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Marker-assisted selection (MAS) plays a crucial role in crop breeding improving

the speed and precision of conventional breeding programmes by quickly and

reliably identifying and selecting plants with desired traits. However, the efficacy

of MAS depends on several prerequisites, with precise phenotyping being a key

aspect of any plant breeding programme. Recent advancements in high-

throughput remote phenotyping, facilitated by unmanned aerial vehicles

coupled to machine learning, offer a non-destructive and efficient alternative

to traditional, time-consuming, and labour-intensive methods. Furthermore,

MAS relies on knowledge of marker-trait associations, commonly obtained

through genome-wide association studies (GWAS), to understand complex

traits such as drought tolerance, including yield components and phenology.

However, GWAS has limitations that artificial intelligence (AI) has been shown to

partially overcome. Additionally, AI and its explainable variants, which ensure

transparency and interpretability, are increasingly being used as recognised

problem-solving tools throughout the breeding process. Given these rapid

technological advancements, this review provides an overview of state-of-the-

art methods and processes underlying each MAS, from phenotyping, genotyping

and association analyses to the integration of explainable AI along the entire

workflow. In this context, we specifically address the challenges and importance

of breeding winter wheat for greater drought tolerance with stable yields, as
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regional droughts during critical developmental stages pose a threat to winter

wheat production. Finally, we explore the transition from scientific progress to

practical implementation and discuss ways to bridge the gap between cutting-

edge developments and breeders, expediting MAS-based winter wheat breeding

for drought tolerance.
KEYWORDS

drought tolerance, GWAS, MAS, plant breeding, winter wheat, XAI, UAV remote
phenotyping, smart agriculture
1 Introduction

Water scarcity is seen as a key threat for the 21st century (Unesco,

2012), with global water demand expected to surpass supply by 40%

by 2030 (Gilbert, 2010). Even under the ‘Green Path’ Shared

Socioeconomic Pathway (SSP1), which envisions a future with

increased sustainability and reduced resource and energy

consumption (Riahi et al., 2017), Europe is projected to experience

a rise in the maximum annual temperature of over 5°C, a decrease in

precipitation of about -700 mm, and a reduction in soil water content

of up to -62 kg/m2 by 2060 relative to 2020 (see Figure 1A). Given

that agriculture is the primary user of freshwater, accounting for 70%

of total withdrawal globally (FAO, 2010; Hoekstra and Mekonnen,

2012), it is crucial to develop new strategies to enhance crop water use

efficiency through agronomy or breeding to tackle the impending

water crisis (Sposito, 2013; Turner et al., 2014; Bodner et al., 2015).

The yield of wheat, one of the key staple crops worldwide and

particularly in Western Europe (about 14% and 25% of total cropland

area respectively; FAO, 2023), has seen a steady increase during the

second half of the 20th century. However, this trend has shifted since

the 1990s, with yields reaching a peak and partially even slightly

decreasing, and showing an increasing variability year-to-year. Brisson

et al. (2010) suggested two main factors for this shift: (i) the effects of

climate change and (ii) a decrease in input intensity, primarily of N-

fertiliser, due to EU agri-environmental regulations. Therefore, future

production of key crops like wheat will have to cope with higher

resource constraints, in terms of both water and nutrients, even in

Europe’s temperate climate conditions. Particularly in sub-humid to

semi-arid regions, the balance between soil water supply and crop

water demand largely determines achievable yield levels (Lalic et al.,

2013). With projected higher temperatures and more unpredictable

rainfalls, the frequency of periods of crop water shortage is likely to

increase (Qin et al., 2023). Additionally, the co-occurrence of heat and

drought is expected to have the most significant impact on wheat yield,

with a predicted global reduction of 3.9% (Heino et al., 2023). On a

more regional scale, for instance, climate change projections for the

Pannonian lowlands, an important wheat-producing region in Europe,

indicate that the number of dry days with water deficit during the

vegetation period will increase (Trnka et al., 2011; Lalic et al., 2013;

Schils et al., 2018; van der Velde et al., 2018). Evaluation of past yield
02
data and simulation model predictions point to a high risk for wheat

production under climatic conditions with hot temperatures (>25°C;

Lüttger and Feike, 2018; Figure 1B) and drought occurring at a sensitive

developmental stage, such as germination, tillering, flowering or grain

filling (Yu et al., 2018; Senapati et al., 2021; Xu et al., 2022). These

factors underscore the urgency to speed up the breeding process for

more drought (and heat) tolerant varieties to keep pace with the rate

and scale of climate change.

One of the methods that has revolutionised plant breeding by

improving its efficiency, speed and precision is marker-assisted

selection (MAS) (Collard and Mackill, 2008). There are different

MAS strategies such as MAS backcrossing, MAS pyramiding or early

generation MAS (Jeon et al., 2023), all of which use DNA-based

markers to help select lines with the desired traits. The limited

number of markers per trait and its restricted use for traits under

complex genetic control are major limitations of MAS. These

limitations led to the development of other marker-based strategies

such as genomic selection (GS) or crop growth models (Budhlakoti

et al., 2022; Zhang et al., 2022). Unlike MAS, GS uses all available

(genome-wide) markers to calculate a breeding value and has been

shown to outperform MAS in several studies (Arruda et al., 2016;

Degen and Müller, 2023). Despite these advancements, MAS is still

extensively used to efficiently screen for traits of interest. For instance,

MAS has been employed in wheat breeding to improve resistance to

biotic and abiotic stresses and to maintain yield potential (Song et al.,

2023; Subedi et al., 2023). A notable advantage of MAS may be that,

compared to the genome-wide approach of GS, only a few markers

ultimately need to be used by the breeder, making MAS –despite its

limitations– an affordable solution for practical breeding.

However, for a MAS programme to be successful, certain

prerequisites must be met: the generation of high-quality phenotypic

and genotypic data, the understanding of marker-trait associations, the

characterisation of reliable markers and, finally, the development of

cost-efficient and easy-to-use genotyping approaches. In this review, we

therefore attempt to cover this process using the example of winter

wheat breeding for increased drought tolerance. As a starting point, (i)

we revisit the physiological mechanisms and corresponding traits that

have been associated with drought tolerance in winter wheat under

different drought regimes (Section 2), (ii) we further discuss traditional

and modern phenotyping approaches focusing on airborne
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technologies and time series records and provide a guide for airborne

data acquisition for winter wheat (Section 3), (iii) we include genome-

wide association studies (GWAS), an important computational

approach that links the recorded phenotypes with the genotypes for

the identification of genetic markers used in MAS (Sections 4 and 5),

and finally, (iv) we address artificial intelligence (AI) models

accompanied by explainable AI (xAI) methods that could support

the breeding process at several steps in the context of smart agriculture

(Section 6). Attempting to bridge the gap between scientific

innovations and their application in practice, (v) we conclude this

review with an overview of the practical work of plant breeders (Section

7) and where these (novel) cutting-edge approaches could fit in and

help accelerate the breeding process.
2 Physiological mechanisms
underlying drought tolerance

Historically, advances in wheat breeding have largely been driven

by increased yield potential through better assimilate partitioning
Frontiers in Plant Science 03
towards grain sinks, sustained by prolonged assimilate source activity

due to extended green canopy duration (Lichthardt et al., 2020).

However, under water-limited conditions, yield formation is a

complex function of total water uptake, water use efficiency, and

harvest index (Passioura, 1977). Ecophysiological theory has guided

trait-based breeding by uncovering stress adaptation strategies in

natural vegetation. Levitt’s scheme of dehydration avoidance,

dehydration tolerance, and drought escape (Levitt, 1980) serves as a

guiding framework for physiological breeding: plant traits underlying

individual stress response types aid targeted selection for crop

adaptation in water-limited environments (e.g., Richards, 2006;

Araus et al., 2008; Cattivelli et al., 2008).

The selection of relevant traits involved in drought tolerance

mechanisms that could potentially lead to better and more stable

yields strongly depends on the time when the drought occurs (van

Ginkel et al., 1998; Blum, 2011). For instance, the phenological

adaptation (‘drought escape’) of early maturity might be especially

sensitive to early drought events while thriving in summer-dry

regions with water deficiency during the grain-filling stage.

Dehydration avoidance by ‘water saving’ (Levitt, 1980) might
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FIGURE 1

Infographic depicting (A) climatic projections by 2060 in Europe based on the SSP1 scenario, (B) an increase of heat degree hours results in a decrease of
yield in wheat, and (C) a plant’s various physiological responses to water deprivation. Specifically, the projections in (A) show the change of the annual
maximum temperature [°C], the change of precipitation [mm], and the change of the soil moisture content [kg/m2] by 2060 relative to 2020 considering the
best case SSP1 narrative following the ‘Green Path’. In detail, maps are based on the GFDL-ESM4 model data provided by NOAA-GFDL, release year 2018
(Krasting et al., 2018) representing the SSP1-2.6 model made available through the Coupled Model Intercomparison Project, CMIP (Eyring et al., 2016).
Furthermore, in (B), a decrease of wheat yield [tonnes/ha] can be seen with rising heat degree hours over the vegetation period. On-farm yield data and heat
degree hours represent averages of six districts in Lower Austria during the years 2002–2014. The dashed line indicates a projection to 2040. An overview of
the physiological reactions of a plant to drought stress is presented in (C). Designed by Tatjana Hirschmugl and Eva M. Molin.
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result in suboptimal use of available water under moderate drought

regimes, while in situations with more severe drought and crop

growth largely dependent on stored soil moisture from off-season

rainfalls, a ‘conservative’ water use preserves water for grain filling

and yield formation (Mori et al., 2011).

As highlighted in Figure 1C, the regulation of plant water

balance forms the physiological basis for identifying potential

breeding traits for more drought-tolerant plants. Whether

transpiration can meet the potential demand, driven by the

atmospheric vapour pressure deficit, depends not only on the

availability of soil water but also on the transport capacity of soil

and plants under variable driving gradients (e.g., Maseda and

Fernandez, 2006). In coarse to medium-textured soils, the

transport of water through the tortuous soil pore system to the

root surface drops sharply when larger pores drain upon successive

soil drying, resulting in supply limitation (wilting) at a water

content substantially higher than the permanent wilting point

(Czyż et al., 2012). With successive drying, the root-soil contact

can be lost due to root shrinkage and air gap formation as well as

root mucilage becoming hydrophobic to protect root tissues from

dehydration (Carminati and Vetterlein, 2013; Affortit et al., 2023).

Stomata are the ultimate regulators of crop water transport,

providing a mechanism to prevent plants from dehydration

damage (cf. Figure 1C). Stomata thus act upon imbalances

between vapour losses from and liquid water transport to the

transpiring leaves. Root water uptake (Abdalla et al., 2022) and

xylem transport (Cruiziat et al., 2002) are crucial for stomata

regulation, mediated by chemical and hydraulic signals within

plant-specific safety margins (Sperry and Love, 2015). Sustained

xylem water flow under high-pressure gradients between soil and

atmosphere without interruption of transport vessels by air

embolism, leading to an eventual hydraulic failure of the

transport system, has been suggested as one of the key

bottlenecks for crop performance in dry environments (Sperry

et al., 1998; Vadez et al., 2013; Vadez, 2014). Plants relying on

high safety margins with sensitive stomata response to tissue

dehydration (isohydric behaviour; Tardieu and Simonneau, 1998;

Hochberg et al., 2018), also have to cope with increased leaf

temperature and high radiation load at the leaf, which leads to an

overproduction of reactive oxygen species that cause metabolic

disorders and limit plant growth and development (Mukarram

et al., 2021). Within this general framework of physiological

mechanisms and related traits, Blum (2009) points to maximising

water uptake as a focus for breeding because it is generally

compatible with high yields, i.e. genotypes that fall into the

category of ‘water wasters’ according to Levitt’s framework.

Efficient water uptake by the root system is a desirable breeding

objective (Vadez et al., 2007). In wheat, physiological and root

research studies indicate a significant contribution of the root

system to increased drought tolerance (e.g. MansChadi et al.,

2008; Palta et al., 2011; Becker et al., 2016; Li et al., 2021).

To expand the germplasm sources of (novel) stress tolerance

traits, landraces and crop wild relatives are a valuable resource

offering a wealth of diversity (Galluzzi et al., 2020) that could be

transferred into breeding programmes, as has been extensively

reviewed for wheat (Valkoun, 2001; Reynolds et al., 2006;
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Trethowan and Mujeeb-Kazi, 2008; Nakhforoosh et al., 2015;

Lehnert et al., 2022; Aloisi et al., 2023; Shokat et al., 2023).

Specifically, cereal genetic resources could contribute to improved

drought tolerance through higher water use efficiency (Konvalina

et al., 2010), rapid early development (Mullan and Reynolds, 2010),

stem reserve demobilisation, osmotic adjustment (Reynolds et al.,

2006), and even plant waxiness (Patidar et al., 2023). Several studies

also suggest a contribution of root traits (e.g., Reynolds et al., 2006;

Sanguineti et al., 2007; Trethowan and Mujeeb-Kazi, 2008; Lopes

and Reynolds, 2010; Nakhforoosh et al., 2014).

Despite these studies, further progress in physiological and

trait-based breeding to accelerate wheat improvement for future

environmental conditions critically depend on adequate selection

strategies that combine (advanced) targeted trait phenotyping (see

Section 3) with modern genetic tools (see Sections 4 and 5).
3 From traditional to
airborne phenotyping

The practice of measuring phenotypic traits dates back to Neolithic

agriculture when domesticated cereals were intentionally selected for

traits such as broad kernels (Zohary et al., 2012). Today, one of the

cornerstones of plant breeding is the selection of superior individuals

based on phenotypic traits (e.g., grain yield), and more recently, the

identification of genome regions controlling these traits (cf. Sections 4

and 5). With advancements in sensor technology, phenotyping has

evolved into a high-throughput process, including remote sensing and

machine learning (ML), offering solutions for precision agriculture and

digital plant breeding (Walter et al., 2015; Pieruschka and Schurr, 2019;

Holzinger et al., 2022a; Jeon et al., 2023). This diversity of phenotyping

approaches is mirrored in the wide range of data and data formats

obtained during the breeding process by different sensors (Thoday-

Kennedy et al., 2022), such as visual scorings, direct measurements of

plant phenotypic parameters, meteorological readings, and

hyperspectral and multispectral measurements (Heremans et al., 2015;

Adão et al., 2017; Becker and Schmidhalter, 2017; Hu et al., 2020;

Saranya et al., 2023), which we aim to cover in this review with respect

to wheat.
3.1 Traditional phenotyping

Modern plant breeding still depends on traditional phenotyping,

which includes visual scorings, plant measurements, and destructive

sampling followed by laboratory analysis (Furbank and Tester, 2011;

Atkinson et al., 2018). Each type has unique characteristics in terms

of precision and measurement speed. Non-destructive measurements

are easily measured, such as plant height and visual assessments of

disease occurrence, phenology, and plant architecture. These visual

assessments are commonly used and are also applied for official

national variety testing, e.g., in Austria (Kumar et al., 2016; Steiner

et al., 2017; Anderegg et al., 2020; AGES, 2023; Lunzer et al., 2023).

However, the precision of non-destructive measurements can be

limited by various factors such as observer variability and lighting

conditions. Conversely, destructive measurements involve the
frontiersin.org
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collection and analysis of plant samples to acquire data on above-

ground dry matter, grain yield, and quality traits like protein content

and baking quality. Despite offering high precision, these

measurements are time-consuming, destructive, and often limited

by cost considerations.

As for breeding experimental setups, they can be classified based

on the degree of control over environmental conditions (Hammer

and Hopper, 1997). Growth chambers provide highly controlled

conditions, where numerous environmental variables such as

temperature, light intensity, and CO2 concentration can be

manipulated (Rezaei et al., 2018). Semi-controlled conditions,

observed in, e.g., greenhouses and rain-out shelters, offer some

control over environmental factors, with greenhouses affording

greater control than rain-out shelters (Yadav, 2017; Rezaei et al.,

2018). Finally, experiments under field conditions feature the lowest

control over environmental variables. Nevertheless, field

experiments are undoubtedly relevant, since most of them are

conducted in the field under uncontrolled conditions (Hammer

and Hopper, 1997). They allow for scientific testing of experimental

factors under conditions similar to agriculture practice.

Experimental factors can include varying genotypes, sowing

times, fertilisation, plant protection, irrigation and disease

occurrence due to natural pressure as well as artificial inoculation

(Buerstmayr et al., 2000; Koppensteiner et al., 2022).

Observational units vary across setups, ranging from plots in field

experiments and rain-out shelters to pots in greenhouses and growth

chambers (Buerstmayr et al., 2000; Yadav, 2017; Rezaei et al., 2018;

Koppensteiner et al., 2022). In field trials, units of observation include

single seeds (Zhu et al., 2012), single rows (Buerstmayr et al., 2000),

micro-plots (Miedaner et al., 2006), and large plots (Koppensteiner

et al., 2022), e.g., 1.5 m by 7 m, depending on the amount of available

seed material of a genotype in the respective stages of the breeding

process. In the context of UAV-based sensor systems discussed in this

review, micro-plots and large plots are the most relevant observation

units. Measurements on more detailed levels are possible depending

on the specifications of sensor systems and operational flight height.

Despite the significance of field experiments, conducting field

phenotyping is arduous, time-intensive, and susceptible to human

and environmental variability. Therefore, there is a pressing need to

enhance field phenotyping capabilities to facilitate accurate and high-

throughput phenotyping, thus expediting crop breeding processes

(Yang et al., 2020).
3.2 Remote sensing

Remote phenotyping techniques in digital agriculture are prized

for their non-destructive nature and their ability to improve data

collection accuracy and efficiency (Sishodia et al., 2020; Jeon et al.,

2023). These techniques rely on remote sensing, which involves

detecting electromagnetic radiation across various wavelengths

emitted, reflected, or transmitted by objects. Remote sensing

measurements are categorised into direct and indirect methods.

Direct measurements involve directly gauging traits of interest, such

as plant height using digital surface and terrain models (Holman
Frontiers in Plant Science 05
et al., 2016), while indirect measurements estimate traits using

statistical or ML models like biomass and water stress estimates

(Wang et al., 2016; Das et al., 2021).

Remote phenotyping can be conducted at various scales:

ground-based - handheld or vehicle-mounted (Kumar et al., 2020;

Tang et al., 2023), aerial - via aircraft or UAVs (Fei et al., 2023;

Nguyen et al., 2023), and satellite platforms like Sentinel-2 (Zhao

et al., 2020; European Space Agency, 2023a), Landsat (Zhou et al.,

2020; Darra et al., 2023; NASA, 2023), WorldView-2 and 3 (Tattaris

et al., 2016; Yuan et al., 2017; European Space Agency, 2023b), or

RapidEye (Eitel et al., 2007; European Space Agency, 2024). To

contextualise these platforms, key remote sensing features are

spatial, temporal, spectral, and radiometric resolutions (Verde

et al., 2018). Spatial resolution refers to pixel size, temporal

resolution to the time between measurements, spectral resolution

to the number of spectral channels, and radiometric resolution to a

sensor’s ability to detect varying energy quantities in a specific

spectral channel. Each phenotyping platform presents trade-offs; for

instance, ground-based techniques offer high spatial resolution but

require dedicated manpower, leading to lower time resolution.

Aerial technologies offer enhanced operational performance and

sub-centimetre spatial resolution (Bhandari et al., 2020) but are

weather-dependent, limiting time-series data availability. Satellites

provide densely populated time series but sacrifice spatial

resolution, with modern satellites offering resolutions as low as 31

cm in the case of Worldview-3 (European Space Agency, 2023b).

Moreover, in general, increasing sensor-object distance or

increasing the swath width of the satellite, i.e. the horizontal

distance covered by a satellite sensor, can improve temporal

resolution by allowing the sensor to revisit the same location

more frequently. However, this enhancement comes at the cost of

diminished spatial resolution (Kadhim et al., 2016). Other trade-offs

do not depend on the spatial resolution, but, for UAV, the

maximum weight of a payload determines the equipped camera

and therefore the spectral resolution available to be measured

(Mohsan et al., 2023).

Another key concept in remote sensing and therefore in remote

phenotyping is the Ground Sampling Distance (GSD), i.e. the

spatial spacing between the centres of two consecutive pixels as

measured on the ground. It is determined by several key factors:

altitude (h), denoting the height above the ground at which the

sensor is positioned and affecting the scale of the captured image;

sensor size (s), representing the physical size of the sensor in the

camera, typically measured in mm, larger sensors capturing more

detail and impacting the GSD; focal length (f), the distance from the

optical centre of the lens to the camera sensor, measured in mm,

influencing the field of view and magnification of the captured

image, and image resolution (r). The GSD is mathematically

represented as:

GSD (m) =
h (m)� s (mm)

f  (mm)� r (pixels)

This metric is important because it directly determines the

spatial resolution of the imagery, affecting the level of detail that can

be captured and the accuracy of any measurements or analyses
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conducted on the images. Generally, a smaller GSD indicates a

higher spatial resolution and finer detail in the imagery. GSD values

vary across different imaging platforms. For UAV imaging, GSD

can vary depending on factors like altitude and sensor

specifications, generally falling between 0.5 to 10 cm per pixel

(Yuan et al., 2018). This range allows for moderately detailed aerial

imagery suitable for various agricultural and environmental

applications. On the other hand, satellite imaging offers broader

coverage but typically lower spatial resolution. GSD for satellite

imagery can range from 30 cm to several m per pixel, depending on

the satellite platform, sensor, and imaging mode employed

(Chawade et al., 2019).

In plant breeding, the field experimental plot is the typical unit

of observation (Hammer and Hopper, 1997). While current satellite

systems’ spatial resolution may be inadequate for precise

phenotypic parameters at a plot level (Tattaris et al., 2016),

ground-based and aerial remote sensing approaches offer suitable

spatial resolution. UAVs, with their flexibility, extended operational

times, lower cost, and high spatial resolution in the low centimetre

range, emerge as promising phenotyping platforms for plant

breeding and precision agriculture (Sishodia et al., 2020; Guo

et al., 2021).
3.3 UAV-based remote phenotyping

UAV remote sensing coupled with ML provides a non-

destructive method that enables repeated plant measurements

over time. This is a significant improvement over traditional

methods, which are laborious, time-consuming and expensive

(Galieni et al., 2021; Nguyen et al., 2023). Therefore, the use of

UAVs for remote phenotyping has become a well-established

practise in plant breeding (Yang et al., 2020; Guo et al., 2021).

Compared to other remote sensing platforms, UAVs offer several

advantages. They are capable of swiftly collecting spectral data,

outperforming the speed of handheld devices. They can capture

data at a higher resolution compared to aerial cameras operated

from a manned aircraft, and they are not dependent on satellite

overpasses for data collection in the region of interest (Kim

et al., 2019).

3.3.1 An overview of UAV sensor systems
UAVs can be equipped with passive sensors, such as

multispectral, hyperspectral and thermal cameras, or active

sensors, such as Light Detection And Ranging (LiDAR) (Thoday-

Kennedy et al., 2022).

Since multispectral and hyperspectral cameras can capture data

at various wavelengths (also outside the visible spectrum), their use

in agricultural applications offers many benefits. They can identify

and monitor crop health and stress (Yang et al., 2009; Virnodkar

et al., 2020), determine and map corn emergence uniformity (Vong

et al., 2022) and quickly detect diseases and pests (Prabhakar et al.,

2012). Multispectral leaf reflectance data are very useful because

they contribute to computing indices widely used in agriculture (see

Table 1 for an overview of the main vegetation indices).
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Additionally, both multispectral and hyperspectral data can be

utilised to estimate crop yields using ML methods (Fei et al.,

2023; Joshi et al., 2023). In contrast to multispectral sensors,

which typically capture broader spectral bands with spectral

resolutions from 10 to 100 nm, hyperspectral sensors offer a

much higher spectral resolution, often within 1 to 10 nm (Adão

et al., 2017). They effectively capture a spectral continuum across

hundreds of contiguous, narrow bands, enabling detailed pixel-by-

pixel analysis. Hyperspectral cameras are capable of capturing not

only the visible (400-700 nm) and near-infrared (NIR, 700-2500

nm) wavelength ranges but also radiation from the ultraviolet (UV,

100-400 nm) to thermal infrared (TIR, 3000-15000 nm)

wavelengths. However, the large data storage required for

hyperspectral data can limit its use in large-scale applications

(Sun et al., 2019). Therefore, despite their significant advantages,

hyperspectral applications in large-scale wheat phenotyping could

face challenges related to data storage, management, and budget

constraints (Ang and Seng, 2021).

Thermal imaging, which operates within the broader long-

wave infrared (LWIR) wavelengths (from 8 to 15 μm), serves as a

valuable tool for detecting plant stress. Thermal measurements

can be used to evaluate the transpiration status, plant vigour, and

the spread of diseases in wheat cultivars (Mahlein et al., 2012) or,

together with measurement of the air temperature, to compute the

Crop Water Stress Index (CWSI). This index can then be

incorporated as a feature in an ML model to provide insights on

canopy head evapotranspiration or to segment image data into

temperature areas (Zhou et al., 2021b). Moreover, combining

thermal imaging data with other phenotypic traits improves the

holistic understanding of plant responses to environmental

conditions. This synergy enables researchers, breeders and

farmers to make well-informed decisions for optimal crop

management and resource allocation (Khanal et al., 2017; Stutsel

et al., 2021).

On the other hand, unlike camera-based systems that passively

capture reflected, transmitted, or emitted light, LiDAR is an active

technique that emits laser pulses and measures the time for these

pulses to reflect off objects, providing precise distance and spatial

data. This has been particularly useful in wheat breeding for

estimating plant biomass and plant height (Hütt et al., 2023).

Taking advantage of global navigation satellite systems (GNSS) and

laser altimetry, and using GIS software, accurate crop height

measurements can be obtained by subtracting a digital terrain

model from a digital surface model representing the crop canopy

surface (Jenal et al., 2021). Although LiDAR systems typically operate

at a single wavelength, combining geometric measurement with

spectral information is possible, such as registering multispectral

camera images with LiDAR point clouds (Hakula et al., 2023), or

using LiDAR systems with individual lasers at various frequencies,

e.g., Optech Titan (GEO3D, 2023).

3.3.2 Spectral indices supporting smart
wheat breeding

In the context of wheat breeding, an index is a mathematical

formula designed to provide a comprehensive representation of
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various plant traits, physiological states and characteristics

(Reynolds and Langridge, 2016). It combines different desired

traits into a single numerical value, allowing breeders to assess

and compare the overall performance of different wheat varieties

more thoroughly (Myneni et al., 1995). The computation of these

indices creates a multidimensional profile, enriching the complexity

of the breeding problem and providing valuable input for machine-

learning approaches. Consequently, indices are crucial tools that

enable breeders to make informed decisions, optimise their

breeding strategies, and ultimately develop wheat varieties that

thrive in a wide range of agricultural and environmental

conditions in modern research (Radočaj et al., 2023).

In precision agriculture, vegetation indices are broadly

categorised into two main types: broadband and narrowband

(Thenkabail et al., 2002). Broadband indices, such as the

Normalised Difference Vegetation Index (NDVI) (Rouse et al.,

1974), integrate information from relatively wide spectral bands,

such as the NIR band. These indices offer a generalised measure of

vegetation vigour and health. This approach is efficient and simple,

making these indices suitable for large-scale agricultural monitoring
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and management tasks where rapid assessment is prioritised. In

contrast, narrowband indices, such as the Chlorophyll Absorption

Ratio Index (TCARI) (Haboudane et al., 2002), target specific

narrow spectral bands within the electromagnetic spectrum.

These indices focus on precise absorption features related to

chlorophyll content, leaf structure, and other biochemical

properties. Narrowband indices provide high spectral resolution

making them valuable for tasks requiring in-depth analysis of plant

health and stress. The choice of using either family of indices

depends on the specific physiological traits under investigation.

Table 1 presents several indices common in remote sensing for

wheat phenotyping. The practical rationale behind our selection of

these indices is the ease of computing them with standard

commercially available multispectral cameras (NIR - 700-2500 nm,

RGB - 400-700 nm, SWIR - 2500-3000 nm, Red Edge-700-730 nm)

and their recognised impact in assessing the plant water status,

general stress condition and phenological traits. Vegetation Indices

play a crucial role in assessing various aspects of vegetation health and

physiological traits. The Normalised Difference Vegetation Index

(NDVI) is widely utilised due to its computational simplicity,
TABLE 1 Most used indices of remote phenotyping applied in wheat breeding.

Name Formula Properties Reference

NDVI
Normalised Difference Vegetation Index

NIR − R
NIR + R

Vegetation density, plant health, and land
cover monitoring

(Carlson and
Ripley, 1997)

EVI
Enhanced Vegetation Index

GF
NIR − R

NIR + C1R − C2B + L
Sensitivity in high vegetation areas and

aerosol correction
(Matsushita et al., 2007)

SAVI
Soil Adjusted

Vegetation Index

(NIR − R)
(NIR + R + L)

(1 + L)
Vegetation index corrected for Soil

Condition
(Huete, 1988)

NDWI
Normalised Difference Water Index

NIR − SWIR
NIR + SWIR

Water presence detection and water
content sensitivity

(Gao, 1996)

LAI
Leaf Area Index

− ln P(q) cos (q)
G(q)W (q)

Green leaf area measurement and
ecosystem dynamics monitoring

(Nilson, 1971)

TCARI
Transformed

Chlorophyll Absorption in
Reflectance Index

3 · (R700 − R670) − 0:2(R700 − R550)
R700

R670

Chlorophyll estimation in vegetation (Haboudane et al., 2002)

GNDVI
Green Normalised

Difference Vegetation Index

NIR − G
NIR + G

Vegetation monitoring
(Rahman and
Robson, 2016)

MSAVI
Modified Soil Adjusted

Vegetation Index

2NIR + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2NIR + 1)2 − 8(NIR − R)

p

2
Enhanced sensitivity to low vegetation (Qi et al., 1994)

ARI
Anthocyanin

Reflectance Index
ARI = R−1

550 − R−1
700 Detection of plant pigments (Gitelson et al., 2001)

NDRE
Normalised Difference Red Edge

NIR − Red   edge
NIR + Red   edge

Measurement of vegetation stress (Tilling et al., 2007)

CCCI
Canopy Chlorophyll Content Index

NDRE − NDREmin

NDREmax − NDREmin
Measurement of chlorophyll content in the canopies (Fitzgerald et al., 2010)
The LAI formula presented here is not the only one available. Other methods for computing LAI are referenced in Fang et al. (2019). SAVI/EVI: GF is a gain factor, C1 and C2 are the coefficients
to correct for aerosol influences in the red band and L is the Canopy background adjustment factor. LAI: P(q) represents the canopy gap fraction at the zenith angle q and G(q) is the projection
function corresponding to the fraction of foliage projected on the plane normal to the solar direction and Ω(q) is the canopy clumping index. ARI/TCARI: The term RY typically denotes the
measurement of the red colour at a wavelength denoted by Y, with the unit of measurement being nanometers (nm). CCCI:NDREmin and NDREmax represent the minimum and maximum values
of NDRE that have been recorded, respectively.
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facilitating assessments of vegetation density, plant health, and water

stress (Condorelli et al., 2018; Hassan et al., 2019; Huang et al., 2021).

However, limitations such as computational approximations and

instrument inaccuracies can occasionally hinder its effectiveness in

evaluating plant stress (Khan et al., 2018).

To address these limitations, several alternative indices have

been developed. The Enhanced Vegetation Index (EVI) enhances

the vegetation signal in high biomass areas and corrects for aerosol

factors (Khan et al., 2018). Additionally, the Soil-Adjusted

Vegetation Index (SAVI) and Modified Soil-Adjusted Vegetation

Index (MSAVI) correct for soil irradiation in areas with low canopy

cover (Prudnikova et al., 2019). The Normalised Difference Water

Index (NDWI) detects water presence and sensitivity to water

content (Wu et al., 2009). The Green Normalised Difference

Vegetation Index (GNDVI) specifically targets green vegetation,

utilising the green band instead of red. Furthermore, the

Normalised Difference Red Edge (NDRE) emphasises the red

edge region of the spectrum instead of the red band. These last

two indices correlate with leaf nitrogen content and are used for

controlling nitrogen leaf status (Li et al., 2019).

For other physiological traits, specialised indices have been

developed. The Transformed Chlorophyll Absorption Reflectance

Index (TCARI) estimates chlorophyll content in vegetation and

biomass (Wang et al., 2022). The Leaf Area Index (LAI) measures

foliage density within a canopy by comparing leaf surface area to

ground area. The Anthocyanin Reflectance Index (ARI) identifies

the presence of anthocyanins, aiding in the assessment of plant

stress, phenology, and disease infection (Koc et al., 2022). Lastly, the

Canopy Chlorophyll Content Index (CCCI) estimates chlorophyll

levels in vegetation by combining red and red edge bands

(Cummings et al., 2021).

Each of these indices offers unique insights that can inform

breeding decisions, including assessments of yield potential and

drought resistance, thus necessitating careful selection among

the myriad indices developed by the remote sensing community

(Xue and Su, 2017).

3.3.3 Machine learning for interpreting high-
throughput field phenotypic data

In these scenarios, ML techniques showcase their advantage over

conventional approaches in predicting phenotypes (Ansarifar et al.,

2021). As high-throughput phenotyping methods produce a large

volume of data, the use of ML becomes pivotal in accurately

interpreting and effectively leveraging this data, leading to more

precise phenotype predictions (Shaikh et al., 2022). For example,

Wang et al. (2016) presents how random forest (RF) models

outperform simple multilayer perceptrons (MLPs) and support

vector machines (SVMs) in predicting wheat biomass. Grinberg

et al. (2020) provides a comparative study of different ML models

on various phenotyping problems across different crops, including

wheat. The advent of deep learning enhances the classification of crop

images, offering unprecedented granularity in monitoring crop

quality, assessing yield, and pinpointing water stress at a pixel-wise

level (Chandel et al., 2021). Convolutional neural networks (CNNs)

further boost the model’s capabilities, automatically extracting key
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features and patterns to make reliable phenotype predictions (Jiang

and Li, 2020). Moreover, deep learning models have expanded the

range of possible predictions to include disease detection, stress

severity quantification, and yield (Mohanty et al., 2016; Giménez-

Gallego et al., 2019; Zhou et al., 2021a). An intriguing direction that

research has taken is semi-supervised approaches to the learning

problem (Tang et al., 2023; Zhou et al., 2023). Semi-supervised deep

learning is an ML paradigm where a model is trained using a

combination of labelled and unlabelled data. It uses the limited

labelled data to guide the learning process and improve the model’s

performance on tasks such as classification or regression, while also

benefiting from the larger pool of unlabelled data for generalisation

and enhanced feature representation (Yang et al., 2021). Deep

learning significantly improves the model’s ability to generalise and

enables accurate and reliable phenotyping models for high-

throughput approaches. However, a key drawback of deep learning

approaches is that each solution needs to be tailored to the data and

the phenotypic trait under investigation.

While traditional methods continue to hold their merits,

integrating (UAV-based) remote sensing coupled with ML in

phenotyping processes might be essential to obtain better and

more resilient crop varieties (Yang et al., 2020). In addition,

operational costs could be significantly reduced by cutting fixed

costs such as laboratory equipment and workforce. This would lead

to improved scalability in the approach and quicker results that are

passed over in the data pipeline.
3.4 A guide for UAV-based data acquisition
for winter wheat

Moving to the next stage, this Section presents a detailed

overview of a potential high-throughput field phenotyping system

specifically tailored for winter wheat. The main objective is to

facilitate the acquisition of phenotypic data for GWAS (see

Section 4) and MAS techniques in the frame of precision

agriculture. A schematic representation of the key components of

the pipeline is presented in Figure 2.

In this scenario, the fundamental premise revolves around the

division of the test field into georeferenced experimental plots,

overseen by experts tasked with gathering in-situ data. This

experimental arrangement mirrors established methodologies seen

across various research endeavours, aimed at facilitating controlled

crop cultivation (Bai et al., 2016; Haghighattalab et al., 2016;

Volpato et al., 2021). The grid structure delineating individual

plots within the field is visually represented in Figure 2. Typically,

experts conduct assessments and record measurements by visually

inspecting these plots, as demonstrated in Koc et al. (2022). It’s also

advantageous to conduct these measurements at specific intervals,

tailored to the trait being studied. For instance, in Fernandez-

Gallego et al. (2020), multispectral images were captured under

direct sunlight on three dates: June 6th, 25th, and July 3rd, 2018, in

Belgium, corresponding to the developmental stages flowering and

ripening, to monitor wheat ear development and count. During

each scheduled flight mission, a UAV systematically follows a
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predefined grid pattern, meticulously gathering data while

traversing the agricultural field.

The UAV could be equipped with a camera capable of capturing

a range of spectral information, including RGB, panchromatic, Red

Edge, NIR and thermal measures, during its flight (Holman et al.,

2016; Tattaris et al., 2016; Duan et al., 2017). The specific selection of

spectral bands depends on the particular index to be computed,

which in turn depends on the trait under investigation. Additionally,

the camera must undergo radiometric calibration to ensure the

acquisition of physically meaningful measurements. The spatial

resolution of the data acquired is influenced by both the altitude of

the UAV and the intrinsic parameters of the camera used. For

example, a standard multispectral camera (e.g. AgEagle Aerial

Systems Inc, 2023) with 3.2 MP captures images with 2.5 cm GSD

at an altitude of 60 m above the ground. The collected data is typically

processed using photogrammetric software like Pix4D or Agisoft

(Zhu et al., 2019). These software applications are used to create a

reflectance map of the agricultural field by orthorectification and

stitching individual images to reconstruct a high-resolution

representation of the target area. Subsequently, plot-level spectral

information is extracted using geospatial software, e.g. GIS, and

organised for easy access (Beltrame et al., 2024). This data is then

linked with specific plots and expert-acquired labelled information

(lower part of Figure 2) to create tuples for subsequent ML analysis.

These calibrated, cleaned, and standardised datasets can be used in

classical preprocessing operations, including image normalisation,

data augmentation, and sub-/oversampling techniques. To fully

harness the information-rich content obtained, it is essential to

select models that can handle the spatial complexity inherent in

high-resolution images. For instance, a basic deep learning
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architecture, such as CNNs, can be used to extract feature maps

from images and make accurate phenotype predictions (Kattenborn

et al., 2021; Nguyen et al., 2023).

Recent advancements in image analysis, data extraction, and

augmentation (Shorten and Khoshgoftaar, 2019), coupled with

innovative artificial image synthesis techniques (Lu et al., 2022),

and transfer learning (Hutchinson et al., 2017) are greatly

enhancing the development and the integration of remote sensing

technologies in agriculture. These advancements are starting to

contribute to overcoming the phenotyping bottleneck (Song et al.,

2021) and significantly enhance the provision of high-quality

phenotype data to genotype - phenotype association studies

ultimately resulting in an efficient and reliable MAS.
4 GWAS - a playground for the
identification of genetic markers

Besides a meticulous recording of phenotypic data, MAS

depends on the availability of genetic markers linked to the

phenotypic trait of interest. Identifying these genetic regions

associated with a phenotype is often not a straightforward task:

many traits are polygenic, which adds to the complexity of their

relationship with the phenotype (Korte and Farlow, 2013; Boyle

et al., 2017; Mills and Rahal, 2019; Pierce et al., 2020). The general

approach of linking genetic regions to traits, known as genetic

mapping, consists of two main strategies: (biparental) linkage

mapping (LM) and association mapping (AM) (March, 1999).

LM utilises closely related individuals to study the co-segregation

of markers and traits due to physical proximity, while AM uses
FIGURE 2

Illustration of a high-throughput UAV-based phenotyping configuration for plot-level analysis. The pipeline explains how to get from the raw data,
in-situ phenotype acquisitions and raw images, to a structured and cohesive dataset to be employed in ML operations. The depicted dimensions,
captured wavelengths, ML models, and traditional phenotyping methods serve as reference points. Designed by Tatjana Hirschmugl.
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diverse, unrelated populations to detect statistical associations

between markers and traits. AM, also known as linkage

disequilibrium mapping, exploits linkage disequilibrium (Mackay

and Powell, 2007), which is the nonrandom association pattern

between alleles at different loci within a population (Nordborg and

Tavaré, 2002; Gaut and Long, 2003). Since its introduction to plants

(Tenaillon et al., 2001; Thornsberry et al., 2001), AM has become

increasingly important in genetic research as cost-effective, high-

throughput technologies for genotyping single nucleotide

polymorphisms (SNPs) are now available, enabling dense marker

coverage (Syvänen, 2005). A particular concept of AM, namely

genome-wide association studies (GWAS), has become a common

technique for understanding complex traits in plants in general and

in many crop species, including wheat (Zhu et al., 2008; Cortes

et al., 2021).

The primary advantage of GWAS is that it tests thousands to

millions of genetic variants (e.g., SNPs) of many individuals from

different populations on a genome-wide scale, allowing more

complex genotype-phenotype relationships to be explained than

with LM. However, for a genome-wide analysis, the knowledge

about and the characterisation of SNPs is an essential part and is

driven by the sequencing of the whole genome of the target

organism. In the case of wheat, its genome was fully sequenced in

2018 (Appels et al., 2018) and has been continuously improved

since then Shi and Ling (2018); Guan et al. (2020); Gao et al. (2023),

including the creation of a pangenome (Montenegro et al., 2017;

Jayakodi et al., 2021), which provides a valuable knowledge base for

the development of a variety of high-density SNP arrays for high-

throughput genotyping (Wang et al., 2014; Rimbert et al., 2018; Sun

et al., 2020). Finally, to link these genotypic traits to the measured

phenotypes, a wide range of GWAS-based tools and statistical

methods are available, which have already been used in wheat, as

shown in Table 2, which are described in the following Section in

more detail.
4.1 GWAS modelling strategies

The modelling strategies underlying GWAS are diverse from a

statistical perspective, of which linear and Bayesian models are the

prevailing strategies. Linear models fit linear equations to the data

(genetic and phenotypic data), testing each specific marker and its

relationship with the phenotype independently, simplifying the

computational complexity that could arise from the genetic

intricacies in the data (Sabatti, 2013). Generalised linear models

(GLMs), as described in Nelder and Wedderburn (1972), add an

additional layer of complexity, including a link function to relate

input and output, thus providing certain flexibility from the rigidity

of linearity. Linear mixed models (LMMs) represent another logical

extension of linear models for GWAS and are widely applied (cf.

Table 2). LMMs include fixed and random effects to model

phenotypes, and can account for confounding factors such as

population stratification, family structure, etc (Alamin et al.,

2022). LMMs also offer versatility as they can analyse many

experimental designs (Yang, 2010). These models, as their name
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suggests, assume a linear relationship between genotype and

phenotype. They also assume that the random effects are

normally distributed and that there is homoscedasticity in the

variance of their errors (Warrington et al., 2014). These are the

two main concepts use for GWAS methods based on linearity.

Bayesian models have also been developed and used for

GWAS (cf. Table 2), fitting all markers simultaneously while

addressing the issue of data dimensionality, making them well

suited for polygenic traits (Fernando and Garrick, 2013; Miao

et al., 2019). These methods require the specification of prior

distributions, allowing knowledge of the data to be incorporated

into them to yield more accurate results, with the caveat that

deviation from the specified distribution can impair performance

and statistical power (Cortes et al., 2021). Bayesian GWAS aim to

identify sections of the genome that explain more than a

threshold of the variance (Fernando and Garrick, 2013; Cortes

et al., 2021). The multiple methods developed assume different
TABLE 2 Common GWAS tools and methods, and examples of their
application in wheat.

GWAS
tool

Tool
reference

GWAS
method

Application
in wheat

BayesCp
Habier

et al. (2011)
Bayesian GWAS

Zhao
et al. (2013)

BLINK
Huang

et al. (2019)
Bayesian GWAS

Devate
et al. (2022)

EMMAX Kang et al. (2010) Efficient mixed model
Daba et al.
(2018)

Li et al. (2022)

farmCPU Liu et al. (2016) Multiple loci LMM

Gahlaut et al.
(2021)
Rahimi

et al. (2023)

GAPIT
Lipka et al.

(2012) and Tang
et al. (2016)

Compressed mixed
linear model based
genomic prediction

Qaseem et al.
(2019)
Bennani

et al. (2022)

MA
Zhou and

Stephens (2012)
Genome-wide efficient

mixed model
Wu et al. (2021)
Ma et al. (2022)

JMP
Genomics

SAS Institute
Inc (2013)

GLMs
Gizaw

et al. (2018)

PLINK
Purcell et al.

(2007) and Chang
et al. (2015)

Mixed model GWAS

Gogna et al.
(2023)
Zhao

et al. (2023)

SNPtest
Marchini et al.
(2007) and

Marchini (2010)

Imputation
based GWAS

Manickavelu
et al. (2017)
Muhammad

(2021)

sommer
Covarrubias-
Pazaran (2016)

Mixed model GWAS

Vukasovic et al.
(2022)

Dallinger
et al. (2023)

TASSEL
Bradbury

et al. (2007)
Generalised models and
mixed linear models

Lehnert et al.
(2018)
Akram

et al. (2021)
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distributions for the calculation of the priors, having different

performance according to the deviation from their actual

distribution. Markov Chain Monte Carlo algorithms have been

used to infer model parameters using Gibbs-type processes, as in

Habier et al. (2011). The posterior probabilities of association, the

odds of a specific SNP being actually related to the trait, can be

calculated from the Bayes factor (Stephens and Balding, 2009).
4.2 Understanding the limitations of GWAS

Despite all these advancements, GWAS still have significant

limitations in their design and application (Korte and Farlow, 2013;

Wray et al., 2013; Tam et al., 2019; Cortes et al., 2021): they can be

limited to the populations that are more represented in the studies,

and there can exist a lack of transferability, as results may not

extrapolate to other groups (Bouaziz et al., 2011), or the number of

ostensible causal variations might be reduced if data from

genetically diverse populations were used, so it is paramount to

have an adequate representation of the population to reduce the

possible biases that can arise from this (Clyde, 2019; Uffelmann

et al., 2021). In addition, at this point, the causality or functionality

of the linked SNPs is still elusive and only can be validated

empirically through further experimentation (Hazelett et al., 2016;

Gallagher and Chen-Plotkin, 2018). Non-normality of the data can

also be a significant factor that increases error and reduces statistical

power (Yoosefzadeh-Najafabadi et al., 2022). When applying

GWAS, the risk of finding spurious correlations is ever-present,

thus careful consideration must be taken into the model to correct

when working with complex traits (Ball, 2013).

As the complexity of genetic architecture increases (Boyle et al.,

2017), GWAS methods often fail to identify all genetic

polymorphisms that have an effect on the phenotype. This

phenomenon, known as missing heritability (Brachi et al., 2011),

occurs when the genotype identified with these statistical methods

does not fully explain the target characteristics. Missing heritability

is thought to be caused partially by polymorphisms that have a

small correlation with the target trait, and thus not being significant

after Bonferroni correction (López-Cortegano and Caballero, 2019).

Bonferroni correction is a method of adjusting p values when

conducting multiple simultaneous tests on the same dataset; it

involves dividing the initial p value by the number of hypotheses

tested. In the context of GWAS, the relationship between specific

SNPs and the desired trait is considered a comparison, so the p

value is divided by the number of SNPs in the data (Napierala, 2012;

Tam et al., 2019). However, Bonferroni correction has its

drawbacks, for instance, when dealing with skewed phenotypic

data (John et al., 2022). Since many GWAS methods are based on

linear regression models, missing heritability could also be

addressed with non-linear models (Peng, 2020). Nonetheless,

some missing heritability might still be due to an underestimation

of the effect sizes of common alleles, unidentified common and rare

alleles, epigenetic changes, or in some cases, it might not even be

found within genetic information (Marian, 2012; Bourrat et al.,

2017). Colinearity is another potential source of reduced efficiency
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and statistical power for GWAS methodologies, and new strategies

are needed to mitigate this limitation (Zhang et al., 2019). Finally,

another important limitation of GWAS is high dimensionality of

the data (n≪p), where the number of features (e.g. SNPs) is much

larger than the number of cases (e.g. genotypes), a common issue

with biological data (Ramstein et al., 2019). Several AI concepts

have been applied to overcome these limitations and disadvantages

of GWAS (Szymczak et al., 2009; Nicholls et al., 2020; Enoma et al.,

2022), some of which already include certain explainability (e.g.,

Mieth et al. (2021), see also Section 6).

Many target traits of GWAS are highly quantitative and

complex. Grain yield and drought stress tolerance, for instance,

are affected by interactions between underlying component traits

(Allard and Bradshaw, 1964; Hammer et al., 2006). In Section 2, for

instance, a wealth of physiological mechanisms that influence

drought stress tolerance are presented. These interactions,

however, can be non-linear (Chang and Zhu, 2017), which is a

relevant challenge in GWAS. In this context, Technow et al. (2015)

proposes to incorporate a crop growth model (CGM) directly into

genomic analysis. Crop growth models can simulate biological and

physical processes in agricultural systems including plants,

environment and management (Holzworth et al., 2014). Relevant

CGMs in this context need to include genotype-specific parameters

(Oliveira et al., 2021). As a result, these models can capture the

effects of non-linear interactions between underlying component

traits on target traits (Technow et al., 2015). Gu et al. (2014), for

instance, applied QTL mapping and the crop growth model

GECROS to investigate the effect of genetic variation in leaf

photosynthetic rate on crop biomass in rice. Furthermore, CGMs

can help in identifying ideotypes to improve target traits and

suitability to specific weather and management conditions (Chang

et al., 2019; Bogard et al., 2021). Collins et al. (2021), for example,

investigated drought adaptation in Australian wheat using the crop

growth model APSIM and suggests limited-transpiration rate at

high evaporative demand as a promising trait for selection

by breeders.
5 GWAS to dissect drought tolerance
in wheat

Despite its limitations, GWAS has become a crucial method for

discovering loci for traits of interest, as discussed in the previous

section. Drought is one of the most important abiotic stressors

affecting wheat yield (Heino et al., 2023), prompting scientists and

breeders to identify loci associated with drought stress tolerance.

In addition to grain yield sensu stricto, numerous other drought

stress-related traits have been studied in wheat, including plant

height and root architecture, as well as phenological traits like days

to heading, anthesis or maturity (Mwadzingeni et al., 2016; Molero

et al., 2019; Khadka et al., 2020; Saini et al., 2022). A summary of

selected characterised markers and their associated traits in the

context of drought tolerance in wheat, including the GWASmethod

used, is given in Table 3 and will be further detailed in the

subsequent sections.
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5.1 Introduction to developmental stages
and yield components in wheat

To characterise marker-trait associations (MTAs) in the context

of drought, it is essential to understand the developmental stages of

wheat and to know at which stage drought can impact the traits of

interest that might also affect grain yield, e.g. yield components, as

highlighted in Figure 3. For the classification of the developmental

stages, we use the commonly applied BBCH-code (Hack et al.,

1992). Yield components are generally targets of high importance in

plant breeding (Araus et al., 2008). In cereals, grain yield is

described as the number of grains per m2 multiplied by the

average grain size. The number of grains per m2 can be further

differentiated into the number of spikes per m2 and the number of

grains per spike. Spikes per m2 and grains per spike are established

during the vegetative stage before anthesis, while the average grain

size is mainly determined later during the generative stage

(Geisler, 1983).

The number of spikes per m2 is the first yield component

determined during plant development. During the tiller

differentiation process (BBCH 20, tillering stage, cf. Figure 3), the

maximum number of tillers is established. Transitioning from

BBCH 20 to BBCH 30 (stem elongation stage, cf. Figure 3), the

number of established tillers is reduced to productive, spike-bearing

tillers. Both the differentiation and reduction process of tillers are

affected by drought stress. The tiller reduction process, however, is

much more sensitive to water shortage than the respective

differentiation process (Geisler, 1983). The differentiation process

of generative organs, e.g., grains, can be divided into the

establishment of spikelets and florets, whereby the primordia of

spikelets are already developed by the end of tillering stage (BBCH

20). During stem elongation (cf. Figure 3), most spikelets and florets
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differentiate, and the maximum number of spikelets and florets is

present at the beginning of BBCH 50 (heading). Afterwards,

reduction processes of spikelets and florets occur until anthesis.

The developmental stages from heading until anthesis are especially

sensitive to drought stress González-Navarro et al. (2015). If

drought stress is too severe, shedding of fertilised florets can

occur after anthesis. Furthermore, insufficient water supply can

also shorten the period for spikelet differentiation and thus reduce

the number of spikelets per spike. In comparison to the

simultaneous tiller reduction processes during stem elongation

stage, this effect is minor (Geisler, 1983). Starting with anthesis

(BBCH 60), the differentiation process of the caryopsis (the grain)

occurs, which determines average grain weight (cf. Figure 3). In

general, the longer the grain filling period during the stages of grain

development and ripening (BBCH 70 and 80), the higher the

average grain weight is (Ozturk et al., 2006; Klepeckas et al.,

2020). The duration of this phase, however, is highly affected by

environmental conditions. High temperature and insufficient water

supply lead to shorter grain filling periods and thus a low average

grain weight and even shrivelled grains (Spiertz, 1974; Klepeckas

et al., 2020), as well as a shorter duration for the translocation of

assimilates to the grain and thus lowers the harvest index of wheat

(Davidson and Campbell, 2011; Neugschwandtner et al., 2015;

Koppensteiner et al., 2022).
5.2 Markers associated to yield
components under drought stress

As the processes of differentiation and reduction for each

yield component occur at different developmental stages, they

can be significantly affected by temporal environmental
TABLE 3 Selected markers related to drought tolerance in wheat found with GWAS.

Selected
trait (s)

Drought
during

N° of
Markers
found

Important markers Method (tool) Reference

Leaf
chlorophyll content

seedling stage 28 IWB26948 LMM (GAPIT) Maulana et al. (2020)

Days to wilting seedling stage 104 WPT-2356 LMM GLM (TASSEL) Ahmed et al. (2021)

Grain yield
and biomass

whole season 73 wsnp_Ex_Rep_c67786_66472676 LMM (GAPIT) Bennani et al. (2022)

Grain yield whole season 94 IWA5483 GLM (JMP Genomics) Gizaw et al. (2018)

Grain yield whole season 192
IAAV619,

wsnp_Ex_c11120_18022932
LMM (TASSEL) Suliman et al. (2021)

Grain yield whole season 61 M7661 LMM GLM (TASSEL) Akram et al. (2021)

Grain yield whole season 37 M9766, M9769 Compressed LMM (GAPIT) Mathew et al. (2019)

Grain yield whole season 45 S7A_112977027 FarmCPU (NA) Bhatta et al. (2018)

Grain yield whole season 136 wsnp_BM134363A_Ta_2_4 LMM (GAPIT) Qaseem et al. (2018)

Stress
tolerance index

whole season 9 AX-111169510
LMM PCA + K
GWAS (GAPIT)

Zhao et al. (2023)

Days to maturity whole season 37 M1433, M6472, M1576 Compressed LMM (GAPIT) Mathew et al. (2019)
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conditions (Satorre and Slafer, 2000). For instance, high

temperature and water shortages can result in (i) accelerated

plant development and consequently shorter differentiation

processes for yield components, (ii) more intense reduction

processes of individual yield components, and (iii) decreased

photosynthetic activity, resulting in fewer available assimilates

for grain filling. Besides environmental effects, yield components

generally also depend on the genotype and crop management

practices, such as sowing, fertilisation, plant protection, and

irrigation (Geisler, 1983).

Numerous MTAs have already been characterised in

experiments comparing wheat varieties and their responses to

drought (Table 3). For example, Mathew et al. (2019) discovered

associations between markers and biomass allocation to grain yield.

Mwadzingeni et al. (2017) identified 334 MTAs with high

confidence for traits under both drought and non-drought

conditions. However, these markers explain only 20% of the

phenotypic variation, which could be a consequence of the

statistical stringency inherent in the methodology. The study

found that chromosome 5 in genome D included QTLs related to

grain yield, as seen in Quarrie et al. (2005). Among the 29 MTAs

found for grain yield, some were located in genes annotated as F-

box family protein or Sentrin-specific protease, described to have a

potential role in drought stress tolerance (Bhatta et al., 2018).
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Markers such as Xwmc273.3 and Xpsp3094.1 have been used in

the context of MAS of the yield-related QTL Qyld.csdh.7AL to

develop high-yielding drought tolerant genotypes (Gautam et al.,

2021). Bilgrami et al. (2020) identified SNPs (IWB39005 and

IWB44377) related to the number of fertile tillers and total tillers.

Suliman et al. (2021) explored grain yield and found 192 related

markers, where 25 highly significant SNPs on chromosome 5A have

a notable effect on grain yield, making this chromosome a relevant

target for yield improvement under drought conditions. Seedling

length, days to wilting, and leaf wilting were analysed in Ahmed

et al. (2021), who reported 104 associated markers. Multiple

phenotypic traits related to yield were used by Qaseem et al.

(2018) for GWAS, resulting in 136 MTAs relevant for winter

wheat’s positive response to drought conditions.
5.3 Traits associated with phenology under
drought conditions

It is well described that each developmental stage has its own

specific water supply requirements. If drought occurs during water-

sensitive developmental stages (cf. Figure 3), such as germination,

tillering, flowering, or grain filling (Yu et al., 2018; Senapati et al.,

2021; Xu et al., 2022), growth and subsequently yield can be
Macro 
stage

Developmental 
stage BBCH

0 Germination 0-9
1 Leaf development 10-19
2 Tillering 20-29
3 Stem elongation 30-39

4 & 5 Booting & heading 40-59
6 Anthesis 60-69

7, 8 & 9 Grain filling & ripening 70-99

5x 2x

2x

2x

2

0 1

3

4+

6

7+

FIGURE 3

The main developmental stages of winter wheat from germination to ripening are depicted. These developmental stages are contrasted by the most
important yield components (spikes/m2, grains/spike, and average grain weight and harvest index) as well as the BBCH classification in the adjacent
table. The magnifying glasses indicate a magnification for the respective drawings. Designed by Tatjana Hirschmugl.
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significantly impacted (Khadka et al., 2020). Therefore, the effects of

the concurrence of critical phenological stages and drought

conditions are critical (Langridge and Reynolds, 2021). Thus, in

traditional plant breeding, phenological parameters are measured

by expert-assessed visual scorings. Selection based on phenological

characteristics is then conducted by investigating the coincidence of

critical developmental stages with drought, heat, or other harsh

environmental conditions (Sallam et al., 2019). Maulana et al.

(2020) describes drought-related MTAs at the seedling stage of

wheat (Table 3). In addition, drought stress during stem elongation

can lead to yield reduction up to 71.52% (Ding et al., 2018). Early

vigour, the rapid development of leaf area, has been genetically

determined by 41 markers associated either with the NDVI or the

projected leaf area, which could be used to select for varieties

equipped with early vigour in the future (Vukasovic et al., 2022).

Farhad et al. (2023) discovered several QTLs (i.e. QDtb.bisa.2D.4)

that significantly relate to a shift in the time until booting (days to

booting) towards earlier planting. MTAs on chromosomes 2B, 3A

and 3D have been found to be related to the number of days to

anthesis (Molero et al., 2019). Utilising genetics to select suitable

varieties based on phenology is an important technique to face

intense drought events. Understanding the link between genotype

and phenology is essential to maximise grain yield in these scenarios.

Although these findings are significant and represent a

substantial step towards crop optimisation against drought, there

remains a large portion of heritability that is unaccounted for (see

Section 4). As a result, multiple markers that could be useful for

MAS might have gone unidentified. This missing heritability could

be due to multiple testing correction or because the statistical tests

assume a different distribution than that present in the actual data

(Brachi et al., 2011), needing the development of new methods to

tackle these issues.
6 Accelerating plant breeding
processes with explainable AI

Artificial intelligence (AI) is now applied in many areas of the life

sciences, thanks to the significant success of ML and particularly

neural networks (NNs) as problem solvers (Holzinger et al., 2023a),

which also has been enabled by the constant increase in computing

power and resources. AI has already made its way into modern crop

breeding, being used in the analysis of the increasing amount of plant

image data, as well as in the modelling of GS and GWAS, overcoming

some of the limitations of commonly used statistical methods

(Harfouche et al., 2019; Jeon et al., 2023; Najafabadi et al., 2023).

However, many AI algorithms have their caveats, as they often lack

explainability and transparency due to their complex architecture.

This is commonly referred to as the ‘black box problem’

(Castelvecchi, 2016), which can ultimately lead to the inability to

provide users with explanations for their decisions. The emerging

field of explainable AI (xAI) introduces newmethods aiming to make

AI systemsmore transparent and understandable (Arrieta et al., 2020;

Miller et al., 2022; Holzinger et al., 2022b), laying the foundation for

the digital transformation of smart agriculture, and especially plant

breeding (Harfouche et al., 2019; Holzinger et al., 2022a).
Frontiers in Plant Science 14
6.1 Introduction into xAI methods

Although numerous xAI methods have been developed, and

new ones continue to emerge for various NN architectures, no

single xAI method or combination fully explains the decision-

making process of the models. Each of them sheds light on a

different aspect of the AI model’s computation and many times it

has been shown that there is no mutual consent between them,

leading to the so-called ‘disagreement’ problem (Krishna et al.,

2022). Currently, quality metrics for xAI methods (Doumard et al.,

2023; Schwalbe and Finzel, 2023) and benchmarks for its evaluation

are being defined (Agarwal et al., 2023) to motivate xAI research in

directions that support trustworthy, reliable, actionable and causal

explanations even if they don’t always align with human pre-

conceived notions and expectations (Holzinger et al., 2019;

Magister et al., 2021; Finzel et al., 2022; Saranti et al., 2022;

Cabitza et al., 2023; Holzinger et al., 2023c).

xAI methods have a coarse division between post-hoc and ante-

hoc methods: the post-hoc ones are applied after the training has

produced ‘sufficiently’ good results in terms of performance. For

example, local interpretable model-agnostic explanation (LIME)

(Ribeiro et al., 2016), which constructs local linear explanation

models from the synthetic neighbourhood around the inputs, and

Shapley additive explanations (SHAPs) (Shapley, 1952; Staniak and

Biecek, 2019; Frye et al., 2020; Gevaert et al., 2023), which use game-

theoretic notions to measure how influential features are to the

prediction of a model, are procedures that could give scientists an

interpretation of the ‘black box’ (Bach et al., 2015; Montavon et al.,

2019; Amparore et al., 2021; den Broeck et al., 2022; Holzinger et al.,

2022b). Counterfactual explanations, inspired by the work of Judea

Pearl (Pearl and Mackenzie, 2018), are defined as all possibilities

that deviate from the main course of events. In similar terms, the

question ‘what if’ is applicable to counterfactual explanations that

aim to provide information about features that, if they had different

values, would result in a different output for the classification/

regression problem (Sokol and Flach, 2019; Dandl et al., 2020). On

the other hand, ante-hoc methods do not consist of individual

software components applied after the model has converged and its

internal parameters have solidified. Instead, they are models with

built-in explainability. Decision trees (DTs) are one of the most

representative models in this category and are widely used. They

divide the space of possibilities into parts separated by feature

ranges, making this method one of the easiest to understand

(Safavian and Landgrebe, 1991). Generalised Additive Models go

beyond linear and logistic regression, allowing the output to be

expressed as an additive combination of pre-specified non-linear

functions (Wood, 2004). Typically, the family of B-splines provides

a balance between good performance and interpretability since

these functions can be considered as individual and non-

interacting. Bayesian Rule Lists contain IF-THEN statements in a

list that describes the decision of the model (Letham et al., 2015).

The Bayesian rule comes with the definition of a Dirichlet prior that

specifies the number of pseudo-counts for a probability

distribution, which is defined by a human domain expert (Koller

and Friedman, 2009; Holzinger et al., 2023b). The posterior

distribution is computed by a Bayesian update rule and
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incorporation of the number of times one observed each

output label.

Layer-wise relevance propagation (LRP) (Bach et al., 2015;

Montavon et al., 2019) is a propagation-based method that uses

the model’s internal decision parameters to redistribute explanatory

factors over the layers of the model, reaching the input variables and

obtaining how important those are to the prediction and the model.

While the computation of relevance of each feature or input

component is something that is achieved by other methods, like

sensitivity analysis (SA) (Simonyan et al., 2013) or SHAP, LRP

uniquely computes both positive and negative relevance values.

This is particularly important since the components that have

positive relevance ‘speak for’ the result (e.g., the predicted class in

a classification task), whereas those with negative relevance denote

elements that contain evidence against the prediction and weaken

the prediction confidence of the model. While this method is

applied after the training of the model is accomplished, it is not

entirely agnostic about the internal structure of the model. LRP has

different variations for different NN architectures; for example,

Long short-term memory (Hochreiter and Schmidhuber, 1997)

networks have an adequately adapted LRP variation (Arras et al.,

2017) that enables perturbation analysis of the input sequence and

correspondingly graph neural networks (GNNs) have GNN-LRP

(Schnake et al., 2020; Xiong et al., 2022) that uncovers positively and

negatively important graph paths. LRP has been used for

uncovering spurious correlations (so-called Clever-Hans

phenomena) between the input and the output of an NN and also

for clustered explanations with Whole Dataset Analysis

(Lapuschkin et al., 2019).
6.2 Explainable AI methods for modern
plant breeding

The plant breeding process, in its entirety, necessitates a high

degree of transparency and explainability. Breeders, for instance,

need more than just a predictive value to support their selection of

genotypes; they rely on a wealth of information to understand the

underlying biology and environmental interactions (Harfouche

et al., 2019). xAI can be used to confer these qualities into

effective ML models at several steps of the breeding process and

in a multitude of ways:
Fron
• Processing of UAV-sourced data: AI is required to

uncover the complex relationships between remotely

acquired visual feedback and phenotypical traits (see

Section 3.3). This is often a statistically ill-posed problem

due to the challenges of replicating exact conditions from

one year to another, the high number of external factors,

and the cost of acquiring large-scale datasets of carefully

measured phenotypical traits (Cheng et al., 2023). This

statistical ambiguity can lead to both under- and over-

fitting depending on the case. In this context, both ante-hoc

and post-hoc xAI methods are important, as exemplified in

Srivastava et al. (2022) for winter wheat yield prediction.

Ante-hoc methods intervene in the form of strong
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regularisation, or inductive biases, which limit the space

of possible models to those that closely follow a human-

defined formulation of the problem. For example, Ge et al.

(2023) predict rice distribution using a physically

interpretable model trained directly using feature

interpretation methods. These heavily regularised models

often take the form of simple, interpretable algorithmic

bricks that are trained to solve specific sub-problems, such

as Tang et al. (2022) who integrate the domain knowledge

that edge-detection is important directly into their winter

wheat lodging detection architecture. Post-hoc methods

serve as a necessary human-in-the-loop validation to

counteract the difficulty to acquire enough data for a

statistically significant validation. They serve as sanity

checks that verify if the features deemed important by the

model can be traced back to a physically understandable

relationship. Such examples abound both inside (Sun et al.,

2023) and outside (Temenos et al., 2022) winter

wheat literature.

• Understanding genotype-phenotype relationships: AI can

assist in unravelling the complex relationship between a

plant’s genotype and its phenotype in response to

environmental conditions. Especially xAI can identify

genetic variants that contribute to these traits, particularly

those that have non-linear interactions - something that

GWAS cannot do (Santorsola and Lescai, 2023). Feed-

forward NNs go beyond association testing and can use

several individuals with many SNPs to predict traits with an

acceptable performance (Sharma et al., 2020). After the end

of the training process, the xAI method DeepLift

(Shrikumar et al., 2017) can be applied and computed for

each input SNP attribution score that can take both positive

and negative values (indicating the direction of contribution

to the target variable). The SNPs with the highest

attribution values can be thought of as potential causal

causes and be investigated further for plausibility although

the results of this research show that in cases of highly

correlated features, DeepLift can perceive for one and the

same model different input features (SNPs) as important.

Building on their previous work (Mieth et al., 2016), Mieth

et al. (2021) demonstrated that xAI can enhance traditional

GWAS methods: NNs combined with statistical testing

driven by xAI can provide a robust framework to uncover

SNPs that play a decisive role in the classification result of

the NN. LRP (Bach et al., 2015; Montavon et al., 2019)

computes the relevance of each SNP used in the

classification as if they were p values used to compute

statistically significant associations. This approach

surpasses the deficiencies of previous architectures that

required Bonferroni correction for false rejections and

returns additional as well as weak associations that might

be significant. It also reduces the return of an incorrect

association (statistical noise). However, the biological

plausibility of the newly discovered SNPs needs to be

validated, particularly if there are no existing GWAS

results for them yet. Epistasis, the non-linear, non-
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additive interaction between SNPs, is another important

component of this relationship. It is often overlooked by

class ical GWAS methodologies , prompting the

development of many techniques to try and dissect it

(Niel et al., 2015). Romero (2022) describes an innovative

process of extracting this behaviour from iterative RFs

trained on this data (Basu et al., 2018). One of the

advantages of using RF models is that their own

architecture is easily interpretable Pfeifer et al. (2022).

• Understanding complex interactions: AI can be utilised for

modelling and predicting how certain genotypes would react

to conditions like drought. Unlike classical statistical multi-

omics methods (Yazdani et al., 2022), AI is an effective tool

for deciphering the complex interactions within a plant and

those interactions a plant has with its environment, such as

soil microbiome, weather, and other plants, which can

influence its stress tolerance. xAI can provide insights into

the reasoning behind these predictions, enhancing our

understanding and facilitating targeted breeding strategies.

In Niazian and Niedbała (2020), several cases of genotype-

environment interactions (G × E) used by several AI models

(having as input the genome sequence and output the

phenotype) with their corresponding xAI methods were

analysed, uncovering the decisive factors for these

interactions (Streich et al., 2020). It is also shown that NNs

outperform other AImodels performance-wise on these tasks

most of the time and the sensitivity analysis applied to the

NNs detects the most important input variables for a

prediction in different tasks such as assessment and

classification of genetic diversity, yield component analysis

and indirect selection (prediction), yield stability and G × E

interaction, biotic and abiotic stress assessment, classical

mating designs, and hybrid breeding programmes (Stein

et al., 2022).
Scientific progress is based on understanding and explaining

observable phenomena, and this is the advantage provided by the

use of xAI. AI has been able to find complex relationships between

genotype and phenotype, which could not have been found with

other methods. However, it is important to apply these techniques

with a higher degree of scientific rigour. Methods such as LRP,

LIME, or SHAP are able to provide a deeper understanding of the

behaviour of the model, and thus of the biological problem, a

prerequisite in modern plant breeding (Harfouche et al., 2019).
7 Towards the implementation of
modern tools for practical
plant breeding

The previous sections have outlined the advantages of employing

modern tools, such as GWAS for genetic marker characterisation,

UAV-based remote sensing phenotyping, and the integration of xAI

into the breeding process. In this concluding section, we aim to

provide an overview of the practical tasks undertaken by plant
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breeders and how the aforementioned tools can improve the

current state of the breeding process, as illustrated in Figure 4.

The responsibilities of a plant breeder can generally be

categorised into the following steps: (i) defining the breeding

objectives, (ii) creating genetic diversity, and (iii) selecting

genotypes. Ultimately, a new variety is registered, certified seed is

multiplied, and marketed (cf. Figure 4). The first step involves

identifying key traits that will define a future variety. The second

step aims to generate a high genetic diversity, particularly in target

traits defined in Step 1, often with limited resources, such as a

limited number of crosses or mutagenesis treatments. The third step

is centred on the selection of candidate genotypes. This step is

heavily reliant on data, necessitating efficient data collection and

decision-making, often with limited (financial and human)

resources, such as scorings, measurements, samplings and

laboratory analysis, as well as downstream data analysis.

Consequently, the methods and protocols developed by scientists

often need to be scaled down or simplified for easy application

within the breeding process.

For example, in GWAS, the ultimate objective is to develop

markers taking advantage of a plethora of tools (cf. Table 2) with

enough precision to predict the presence of a trait of interest.

Eventually, these markers (cf. Table 3) should be utilised by the

breeder, for instance, for screening potential crossing partners (Step

2) and MAS (Step 3). Saini et al. (2022) reviewed, that 86,122 wheat

varieties have been analysed with GWAS, resulting in 46,940 loci for

various agronomic, physiological, and quality traits. However, their

implementation often remains a challenge in many breeding

programmes due to several constraints, such as lack of

transferability or additional disproportionate costs. Transferability

concerns in GWAS are prevalent mostly between different

populations and environments, as was shortly discussed in

Section 4.2 (Guo et al., 2014; Blake et al., 2020; Mohammadi

et al., 2020). Limited transferability due to relevant genotype by

environment interactions can be addressed by, e.g., the inclusion of

crop growth models (Technow et al., 2015). Mid-range genotyping

platforms like KASP™ (Semagn et al., 2014) or MassArray® (Irwin,

2008) offer a relatively flexible, user-friendly, and affordable

solution for practical breeding by being capable of screening tens

to hundreds of markers in several hundreds of individuals. Both

platforms have already been used to design ready-to-use assays for

MAS in diverse sets of diploid crop species (e.g., Bomers et al.,

2022), and have been successfully applied in polyploid wheat

(Bérard et al., 2009; Rasheed et al., 2016; Makhoul et al., 2020; da

Costa Lima Moraes et al., 2023; Liu et al., 2023) or aim to do so

(Molin, 2024).

The objective of remote sensing phenotyping is to provide fast

and precise phenotypic measurements. Particularly for plant

breeding, UAV-based phenotyping offers an optimal combination

of spatial resolution and speed of measurement (Figure 2). This data

can be used by plant breeders primarily to enhance genotype

selection (Step 3), but also to identify phenotypic diversity (Step

2). Numerous studies have applied UAV-based phenotyping in the

context of plant breeding in the past (White et al., 2012; Chapman

et al., 2014; Araus et al., 2018; Thenkabail et al., 2018), using a

variety of sensors including multi- and hyperspectral, thermal,
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RGB, and LiDAR to investigate traits such as yield, biomass, plant

height, crop health and stress, diseases, pests, as well as nutrient and

water content (Yang et al., 2009; Prabhakar et al., 2012; Virnodkar

et al., 2020; Zhou et al., 2021b; Thoday-Kennedy et al., 2022; Hütt

et al., 2023; Joshi et al., 2023). However, its application in practical

breeding is still limited (Matese et al., 2023) due to the need for

expertise in several areas, such as drone piloting, legislation, flight

planning, photogrammetric processing as well as data processing,

modelling, and analysis (White et al., 2012; Chapman et al., 2014;

Reynolds et al., 2020; Guo et al., 2021).

In the current scientific dialogue, AI has emerged as a vital tool

for problem-solving and knowledge discovery, particularly in the life

sciences (Holzinger et al., 2023a). Its applications are manifold and

extend to specialised fields like plant breeding. In this context, AI

facilitates the analysis of plant image data and plays a crucial role in

GWAS and genomic selection (Zhang et al., 2017; Parmley et al.,

2019; Aono et al., 2022). AI’s usefulness extends beyond data analysis

and permeates the entire decision-making pipeline as depicted in

Figure 4, from initial data collection and preprocessing (step 1), to

feature selection and modelling (step 2), and finally to evaluation and

interpretation of results (step 3). The technology’s versatility and

computational prowess allow it to process large datasets, discern

patterns that may be overlooked by human experts, and provide

actionable insights. Essentially, AI acts as a decision support system

that enhances the abilities of domain specialists, such as plant

breeders, by furnishing them with more accurate and

comprehensive information.

The emergence of xAI further enhances the utility of AI in plant

breeding. xAI aims to make the complex decision-making processes

of AI algorithms transparent and understandable. This is achieved
Frontiers in Plant Science 17
through various methods, such as feature importance ranking, DTs,

and counterfactual explanations, among others Holzinger et al.

(2021). The increased transparency provided by xAI not only

unravels the black-box nature of complex algorithms but also

promotes trust and acceptance among human decision-makers.

The importance of xAI goes beyond mere understanding of AI’s

operations; it addresses ethical and accountability concerns by

ensuring that algorithmic decisions can be audited and justified

Müller et al. (2022). This is particularly important in high-stakes

applications like plant breeding, where decisions can have enduring

impacts on agricultural productivity and sustainability. Therefore,

the integration of xAI into decision-making processes enhances the

trustworthiness and acceptance of AI systems, paving the way for

more responsible and effective applications of AI in the life sciences

(Holzinger et al., 2022a), including specialised domains such as

plant breeding (Harfouche et al., 2019).

In summary, the cutting-edge tools reviewed in this study,

encompassing UAV-based phenotyping, GWAS, MAS, bolstered by

ML, and the integration of xAI, collectively represent a transformative

shift in plant breeding (Figure 4). These innovative methods have the

potential to revolutionise the way how breeders gather field data,

interpret it, and ultimately make informed decisions throughout the

entire breeding process, representing a new era in smart agriculture. By

leveraging these technological capabilities, breeders can significantly

accelerate the development of new crop varieties with improved traits,

such as drought tolerance. This acceleration not only reflects the

progress in science and technology but also holds the promise of

addressing critical agricultural challenges, such as feeding an expanding

global population and mitigating the effects of climate change on

crop production.
FIGURE 4

The road to drought-tolerant wheat genotypes remains tedious and time-consuming, but cutting-edge technologies promise to speed up the
breeding process. UAV-based phenotyping, GWAS, and ultimately MAS are being increasingly used. However, a cross-process and crucial role is
played by xAI, which is not only applied in data analysis and interpretation, but also in decision-making within the entire breeding process, from the
definition of breeding goals to the final step of registration and marketing. Designed by Tatjana Hirschmugl.
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Glossary

AI Artificial Intelligence

AM Association Mapping

B Blue band

CCCI Canopy Chlorophyll Content Index

CMIP Coupled Model Intercomparison Project

CNN Convolutional Neural Network

CWSI Crop Water Stress Index

DT Decision Tree

EVI Enhanced Vegetation Index

G Green band

GIS Geographic Information System

GLM Generalised Linear Model

GNDVI Green Normalised Difference Vegetation Index

GNN Graph Neural Network

GS Genomic Selection

GWAS Genome-wide Association Studies

L Canopy background adjustment factor

LAI Leaf Area Index

LIME Local Interpretable Model-agnostic Explanation

LM Linkage Mapping

LMM Linear Mixed Model

LRP Layer-wise Relevance Propagation

LWIR Long-wave Infrared

MAS Marker-assisted Selection

ML Machine Learning

MSAVI Modified Soil Adjusted Vegetation Index

MTA Marker-Trait Association

NDRE Normalised Difference Red Edge

NDVI Normalised Difference Vegetation Index

NDWI Normalised Difference Water Index

NIR Near-infrared

NN Neural Network

R Red band

SAVI Soil-adjusted Vegetation Index

SHAP Shapley Additive Explanation

SNP Single Nucleotide Polymorphism

SVM Support Vector Machine

SWIR Shortwave Infrared
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TCARI Transformed Chlorophyll Absorption in Reflectance Index

UAV Unmanned Aerial Vehicle

XAI Explainable Artificial Intelligence.
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