Finally, Non-Maximum Suppression (NMS) is executed to filter

the generated prediction boxes to eliminate redundant detection

results. NMS is an important step for filtering generated prediction

boxes to eliminate redundant detection results. It works by the

following formula (Equation 12):

NMS(boxes,Th)  

=  
boxes½i�,   if   IoU(boxes½i�,   boxes½j�) ≤ Th,   ∀j > i

discard,   otherwise

(
(12)

Th represents the threshold value, IoU ½boxes(i), boxes(j)�
denotes the Intersection over Union (IoU) between the i-th and

j-th boxes. If the IoU is greater than the threshold value, the i-th

box will be retained, otherwise, it will be discarded.
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In summary, these simple modifications enhance the model’s

perception and expressive capabilities by implementing multi-scale

feature fusion, context aggregation, and introducing channel

attention. Moreover, the model’s decoder leverages sufficiently

deep encoding feature layers from the encoder to respond to

more abstract information, combined with an adaptive strategy to

restore spatial resolution and fuse feature layers from non-adjacent

levels. This enables the model to better adapt to the detection of

small and crowded objects.
2.3 Loss function

Loss functions, also known as objective functions or cost

functions, are methods used to evaluate the difference between

model predictions and actual results. The choice of loss function

directly impacts the training effectiveness and final performance of

the model. We use two simple loss functions to guide the bounding

box regression in PodNet.

2.3.1 Classification loss
The classification loss is based on the Binary Cross-Entropy

(BCE) function, which is a common binary classification loss used

to measure the difference between the predicted probability

distribution and the actual labels. It focuses on two classes

(typically foreground and background) and is easy to optimize. It

is defined as (Equation 13):

Lcls(y, p)   =  −½y log (p) + (1 − y) log (1 − p)� (13)

Where y is the actual label (0 or 1), p is the predicted probability

value (between 0 and 1). The BCE loss penalizes the difference

between the predicted probability and the actual label to optimize

the model’s classification performance. When the predicted

probability is close to the actual label, the loss function has a

smaller value, and when the predicted probability deviates from the

actual label, the loss function has a larger value. Therefore, the BCE

loss can effectively guide the model training to improve

classification accuracy.

2.3.2 Localization loss
The localization loss is based on the IoU function supervision.

IoU directly measures the overlap between the predicted bounding

box and the actual bounding box and is intuitive and interpretable.

It is described as (Equation 14):

Liou(A,B)   =   (A ∩  B)=(A ∪  B) (14)

Where A represents the area of the predicted bounding box, B

represents the area of the actual bounding box, ∩  represents the

intersection of the two regions, and ∪  represents the union of the

two regions. Compared to coordinate-based loss functions, IoU loss

is more stable for predicting box position and shape changes. In

practical applications, IoU-based loss functions often converge

faster and exhibit better robustness.

Finally, combining the two losses gives the total loss of PodNet:

Lpod   =   Lcls + Liou. This approach simultaneously considers both
frontiersin.org
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classification and localization, allowing the model to strike a balance

between classification accuracy and localization precision,

ultimately achieving better overall performance.
3 Experiments

In this section, we will first introduce the evaluation metrics and

experimental details. Then, we will report the performance and

compare the proposed PodNet model with existing methods.

According to different occlusion degree, we use density map to

show the robustness of PodNet in complex cases. Finally, we will

conduct ablation experiments to demonstrate the significance of key

design choices.
3.1 Model training

Our experiments were implemented using the PyTorch deep

learning framework (Paszke et al., 2019) and accelerated with

CUDA. We used 570 images from the Chongzhou dataset, all of

which were used for training and validation. Due to the high

resolution of the samples, we resized the input images to

1440×1440 pixels.

During the training process, we employed Stochastic Gradient

Descent (SGD) (Loshchilov and Hutter, 2016) as the optimizer,

with learning rate, weight decay, and momentum configured as

0.01, 0.0005 and 0.8, respectively. The batch size was set to 8 images

per batch. The hardware used for the experiments consisted of an

Intel(R) Core (TM) i5-13400F and an NVIDIA GeForce GTX 3090

GPU, with CUDA version 11.8 and CUDNN version 8.9.5 for deep

neural network acceleration.

After configuring the relevant parameters, the PodNet model is

optimized for 80 epochs on the dataset, taking into consideration

the convergence speed. To ensure the robustness of model training,

strategies such as color distortion, random scale transformation,

and mosaic data augmentation were employed.
3.2 Comparison with different object
detection methods

To evaluate the superiority of the PodNet model, after

completing model training, we compared its detection

performance with four state-of-the-art object detection methods.

The test images were based on 878 images from the Renshou

dataset, each of which was different from those used in the

training Chongzhou dataset. To ensure fairness and objectivity of

the results, we used the same training and test sets to train and test

these models. The methods included YOLOv8 (Jocher et al., 2023),

CenterNet (Duan et al., 2019), Faster R-CNN (Ren et al., 2017),

TasselLFANet (Yu et al., 2023), FCOS (Tian et al., 2019) and

EfficientDet (Tan et al., 2020). Evaluation metrics were primarily

based on precision (P), recall (R), mean average precision (mAP@

0.5), mAP@0.5:0.95 and F1 (F1-score).
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Precision (P) represents the proportion of correctly predicted

objects to all predicted objects, while recall (R) represents the

proportion of correctly predicted objects to all actual objects.

They are defined by the following formulas (Equations 15–18):

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)

mAP =
1
no

n
1P(R)d(R) (17)

F1 = 2� Precision� Recall
Precision + Recall

(18)

Where TP (True Positives), FP (False Positives), and FN (False

Negatives) denote the quantities of true positives, false positives,

and false negatives, respectively. “TP + FP” represents the total

number of detected soybean pods, while “TP + FN” represents the

total number of actual soybean pods in the images. mAP@0.5

indicates the average precision at an IoU threshold of 0.5. mAP@

0.5:0.95 represents the average of mAP at different IoU thresholds

(from 0.5 to 0.95 in step of 0.05). F1 evaluates the performance of

the method by balancing the weight of accuracy and recall rate.

In Table 1, we present a comparison of evaluation metrics for

different object detection models in the soybean pod counting task.

Obviously, the PodNet model outperforms other methods to

varying degrees. In general, as recall (R) increases, precision (P)

tends to decrease, and a balance needs to be struck between them.

FCOS model uses fixed anchors to represent the size and shape of

objects, employing a direct regression approach for the object’s

center point during regression. This approach may not accurately

handle variations in rotation angles. The EfficientDet model

demonstrates minimal loss during training and validation but

performs poorly during testing. EfficientDet achieves efficient

object detection by jointly scaling the model’s resolution, depth,

and width. Yet this scaling may not be as effective for small and

dense soybean pods, as the size and density of these objects may

negatively impact the model’s recognition performance. YOLOv8

exhibits excellent real-time performance and simplicity in a single

forward pass, introducing detection heads of different scales.

However, it offers lower accuracy compared to PodNet, especially

with marked room for improvement in recall (R). CenterNet

simplifies the object detection task by representing objects as

center points, reducing the complexity of bounding box

regression. Nevertheless, it may miss small and densely

distributed objects due to the interference of dense objects and

background information, as well as extensive pod overlaps. Faster

R-CNN achieves high-precision object detection performance using

a two-stage network with RPN. Whereas it relies solely on the final

layer of the convolutional network, which often results in feature

maps that are too small. This leads to a rapid decline in recognition

performance for small objects, making subsequent detection and

regression less effective. For botanical applications, TasselLFANet

takes into account plant structural and morphological
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characteristics. In our experiments, nonetheless, it did not perform

very well in cases with dense distribution and frequent occlusion of

soybean pods. This may be because it was designed to focus on

fitting maize tassels in field scenarios, which are far less dense than

soybean pods.

PodNet surpasses other models to varying degrees in multiple

metrics, exhibiting higher accuracy in recognizing soybean pods

relative to other models. Importantly, it maintains a high level of

performance even under the stricter evaluation condition of mAP@

0.5:0.95, that’s 10% more than the second-place YOLOv8. This

indicates that our model has more accurate localization

performance and better robustness.
3.3 Comparison with state-of-the-art

After the performance comparison in detection, we further

compared it with the current state-of-the-art model YOLO POD,

which is designed for soybean pod counting. We employed four

metrics to evaluate the consistency between predicted values and

ground truth, including Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), Mean Absolute Percentage Error (MAPE),

and the Coefficient of Determination (R²). Specifically, these four

metrics are defined as follows (Equations 19–22):

MAE =
1
no

n
i=1 byi − yij j (19)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − byi)2r

(20)

MAPE =
1
no

n
i=1

byi − yi
yi

���� ���� (21)

R2 = 1 −o
n
i=1(yi − byi)2

on
i=1(yi − y)2

(22)

The results of counting performance for different models are

presented in Table 2. From the test results, it is evident that PodNet

model’s counting performance is satisfactory. The MAPE and

RMSE metrics of PodNet surpass other models, while in the case

of R² and MAE, although YOLO POD slightly leads, the margin is

small. Looking at the overall numerical values, the PodNet method

exhibits the best comprehensive counting performance, comparable

to YOLO POD, indicating our ability to achieve highly accurate

object detection.

To visually examine counting errors, we plotted the linear

regression relationship between manual counts and algorithmic

counts on the dataset, as shown in Figure 4. The scatter plot

distribution visually demonstrates that our model can capture

variations, exhibiting better robustness and generalization. The

key lies in the progressive interaction of shallow and deep

information, adaptive spatial fusion, improving the model’s
TABLE 2 Comparison of Counting Performance for Different Models.

Model MAE RMSE MAPE R2

YOLOv8 6.16 8.89 10.05% 0.9035

CenterNet 12.67 17.77 18.75% 0.6926

Faster R-CNN 16.56 19.22 34.95% 0.7211

TasselLFANet 5.92 8.83 9.82% 0.9002

EfficientDet 22.74 38.41 29.17% 0.2777

FCOS 11.88 22.00 16.43% 0.6537

YOLO POD 4.18 10.04 6.48% 0.9666

PodNet 4.52 7.65 6.24% 0.9500
frontie
The best performance is in boldface.
TABLE 1 Comparison of Evaluation Metrics for Different Models.

Model P R F1 mAP@0.5 mAP@0.5:0.95

YOLOv8 0.842 0.655 0.74 73.4% 39.4%

CenterNet 0.646 0.561 0.60 52.6% 21.5%

Faster R-CNN 0.481 0.447 0.46 36.0% 11.3%

TasselLFANet 0.833 0.679 0.75 71.5% 34.3%

EfficientDet 0.113 0.169 0.14 4.92% 4.6%

FCOS 0.638 0.612 0.62 57.3% 46.4%

PodNet 0.874 0.756 0.81 82.8% 49.9%
The best performance is in boldface.
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performance in both sparse and dense scenes. However, occlusion

remains a hot research area in detection methods, and when there

are numerous pods in an image, many predicted bounding boxes

will be filtered out by the detector’s non-maximum suppression

(Neubeck and Van Gool, 2006), leading to underestimation. In

relative terms, PodNet can capture additional global information.

In Figure 4, we compare manual counts (Ground Truth), counts

from various algorithms and predictions made by the models

(Prediction). It’s important to note that YOLO POD provided

experimental results in the paper, but its engineering was

incomplete, making it impossible to reproduce the experiments.

Furthermore, when evaluating the model’s lightweight nature,

we compared the parameter count and the floating-point operations

per second (FLOPs) between YOLO POD and PodNet, as shown in

Figure 1. Surprisingly, we found that PodNet has only about 1/22 of

the parameter count compared to the YOLO POD model.

Moreover, the computational workload (FLOPs) has been

reduced by more than ten-fold.

This indicates that PodNet can run in environments with

limited hardware resources and has relatively low demands on

computational resources. The degree of model lightweighting is

particularly important for deploying the model on lightweight

platforms, as they are often constrained by computing resources

and memory limitations (Ye et al., 2023), such as embedded systems

and Jetson Nano development boards. Especially in the field of

agriculture, lightweight models can be crucial for certain

agricultural managers, effectively reducing their economic burden.
3.4 Analysis of visual results

The testing results presented in the previous section represent

the overall counting performance of the dataset. To gain a more

intuitive understanding of the differences in counting results

between different models, we further selected representative

soybean plant images, including those with sparse soybean pods
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(A, B) and dense soybean pods (C, D), as visualized in Figure 5. The

white number in the top left corner of each image indicates the

counting result for that particular image. GT represents ground-

truth, which is based on manual annotations from the Renshou

dataset, and the red dots denote the center points of each annotated

bounding box. The subsequent rows display the counting

predictions of each model.

During the experiments, the NMS parameters used for each

model were fine-tuned through trial and error. We selected values

that struck a balance between preventing the detection of excessive

interference and maximizing the identification of correct soybean

pods. These parameter settings remained consistent throughout the

experiments. For the CenterNet model, in particular, we observed

that adjusting the NMS threshold lower resulted in the model

detecting many non-soybean pod regions, including branches or

even black background areas. This behavior might be related to

CenterNet’s design, as it relies solely on the detection of two corner

points for object localization, lacking strong overall object

information integration capabilities. FCOS model’s use of fixed

anchors may not handle well the significant variations in shape,

size, and rotation angles of soybean pods, leading to deviations in

the regression of the center point. As for the EfficientDet model, it

might be due to its complexity or excessive depth, causing the model

to overlook smaller objects like soybean pods.

Analyzing the images of sparse soybean pods in Figures 5A, B

and the images of dense soybean pods in Figures 5C, D, we

observed an interesting phenomenon: when humans consider

the soybean pods sparser, it does not necessarily follow that

deep learning models will have better detection results for

sparse objects. In the case of dense soybean pods, the inference

values may be closer to the ground truth. This observation can be

attributed to the following reasons:
1) Contextual Information: Soybean pods are likely to be

densely distributed within a certain area. This implies that

the model can utilize information from neighboring objects,
FIGURE 4

Comparison of Manual Counts and Counts by Different Algorithms.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1320109
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2024.1320109

Fron
such as their positions and shapes, to enhance accurate

localization and counting. By learning from this contextual

information, model improves detection accuracy and

reduces the chances of missing or falsely detecting pods.

2) Feature Sharing: In dense object scenarios, objects share

more feature information among them, making it easier for

the model to learn useful feature representations. This can

enhance the model’s generalization performance, enabling

it to adapt better to varying object density.
In soybean pod detection, many predicted bounding boxes are

filtered out by the detector’s non-maximum suppression and are

underestimated. The visual results further confirm that the

PodNet model exhibits strong resilience when confronted with

variations in soybean pod size and density. In comparison,

PodNet can capture additional global information, leading to

outstanding performance.
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3.5 Superiority comparison of pod
detection in complex backgrounds

In complex natural environments, the accuracy of a model’s

detection can be influenced. Especially when objects overlap with

each other, or when objects are covered by other interferences such

as branches, the contour of individual pods may be incomplete due

to occlusion, making it challenging for the model to detect them. To

evaluate the detection performance of the model proposed in this

study in complex backgrounds, we selected two sub datasets from

the Renshou dataset, one containing images with slightly occlusion

(Dataset A, including 15 images), and another containing images

with heavily occlusion (Dataset B, also including 15 images).

We defined the occlusion level as follows: when more than 50%

of a pod’s pixel area in an image is covered, it is considered heavily

occluded; otherwise, it is considered slightly occluded. After

categorizing the images, we used the PodNet model to detect
A B DC

FIGURE 5

Dataset Visualization Results. (A, B) Sparse soybean pods. (C, D) Dense soybean pods.
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pods in datasets A, B, and the combined A+B. The detection results

are shown in Table 3 and Figure 6.

For slightly occluded pods (Dataset A), the PodNet model

achieves an F1-score of 0.855 and an mAP@0.5 of 88.0%. In

heavily occluded environments with dense objects (Dataset B),

the PodNet model achieves an F1-score of 0.753 and an mAP@

0.5 of 78.1%. When the two datasets are combined into one (A+B),

the model’s F1-score and mAP@0.5 reach 0.800 and 81.7%,

respectively. The results indicate that the PodNet model can

effectively detect pods in complex environments.

As shown in Figure 6, the colors in the image reflect the density

values, with darker colors indicating higher density. In real-world

situations, high pod density and issues with photography angles can

lead to occlusion, requiring multiple pod counts even for trained

professionals to obtain reliable measurements. The experiments

demonstrate that the PodNet model can effectively detect and count

pods in both slightly and heavily occluded scenarios, meeting the

needs of routine agricultural management.
3.6 Ablation study

Here, we conducted ablation experiments to validate the

effectiveness of incorporating the Mlt-ECA attention strategy into

PodNet. We trained the model with the same training parameters

and dataset and tested it on the Ren Shou dataset. The experimental
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results will be presented in Table 4. It can be observed that using the

Mlt-ECA attention strategy has a positive impact on the model’s

performance. This is mainly due to the ability of Mlt-ECA attention

to effectively capture critical information from the input data and

assign greater weight to this information. It can be observed that

using the Mlt-ECA attention strategy has a positive impact on the

model’s performance.
4 Discussion

This study introduces an advanced soybean pod detection

model, PodNet, and demonstrates its performance in complex

agricultural environments. Nevertheless, through a detailed

analysis of the model’s performance, we identified some

challenges in plant counting, particularly in overestimation and

underestimation, as illustrated in Figure 4. In addition, we observed

limitations in the dataset. While PodNet performs well in most

cases, it may be impacted under extreme occlusion conditions,

necessitating further research and improvement. Specifically, data

captured on non-reflective black absorbent cloth may affect the

model’s generalization ability. Despite using the Chongzhou and

Renshou datasets for training and evaluation, they are relatively

small in scale, and larger, more diverse datasets could enhance the

model’s comprehensive learning and generalization. Also, in

practical applications, the model may face domain transfer issues,
FIGURE 6

Comparison of Pod Detection Results in Different Occlusion Levels.
TABLE 3 Comparison of Pod Detection Results in Different Occlusion Levels (Test Set: A = 15 Images with Slightly Occlusion, B = 15 Images with
Heavily Occlusion).

Test Set P R F1 mAP@0.5

A 0.898 0.815 0.855 88.0%

B 0.836 0.701 0.753 78.1%

A + B 0.868 0.742 0.800 81.7%
The best performance is in boldface.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1320109
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2024.1320109
where challenges from the dataset may extend beyond the six types

mentioned in Section 2.1, leading to a decrease in counting

performance in unseen environments or challenges. To address

these issues, transfer learning and domain adaptation techniques

may be potential solutions (Lu et al., 2017a; 2017b; 2018).

In summary, despite PodNet’s impressive performance in

soybean pod detection, we should be cautious in using plant

counting tools in practical applications and recommend choosing

the right solution for your specific application. Future research

directions should focus on addressing the model’s performance in

extreme conditions, exploring more sophisticated occlusion handling

strategies, validating generalization capabilities for different crops and

environments, and emphasizing comprehensive performance

comparisons and explanations for hyperparameter selection. This

will contribute to enhancing the model’s practicality and robustness,

promoting its successful application in a broader range of scenarios.
5 Conclusion

Counting soybean pods efficiently and accurately has always

been a challenging task, especially for the dense object counting of

small, unevenly distributed soybean pods. In this study, we propose

a novel deep learning neural network that employs a lightweight

encoder and an effective decoder for decoding both shallow and

deep information, alleviating the indirect interactions caused by

information loss and degradation at non-adjacent levels. Our goal is

to address the soybean pod counting and localization problem.

Importantly, we consider efficiency improvements, finding a

relatively lightweight model with smaller parameter size in terms

of dimensions. Compared to YOLO POD, the PodNet model shows

significant improvements in both performance and parameter

optimization. This improvement is not achieved at the cost of

efficiency, as PodNet operates at an order of magnitude higher

computational speed than YOLO POD.

Our research is conducted on datasets with various challenges,

and we validate its superior performance on multiple performance

metrics. Furthermore, we thoroughly validate the effectiveness of

dropout strategies and the introduction of the Mlt-ECA attention

strategy as optimization techniques for the model. This provides

valuable insights for optimizing models to address plant counting

and localization problems. We hope this work will further inspire

researchers’ interest. Future research could build upon this study by

further investigating with more extensive datasets. What’s more,

introducing adversarial elements and enhancing and optimizing

object detection models could increase their adaptability to different

scenarios and changes. This improvement aims to enhance the
Frontiers in Plant Science 12
robustness of the models when facing complex situations like noise

and occlusion.
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TABLE 4 PodNet Conducts Ablation Studies Using the Mlt-ECA Attention Strategy.

At mAP@0.5 mAP@0.5:0.95 MAE RMSE MAPE R2

— 80.8% 47.7% 5.78 7.68 10.24% 0.9354

✔ 81.6% 47.9% 4.70 6.50 7.99% 0.9485
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