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Using agro-ecological zones to
improve the representation
of a multi-environment trial
of soybean varieties
Catherine Gilbert and Nicolas Martin*

University of Illinois at Urbana-Champaign, Department of Crop Sciences, Urbana, IL, United States
This research introduces a novel framework for enhancing soybean cultivation in

North America by categorizing growing environments into distinct ecological

and maturity-based zones. Using an integrated analysis of long-term climatic

data and records of soybean varietal trials, this research generates a zonal

environmental characterization which captures major components of the

growing environment which affect the range of adaptation of soybean

varieties. These findings have immediate applications for optimizing multi-

environment soybean trials. This characterization allows breeders to assess the

environmental representation of a multi-environmental trial of soybean varieties,

and to strategize the distribution of testing and the placement of test sites

accordingly. This application is demonstrated with a historical scenario of a

soybean multi-environment trial, using two resource allocation models: one

targeted towards improving the general adaptation of soybean varieties, which

focuses on widely cultivated areas, and one targeted towards specific adaptation,

which captures diverse environmental conditions. Ultimately, the study aims to

improve the efficiency and impact of soybean breeding programs, leading to the

development of cultivars resilient to variable and changing climates.
KEYWORDS

agro-ecological zones, multi-environment trials, environmental representation,
soybean adaptation, soybean maturity groups, target population of environments,
spatial clustering, bioclimatic variation
1 Introduction

Soybean breeders uncover genotype x environment interactions (GEIs) using multi-

environment trials (METs). METs evaluate the performance of the population of genotypes

across a network of test sites intended to represent the target population of environments

(TPE), or the range of future environments in which the varieties are expected to be grown

(Yan et al., 2011; Oakey et al., 2016; Crespo-Herrera et al., 2021). The intention is that the

test sites will recreate the GEIs of the TPE, so that breeders can use the performance of a
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variety at one or more test sites to predict its performance in

environmentally similar locations within the TPE (Chenu, 2015).

An ideal network of test sites should represent the TPE as

closely as possible, to best recreate the GEIs of those environments

(Allen et al., 1978). The test sites in total should capture enough of

the environmental variation of the TPE that adapted varieties can be

developed for those conditions, and that the performance of new

varieties can be predicted to the full range of target growing

environments. Breeders selecting for specific adaptation might

choose to prioritize sites that represent unique regional variation,

while breeders selecting for general adaptation might choose to

prioritize sites that represent the environments where the crop is

most frequently grown (Hamblin et al., 1980; Annicchiarico et al.,

2005; Rattalino Edreira et al., 2018). Because METs can only operate

a finite number of test sites, the set of sites should represent the

conditions of the TPE as efficiently as possible (Cooper et al., 2022).

Test sites should not be so environmentally similar that the results

from two or more sites are redundant or that a particular range of

environments becomes over-represented (Yan et al., 2011).

By optimizing the distribution of MET resources with respect to

environmental representation, soybean breeders may be able to

better represent the variation of the TPE and more efficiently

develop adapted soybean varieties (Hyman et al., 2013; Xu et al.,

2017; González-Barrios et al., 2019; Resende et al., 2021). The

increasing availability of high-resolution bioclimatic data provides

new opportunities to characterize the environmental variation of

the soybean TPE in dimensions that are relevant to the adaptation

of soybean varieties (Hyman et al., 2013).

Spatial bioclimatic variation is a major component of the

environment that affects soybean adaptation. The relative

performance of soybean cultivars between locations is strongly

related to parameters of temperature, precipitation, and terrain

which vary continuously across the growing environment (Xu,

2016; Gao et al., 2020; Zhang et al., 2020; Arya et al., 2021).

Agro-ecoregionalization is a method of characterizing

environmental variation across a TPE by subdividing the

geographical area into regions which are similar in terms of

ecological characteristics which are relevant to a crop’s performance.

The resulting agro-ecological zones (AEZs) represent more

environmentally homogenous subregions of the TPE (Williams et al.,

2008). Previous studies have used AEZs derived from the multivariate

clustering of environmental data to interpret the environmental

variation of a target area, and to inform research and production

decisions (Castrignanò et al., 2010; Boitt et al., 2014; Costantini et al.,

2016; Alabi et al., 2019; Setimela et al., 2005; Williams et al., 2008;

Zhang et al., 2012). Here, we identify a set of distinct, agronomically

significant variables and use them to cluster the soybean TPE into AEZs

which represent the bioclimatic variation of the growing environment.

A second component of the environment that affects soybean

adaptation is maturity. Maturity is the most important agronomic

characteristic for determining a soybean’s adaptation to a particular

location (Bandillo et al., 2017). Because of the photoperiod-sensitive

responses of soybeans, each particular variety of soybean is

restricted to a relatively narrow range of latitudes (Watanabe

et al., 2012). The optimum maturity groups of the growing

region, or the maturities of soybeans best suited to any location,
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must therefore be known to effectively breed and recommend

soybean varieties (Zhang et al., 2007).

Soybean maturity groups should be characterized and re-

characterized with new data to account for climate change or

possible drift in how designations are defined (Mourtzinis and

Conley, 2017; Ersoz et al., 2020). Recent soybean variety trials are

reliable source of data for this task because they are conducted under

optimum planting conditions using the best management practices

for soybean within the region (Zhang et al., 2007). Here we create an

updated map of maturities using data from the Northern Uniform

Soybean Tests (NUSTs), modeling the maturity designations of each

variety, then finding the best performingmaturity designations across

the TPE. We then model the best performing maturities across the

conditions of the TPE from the best performing maturities at the

conditions of each site and divide the TPE into maturity groups

(MGs) indicating the optimum maturities for each region.

The NUSTs are a major MET of public North American

soybean varieties conducted at test sites across the northern

United States and southern Canada. As with most public METs,

the resources in the NUSTs have not been distributed according to a

formal strategy of environmental representation (Aaron Lorenz,

personal communication, March 23, 2023).

The objective of this study was to use long-term agroclimatic data

to classify the NUST TPE, the area of soybean cultivation in the United

States and Canada, into zones representing components of the

growing environment that limit soybean adaptation. Agro-ecological

zones (AEZs) were used to capture the spatial bioclimatic variation of

the TPE, and maturity groups (MGs) were used to capture optimum

maturities.We then used these characterizations to suggest howNUST

testing resources might hypothetically be distributed to improve the

test network’s representation of environmental variation within the

TPE.We provided two potential distribution strategies: one targeted at

general adaptation which prioritized representation of areas where

soybean is most frequently grown, and one targeted at specialist

adaptation which prioritized representation of the full

environmental variation of the soybean TPE.
2 Materials and methods

This research used the records of the Northern Region Uniform

Soybean Tests (NUSTs), anMET of public soybean varieties conducted

yearly across the northern United States and Canada. The data from

these trials are available as printed reports (USDA ARS, 2022) and

through the SoyBase database (Brown et al., 2021). We chose to use

records of the uniform tests specifically and exclude records from

preliminary variety tests. These records span the years 1989 to 2021

and contain the results of tests performed on 9316 varieties at 233 test

sites. Raster manipulation and analysis for this research was performed

using the terra package in R (Hijmans et al., 2023).
2.1 Defining agro-ecological zones

We began by defining the extent of the TPE. Because this

research uses data from a North American soybean varietal trial, the
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extent of the TPE would be the area in North America in which

soybean is typically grown. Two rasters of soybean cultivation

frequency were used to define this area, one of cultivation in the

United States from 2007 – 2022 at approximately 0.054 degrees of

resolution (USDA NASS, 2022), and one of Canada from 2009 –

2022 at approximately 0.003 degrees of resolution (AAFC, 2022).

The Canadian raster was resampled to the higher resolution, and

the rasters were combined. The final cultivation raster was then

filtered to areas where soybean had been grown for at least 15% of

the years recorded.

We then obtained long-term climatic data for the area of TPE.

This information was sourced from the WorldClim bioclimatic

rasters, which contain the averages of nineteen bioclimatic variables

as measured from 1970 – 2000 interpolated to approximately 0.042

degrees of resolution (Fick and Hijmans, 2017). On the advice of

breeders, we also chose to include the elevation raster which was

used to generate the WorldClim rasters. The WorldClim elevation

raster was derived from SRTM data and had a matching resolution

of approximately 0.042 degrees (Fick and Hijmans, 2017).

The full set of rasters was masked to the previously defined

boundaries of the TPE. Because many of the temperature and

precipitation variables were highly correlated, a representative

subset of bioclimatic variables was selected from the full set of

variables (Figure 1A). Reducing the number of explanatory

variables also had the advantage of facilitating the interpretation

of patterns of environmental variation within the TPE, and for

modeling the classification of AEZs.

We aimed to choose a set of variables that were distinct in effect,

associated with environmental variation within the TPE, and relevant

to soybean cultivation. Principal component analysis (PCA) was used

to understand the correlation between the variables and identify

distinct variables which drove environmental variation within the

TPE (Figure 1B). We ensured that the set of variables chosen was

relevant to soybean cultivation by seeking out breeder feedback. A
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preliminary version of this research was presented at the 2022 ASA-

CSSA-SSSA conference and 2023 Soybean Breeders’ Workshop,

where the authors spoke with breeders to learn which bioclimatic

variables they felt had the greatest effect on soybean cultivation.

The final variables chosen were annual mean temperature,

temperature annual range, mean temperature of the wettest quarter,

mean temperature of the warmest quarter, mean temperature of the

coldest quarter, annual precipitation, wettest quarter precipitation,

warmest quarter precipitation, and elevation.

We created AEZs by clustering the subset of environmental

variables. The number of clusters to use was determined with the

cubic clustering criterion, which estimated the optimum number of

clusters as thirteen. The nine bioclimatic variables were scaled and

clustered with k-means clustering into thirteen regions. These

became the initial set of AEZs.

In the initial set of AEZs, Illinois and Indiana were almost

entirely covered by a single AEZ. This AEZ would be largest of any

in the set, with the greatest cultivation, and represent the most

productive land for growing soybeans. After receiving feedback

from NUST breeders, we split this AEZ in two using soil properties.

Soil data for the TPE was obtained from the SoilGrids database

(ISRIC, 2023). Rasters of soil properties were downloaded from the

ISRIC WebDAV server using a script provided by Dr. José Safanelli

(Safanelli, 2022). The rasters we obtained were bulk organic density,

cation exchange capacity, clay, nitrogen, soil pH, sand, silt, and soil

organic carbon, collected at a depth of 15 – 30 cm and interpolated

to approximately 0.054 degrees of resolution.

The most agronomically relevant division within the original

zone was between the highly fertile mollisols and relatively less

fertile alfisols. Soils of the former order have a greater soil organic

carbon (SOC) content, which contributes to their productivity (Guo

et al., 2006). Because of this distinction, we decided to split the zone

by SOC content. Cells in the top quartile of SOC content were

assigned to one AEZ, while the remainder three quarters of the cells
A B

FIGURE 1

Variables in black were included in the subset of bioclimatic variables used for cluster analysis and the creation of AEZs, while variables in red were
dropped. (A) Dendrogram of scaled bioclimatic variables for the area of soybean cultivation in the United States and Canada. (B) PCA variable
correlation plot of scaled bioclimatic variables for the area of soybean cultivation in the United States and Canada. The letters on each ray
correspond to the bioclimatic variables as they are labeled in (A).
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were assigned to another. This resulted in the AEZs that would be

labeled 8 and 9.

Once the zone was split, we numbered the AEZs from north to

south to obtain the full set of agro-ecological zones. We reviewed

the final AEZ map with soybean breeders to confirm that the AEZs

that we created were meaningful and relevant to their

breeding programs.
2.2 Defining maturity groups

Maturity groups describe the adaptation of cultivar maturities.

Each maturity group is equivalent to a range of maturity

designations which are best adapted to that region, or the

maturities which are expected to return the highest yields when

grown over a full season. Maturity groups are a categorical

representation of a continuous gradient of variation. The

“optimum maturity” of any location is its best adapted maturity,

or the specific cultivar maturity which maximizes yield in that

environment (Mourtzinis and Conley, 2017). Using records of

performance and maturity across MET sites, one can identify best

adapted maturities, predict optimum maturity across the TPE, and

delineate maturity groups (Zhang et al., 2007; Mourtzinis and

Conley, 2017; Di Mauro et al., 2022). For this analysis, the NUST

records were combined with environmental data and used to

predict optimum soybean maturities across the TPE. This data

was used to generate a raster of maturity groups which could be

combined with the previously generated AEZs.

We began by converting the NUST maturity records to a

continuous scale. Uniform check designations were formatted as

from 00 to IV and as “Early”, no description, or “Late”. These

categorical MG designations were converted to quantitative relative

maturity (RM) designations by taking the value of the MG

designation as a roman numeral and adjusting early and late

checks by - 0.5 or + 0.5 respectively. For example: a cultivar with

a designation of MG III became RM 3, a cultivar with a designation

of Early-MG IV became (4 - 0.5 =) RM 3.5, and a designation of

Late-MG II became (2 + 0.5 =) RM 2.5. MG 00, which is shorter

than MG 0, was equivalent to RM -1.

Within the NUSTs, the only cultivars with given maturity

designations are maturity checks. This creates an issue when

modeling optimum maturity from the best-adapted maturities, as

most cultivars would not have associated maturity designations. To

expand the scope of our training data, the maturity designations

associated with records of non-check cultivars were predicted from

the date at which the plants reached maturity relative to checks in

the same year and location. A mixed effects model of RM

designation from day of maturity for each location in each year

was trained on check cultivars with converted RM designations and

used to predict the RM designations for records from undesignated

cultivars (Equation 1). The predicted maturity designations were

bounded to a range of -2 to 5, equivalent to a half MG past the most

extreme checks within the test system at Early-MG 00 (= RM -1.5)

and Late-MG IV (= RM 4.5) respectively.
Frontiers in Plant Science 04
RMijk = a   +  DMi   +   Lk   +   (Y jL)jk +   ϵijk (1)

Equation 1 The mixed effects model is used to predict the

relative maturity of a cultivar i from the cultivar’s day of maturity,

given the test location and ear of the trial. Where RMi= relative

maturity for cultivar i, DM = day of maturity, Y | Lj= random effect

of year j within location k, Lk = random effect of location k.

After each cultivar record was associated with an RM

designation, the NUST records were filtered, for each year and

location, to records in the ninetieth percentile of yield. These

records of best performing varieties were understood as

representing the varieties best adapted to each site, and the RM

designations associated with these records were used as “best-

adapted maturities.” The predicted best adapted maturity at each

location within the TPE, or the maturity designation that would

maximize yield in that environment, would be the optimum

maturity of that location.

With the best-adapted maturities of each site determined,

environmental data was used to predict optimum maturity across

the range of the TPE. Soybean maturation is a function of

photoperiod, or daylength, and temperature, so these

environmental variables were used to predict the best adapted

maturity at each location (Garner and Allard, 1930; Major et al.,

1975). Elevation was also incorporated as a necessary component of

location when modeling maturity (Mourtzinis and Conley, 2017;

Marcillo et al., 2021).

The geosphere package’s daylength function was used to

calculate the mean photoperiod in hours between May 20th and

September 7th for latitudes within the area of soybean cultivation

(Forsythe et al., 1995). May 20th and September 7th were chosen as

start and end dates for determining mean photoperiod because

these are the median dates of planting and harvest for the trial

dataset. The mean photoperiod at each latitude within the TPE was

converted to a raster with approximately 0.054 degrees of

resolution. Temperature and elevation data were obtained from

the rasters of annual mean temperature and elevation included with

the WorldClim bioclimatic rasters.

The rasters of mean photoperiod, mean annual temperature,

and elevation were used as predictors in a generalized linear model

to predict optimum maturity at each point in the soybean TPE

(Equation 2).

dRMk = 2:36 − 1:56(MPP)k − 9:99(MAT)k − 8:48(ELV)k

+ 9:71(MPP �MAT)k +   8:50(MPP � ELV)k

+ 5:19(MAT � ELV)k − 5:18(MPP �MAT � ELV)k (2)

Equation 2. The generalized linear regression model used to

predict the maturity designation, or the best adapted maturity, of a

new location k. RM= relative maturity designation of the location,

MPP = mean photoperiod, MAT = mean annual temperature,

ELV= elevation.

The predicted RM values of each cell were rounded to the

nearest integer and converted to categorical MG designations. As

the reverse of the previous conversion, numbers became roman
frontiersin.org
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numerals, with -1 again equivalent to “00.” This effectively classified

the continuous gradient of RM values into bands of categorical

MGs, with divisions between MGs at of -0.5 to +0.5 of each whole

RM value. These were the final maturity groups.
2.3 Defining AEZ-MGs

After obtaining the MG map, we intersected the AEZ and MG

maps to create AEZ-MG classifications which capture the spatial

environmental variation and optimum maturities of the TPE.

Because these AEZ-MGs were intended to be used as a means of

interpreting environmental variation within the TPE for the

distribution of MET resources, we avoided creating very minor

AEZ-MGs which would not carry enough significance to be relevant

to trial design. We edited the boundaries of the AEZs to remove

most AEZ-MGs less than 500,000 acres2 in size and classified that

land to the largest bordering AEZ, when available. This resulted in

the removal of AEZ-MGs 10-II, 1-I, 7-IV+, 2-I, 7-I, 4-0, 5-0, and 9-

II. None of these AEZ-MGs contained a testing site with records.

When these AEZ-MGs were included in a run of our later analysis,

none represented enough environmental variation or relative

cultivation to be allocated testing or affect recommendations.

Each NUST test site was given an AEZ and MG classification.

The MG classification of a site was determined by which maturity

group the site fell within. AEZ classification was two-step, to

account for sites outside the TPE, and therefore outside the

boundaries of the AEZs. Sites within the boundaries of an AEZ

were classified as belonging to that AEZ. Sites outside the

boundaries of the AEZs, i.e., in areas where soybean was grown

for less than 15% of the years recorded, were given AEZ

classifications using a Least-Discriminant Analysis model trained

from the bioclimatic variables which were used to generate the

AEZs and the associated AEZ classifications.
2.4 Trial allocation strategies of the
2021 NUSTs

Within the Northern Uniform Soybean Trials, the placement

and usage of test sites was decided by individual cooperating

breeders and almost entirely determined by the practical

considerations of availability, cost, and accessibility. When

breeders had the opportunity to choose between two or more

comparable locations, they sometimes chose sites which were

farther from sites already in-use, using distance as a proxy for

environmental variation. However, there was no formal assessment

of environmental variation within the TPE, and no strategy to

distribute testing resources according to environmental

representation (Aaron Lorenz, personal communication, March

23, 2023).

By treating AEZ-MGs as a meaningful representation of the

underlying variation of the TPE, breeders may strategize the

distribution of testing to increase the environmental
Frontiers in Plant Science 05
representation of the testing network and better develop adapted

soybean varieties. Breeders may increase the environmental

representation of the test network as a whole by distributing sites

and testing across unique AEZs, or prioritizing placing new sites

and testing in zones without representation (Hyman et al., 2013;

Rattalino Edreira et al., 2018). Breeders may also increase the

environmental representation of individual variety tests by

spatially stratifying testing between AEZs and randomizing

placement within them (Hansen and Jones, 2000; Williams et al.,

2008; Hyman et al., 2013). The intensity of testing within each AEZ

may be weighted by the amount crop cultivated within that area, or

by environmental variation of the AEZ, to maintain an appropriate

degree of representation (Annicchiarico et al., 2005; Rattalino

Edreira et al., 2018).

We applied the AEZ-MG characterization of the soybean TPE

to the 2021 Northern Uniform Soybean Trials. We evaluated how

testing was distributed within the 2021 season in regard to the

elements of this characterization, and how it might be redistributed

to improve the environmental representation of the test network.

The testing distribution of the NUSTs was quantified in terms

of uniform test replicates. Within our data, each record represents

the results of a cultivar as averaged from “three or four replications”

within a multiple-row plot (USDA ARS, 2022). Without access to

raw data, we used three times the number of records for a location

as the number of replicates at that site. The total number of uniform

test replicates for sites within a subregion (AEZ, MG, or AEZ-MG)

was used as a measurement of testing intensity within that

subregion and the ability of the testing network to represent the

associated environment. Each replicate represents the resources

required to test one replicate, or the resources required to grow

and harvest a single soybean plant. Every three (or four) replicates

represents the ability for a location to test an additional cultivar

within the uniform trials.

We compared two distribution strategies for how the resources of

the 2021 NUSTs might be reallocated. The first strategy complements

selection for general adaptation: replicates are distributed

proportionally to the relative cultivation of the subregion, measured

as “crop frequency”, or the frequency at which total recorded soybean

cultivation occurred within that subregion. The second strategy

complements selection for specific adaptation: replicates are

distributed proportionally to the total environmental variation of

the subregion. We used Chi-Square Goodness of Fit tests to

determine the proportionality of the testing distributions and to

make recommendations for how testing should be redistributed.

Of the sites used in 2021, none were located within AEZs 12 or

13. This is likely because AEZs 12 and 13 are the southernmost

zones of our characterization, and the locations within them would

belong to the Southern Uniform Soybean Tests (SUSTs) (USDA

ARS, 2022). For this reason, AEZs 12 and 13 were excluded from

any analysis of testing distribution. AEZs 12 and 13 were not

considered as possible zones where replicates might be

distributed, and the areas of the zones were not included in

calculations of cultivation frequency or environmental variation

within the TPE.
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3 Results

3.1 Agro-ecological zones

We created thirteen agro-ecological zones (AEZ) of soybean

production in the United States and Canada using k-means

clustering of scaled bioclimatic data within the soybean growing

region and splitting the central cluster by SOC (Figure 2). These

AEZs explain 86.2% of environmental variation across the TPE.

The AEZs varied significantly in size (Chi-Square Test of

Homogeneity, p< 0.001). The largest AEZs were 9, which forms a

horseshoe through Illinois and Indiana, and 5, which covers Iowa

and southern Minnesota (Figure 3A). The smallest AEZs were 4,

which covers a portion of southwest Ontario, 2, which covers the

area surrounding the St. Lawrence River in Quebec, and 12, which

covers Virginia’s Tidewater region (Figure 3A).

The total environmental variation of the AEZ was defined as its

total variance of the scaled bioclimatic variables used to generate the

set of AEZs. The total environmental variation of the AEZs was

proportional to their size (Chi-Square Goodness of Fit Test, p =

0.9943). The AEZs that demonstrated the greatest environmental

variation were 10, which covers an area centered on Kansas City,

and 13, which covers the southernmost area of the TPE along the

Mississippi (Figure 3B). The AEZs that demonstrated the least

environmental variation were 2, which covers the area around the

St. Lawrence River, and 8, which covers northern Indiana and

central Illinois (Figure 3B).

The consistency with which soybean was cultivated within an

AEZ was measured as “crop presence.” Crop presence for each cell

was defined as the percentage of years that soybean was grown
Frontiers in Plant Science 06
within the cell of all years recorded. Distributions of crop presence

were not equal across AEZs (ANOVA, p< 0.001). AEZ 12, covering

the Tidewater region, has the lowest mean crop presence and

represents the area where soybean is least consistently cultivated

(Figure 4A). Conversely, AEZ 8, representing fertile soils of the

central Midwest, has the highest mean crop presence and represents

the area where soybean is most consistently cultivated (Figure 4A).

The relative cultivation of the AEZs was quantified as

“cultivation frequency”, the frequency at which total recorded

soybean cultivation occurred within a particular AEZ (weighted

for the difference in record length between Canadian and USA land

use data). This statistic was used to determine the proportion of

soybean cultivation within the TPE that each AEZ represents. The

cultivation frequency of each AEZ was calculated as the sum of crop

presence values for each cell within the AEZ divided by the sum of

crop presence values for the TPE.

The relative cultivation of the AEZs was proportional to their area

(Chi-Square Goodness of Fit Test, p = 0.9999). AEZ 9, which forms a

horseshoe through Illinois and Indiana, represents the area with the

greatest proportion of soybean cultivation, and AEZ 2, which covers

the area surrounding the St. Lawrence River in Quebec, represents the

area with the least proportion of soybean cultivation (Figure 4B).
3.2 Maturity groups

From our models we created a map of optimum maturity groups

across the area of soybean cultivation in the United States and Canada.

From far-west to west MG II narrows and the other MGs curve inward

to form five regular, horizontal bands across the TPE (Figure 5).
FIGURE 2

Map of thirteen agro-ecological zones of soybean production in the United States and Canada for the target area of soybean production. AEZs were
created by k-means clustering of scaled variables of annual mean temperature, temperature annual range, mean temperature of the wettest quarter,
mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, wettest quarter precipitation, warmest
quarter precipitation, and elevation.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1310461
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gilbert and Martin 10.3389/fpls.2024.1310461
Because the map was generated from the designations of check

varieties, and the highest maturity check within the NUST system is

a late IV, or 4.5, the model did not accurately predict higher

maturity values. MGs IV and greater were therefore labeled as IV+.

Distributions of crop presence were not equal across MGs

(ANOVA, p< 0.001). The largest MG was MG III, and the smallest

wasMG 0 (Figure 6A). As with AEZs, the relative cultivation of theMGs

was proportional to their area (Chi-Square Goodness of Fit Test, p =

0.9999). The MGs representing the greatest and least proportions of

soybean cultivation in North America were also MG III and 0

respectively (Figure 6B). The total environmental variation of MGs

was not equal acrossMGs (ANOVA, p< 0.001), nor was it proportionate

to their size (Chi-Square Goodness of Fit Test, p = 0.0191). MG IV+ had

the greatest environmental variation of the MGs, and MG I the least

(Figure 6C). Most MGs overlapped two to three AEZs (Figure 6D).
3.3 Application to the 2021 NUSTs

The previously generated AEZs, MGs, and the combined AEZ-

MG characterization were applied to the locations of the NUST sites
Frontiers in Plant Science 07
(Figure 7). We then assessed the testing of the 2021 NUST in terms

of representation of these dimensions of the environment.

We began by evaluating distribution of testing within the 2021

NUSTs in terms of representation to the soybean AEZs, and how it

might be redistributed under strategies looking to increase the

representation of the environments where soybean is most

frequently cultivated or the full environmental variation of the

TPE (Table 1).

The numbers of replicates within the AEZs in 2021 were

significantly disproportionate to the frequency of soybean

cultivation within the AEZs, and the total environmental

variation of the AEZs (Chi-Square Goodness of Fit Test, p<

0.001, p< 0.001). AEZs 1, 6, 8, and 9, are significantly

overrepresented under both criteria, and AEZs 2, 3, 4, 5, 10, and

11 are significantly underrepresented (Standardized Residuals from

Chi-Square Goodness of Fit Test with Bonferroni Correction, p<

0.0023 for all). AEZ 7 is significantly overrepresented by testing

under distribution by cultivation frequency but not under

distribution by environmental variation (Standardized Residuals

from Chi-Square Goodness of Fit Test with Bonferroni Correction,

p< 0.0023, p = 0.2848 respectively).
A B

FIGURE 4

(A) Box plot of crop presence for the cells within each agro-ecological zone of soybean production in the United States and Canada. Crop presence
for each cell was defined as the percent of years that soybean was grown within the cell of all years recorded. (B) Column chart of the relative
cultivation of each agro-ecological zone of soybean production in the United States and Canada. The cultivation frequency of each AEZ, the
frequency at which total recorded soybean cultivation occurred within an AEZ, was calculated as the sum of crop presence values of each cell
within the AEZ divided by the sum of crop presence values across the TPE.
A B

FIGURE 3

(A) Column chart of the area in 1000 acres2 of each agro-ecological zone of soybean production in the United States and Canada. (B) Column chart
of the total environmental variation of the AEZ, defined as its total variation of the scaled bioclimatic variables used to generate the set of AEZs.
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We next evaluated the representativity of the 2021 NUST

testing to our maturity groups, using the same method of analysis

and strategies of redistribution (Table 2).

The numbers of replicates within the MGs in 2021 were

significantly disproportionate to the frequency of soybean

cultivation within the maturity group and the total environmental
Frontiers in Plant Science 08
variation within the maturity group (Chi-Square Goodness of Fit

Test, p< 0.001, p< 0.001). MGs 00 and III were significantly

overrepresented by testing relative to their frequency of cultivation,

while MGs 0, I, II, and IV+ were significantly underrepresented

(Standardized Residuals from Chi-Square Goodness of Fit Test with

Bonferroni Correction, p< 0.004 for all). In terms of environmental
A B

DC

FIGURE 6

(A) Column chart of the area in 1000 acres2 of each maturity group. (B) Column chart of the relative cultivation of soybean within each maturity
group. (C) Column chart of the total environmental variation of each maturity group, defined as its total variation of the scaled bioclimatic variables
used to generate the set of AEZs. (D) Proportional representation of the maturity groups within each agro-ecological zone.
FIGURE 5

Revised maturity groups for US-Canadian soybean production, mapped over the entire area where soybean was recorded as being grown. US
records of soybean cultivation were from 2007 – 2022, Canadian records were from 2009 – 2022.
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variation, MGs 00, I, II, and III were significantly overrepresented by

testing, while MGs 0 and IV+ were significantly underrepresented

(Standardized Residuals from Chi-Square Goodness of Fit Test with

Bonferroni Correction, p< 0.004 for all).

Using the intersected AEZ-MG characterization, we gain more

specific estimates for how testing might be distributed between the

combined AEZ-MG regions (Table 3). This characterization can also
Frontiers in Plant Science 09
be used to make recommendations of where test sites should be

added or removed from AEZ-MG regions. If no testing currently

exists within a region, and a redistribution strategy has a statistically

significant suggestion to add test replicates, and this recommendation

is large enough to justify at least one test site, then that would be

interpreted as a recommendation to establish a test site in that region.

Conversely, if a strategy makes a statistically significant suggestion to
TABLE 1 Recommended testing distribution across AEZs, relative to either cultivation frequency or environmental variation.

AEZ

Observed
Replicates

Distribution by Cultivation Frequency Distribution by Environmental Variation

Recommended
Number of Replicates

Adjustment to Reach
Recommended

Recommended
Number of Replicates

Adjustment to Reach
Recommended

1 1479 963 -516 794 -685

2 99 134 35 324 225

3 72 946 874 667 595

4 102 180 78 506 404

5 741 1310 569 806 65†

6 1359 724 -635 901 -458

7 717 573 -144 740 23†

8 729 555 -174 730 1†

9 1467 1355 -112 781 -686

10 612 681 69† 1132 520

11 624 580 -44† 619 -5†
†Not significant at a = 0.0023 (a = 0.05, two-tailed, Bonferroni correction with eleven comparisons).
Values are in counts of replicates n, and represent the resources required to grow and harvest n soybean plants or to test n replicates/n/3 cultivars. Values in the “Adjustment to Reach
Recommended” column highlighted red indicate the recommended removal of replicates, while boxes highlighted blue indicate the recommended addition of replicates. If a value in this column
was not highlighted (i.e., has a white background), this indicates that no significant recommendation was made: the difference in the recommended number of replicates was not significant
(marked with a †).
FIGURE 7

Map of the agro-ecological zones of the target area of soybean production, overlaid with the boundaries of the newly revised maturity groups. The
intersections of these two classifications are equivalent to AEZ-MGs. The locations of NUST test sites used in 2021 are marked with circles.
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remove testing from a region and the remaining testing is not large

enough to justify running at least one test site, then that would be

interpreted as a recommendation to remove all testing from that

region. For our purposes, the minimum number of replicates needed

to justify operating at least one test site within a region was 54, the

fewest number of replicates at any of the NUST sites used in 2021.

The number of replicates within the AEZ-MGs were

disproportionate to both the cultivation frequency and the

environmental variation of those regions (Chi-Square Goodness of

Fit Test, p< 0.001, p< 0.001). AEZ-MGs 1-00, 6-II, 6-III, 7-III, 8-III, 9-

III, and 11-III are significantly overrepresented by testing under both

distribution strategies (Standardized Residuals from Chi-Square

Goodness of Fit Test with Bonferroni Correction, p< 9.62e-4 for all).

AEZ-MG 6-1 is significantly overrepresented by testing only under the

strategy of distribution by cultivation frequency, while AEZ-MGs 5-I,

5-II, and 10-III are significantly overrepresented by testing only under

the strategy of representation by environmental variation

(Standardized Residuals from Chi-Square Goodness of Fit Test with

Bonferroni Correction, p< 9.62e-4 for all). The strategy of distribution

by cultivation frequency recommends no longer operating test sites

within 11-III, while the strategy of distribution by environmental

variation recommends no longer operating test sites within 5-I or 6-

III, as the recommended number of test replicates within these regions

would not be enough to justify operating a test site.

Both strategies find that AEZ-MGs 3-0, 3-I, 3-II, 4-I, 7-II, 9-IV+,

and 10-IV+, are significantly underrepresented by testing

(Standardized Residuals from Chi-Square Goodness of Fit Test with

Bonferroni Correction, p< 9.62e-4 for all). Both strategies also

implicitly recommend establishing test sites in 3-0, 3-II, 4-I, and 9-

IV+, as no testing currently exists in those AEZ-MGs, and enough

testing has been recommended to warrant the creation of new sites.

AEZ-MGs 5-I, 5-II, 5-III, 8-II, and 11-IV+ are significantly

underrepresented by testing only under the strategy of distribution

proportional to cultivation frequency, while 1-0, 2-00, 2-0, 6-I, and 8-

IV+ are significantly underrepresented only under the strategy of

distribution proportional to environmental variation (Standardized

Residuals from Chi-Square Goodness of Fit Test with Bonferroni

Correction, p< 9.62e-4 for all). The strategy of distribution by
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cultivation frequency would recommend establishing an additional

new test site in 5-III, while the strategy of distribution by

environmental variation would recommend establishing additional

new test sites in 2-00 and 8-IV+.
4 Discussion

4.1 Agro-ecological zones

We created thirteen agro-ecological zones of soybean

production in the United States and Canada representing

environmental divisions of the area of soybean cultivation. Our

final AEZs were largely geographically contiguous (Figure 2). The

two exceptions were AEZs 6 and 9. AEZ 6 suggests significant

climatic variation within the Ontario Peninsula between the land

near or on either side of the Niagara and Onondaga escarpments.

AEZ 9 suggests the environmental similarity between the central

Midwest and the Delmarva peninsula.

Knowledge of noncontiguous AEZs is particularly useful to

breeders. Breeders often use the physical proximity of two or more

sites as a proxy for their environmental similarity. Noncontiguous

AEZs therefore reveal nonintuitive patterns of environmental

variation and potential representation. For example: a test site

within one portion of a disconnected AEZ would better recreate

the environmental conditions of the other portion than a test site

which was physically closer to the other portion but was located

within a different AEZ.

Most AEZs had the greatest environmental similarity with

AEZs they bordered or were of similar latitude to (Figure 8A).

This aligns with the fact that latitude is a major driver of

temperature and precipitation, and that the AEZs represent

divisions of a continuous growing environment. The exception to

this observation was AEZ 4, which was unexpectedly dissimilar to

the noncontiguous 6 which bordered it to the north-east and south-

west. Compared to AEZ 6, AEZ 4 had a lower mean temperature in

its wettest quarter, greater precipitation in its wettest quarter, and

greater precipitation overall.
TABLE 2 Recommended testing distribution across MGs, relative to either cultivation frequency or environmental variation.

MG

Observed
Replicates

Distribution by Cultivation Frequency Distribution by Environmental Variation

Recommended
Number of Replicates

Adjustment to Reach
Recommended

Recommended
Number of Replicates

Adjustment to Reach
Recommended

00 1215 703 -512 588 -627

0 363 592 229 1802 1439

I 402 1086 684 187 -215

II 1470 1900 430 422 -1048

III 4143 2845 -1298 647 -3496

IV+ 408 875 467 4355 3947
Values are in counts of replicates n, and represent the resources required to grow and harvest n soybean plants or to test n replicates/n/3 cultivars. Values in the “Adjustment to Reach
Recommended” column highlighted red indicate the recommended removal of replicates, while boxes highlighted blue indicate the recommended addition of replicates. All adjustments in testing
distribution were significant at a = 4.17e-3 (a = 0.05, two-tailed, Bonferroni correction with six comparisons). MG IV+ excludes AEZs 11 and 12.
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These differences may be due to the presence of lake-effect

snow from Lake Huron and Lake Erie (Liu and Moore, 2004). If

so, these effects would not be relevant to soybean adaptation. A

possible way to account for irrelevant climatological data in a

future iteration of this procedure would be to collect the means of

bioclimatic variables only during the expected period of soybean

growth, by aggregating either monthly or daily weather data. The

trade-off of this decision would be that fewer bioclimatic variables

are available on a daily or monthly basis, which could potentially
Frontiers in Plant Science 11
affect the strength of the AEZ clustering and their validity

as environments.

As with bioclimatic variables, the soil properties of the AEZs

reflect partitioning of continuous patterns of environmental

variation. We can observe the division that was made between

AEZs 8 and 9: AEZ 8 has greater mean SOC than the latter, as well

as higher mean nitrogen content and a higher mean carbon

exchange capacity (Figure 8B). These properties indicate that soils

in AEZ 8 are more productive than soils in AEZ 9. The division that
TABLE 3 Recommended testing distribution across AEZ-MGs, relative to either cultivation frequency or environmental variation.

AEZ-
MG

Observed
Replicates

Distribution by Cultivation Frequency Distribution by Environmental Variation

Recommended
Number of Replicates

Adjustment to Reach
Recommended

Recommended
Number of Replicates

Adjustment to Reach
Recommended

1 00 1215 692 -523 540 -675

1 0 264 271 7† 578 314

2 00 0 11 11 84 84

2 0 99 118 19† 155 56

2 I 0 5 5† 22 22

3 0 0 203 203 609 609

3 I 72 599 527 198 126

3 II 0 144 144 147 147

4 I 0 74 74 197 197

4 II 102 106 4† 144 42

5 I 144 351 207 47 -97

5 II 597 890 293 382 -215

5 III 0 69 69 15 15

6 I 186 57 -129 396 210

6 II 561 371 -190 252 -309

6 III 612 295 -317 43 -569

7 II 210 328 118 814 604

7 III 507 245 -262 346 -161

8 II 0 60 60 31 31

8 III 729 476 -253 254 -475

8 IV+ 0 18 18 326 326

9 III 1467 1226 -241 495 -972

9 IV+ 0 129 129 719 719

10 III 567 500 -67† 459 -108

10 IV+ 45 181 136 269 224

11 III 261 34 -227 61 -200

11 IV+ 363 547 184 419 56†
†Not significant at a = 9.62e-4 (a = 0.05, two-tailed, Bonferroni correction with twenty-six comparisons).
Values are in counts of replicates n, and represent the resources required to grow and harvest n soybean plants or to test n replicates/n/3 cultivars. Values in the “Adjustment to Reach
Recommended” column highlighted red indicate the recommended removal of replicates, while boxes highlighted blue indicate the recommended addition of replicates. If a value in this column
was not highlighted (i.e., has a white background), this indicates that no significant recommendation was made: the difference in the recommended number of replicates was not significant
(marked with a †), or a recommended addition to an AEZ-MG without a test site was less than 54 replicates, and therefore below the minimum to justify creating a new test site.
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was created between 8 and 9 reflects the meaningful difference in

soil fertility that breeders and growers would encounter when

growing in that region.

We hypothesized that for a TPE with clinal environmental

variation, larger AEZs would capture greater environmental

variation and smaller AEZs less. This was supported by our

results: the total environmental variation of the AEZs appears to

be proportional with size (Chi-Square Goodness of Fit Test, p =

0.9943). We similarly hypothesized that larger AEZs would have

greater relative cultivation and smaller AEZs less, as a result of

simply containing more area where the crop is grown. This also held

true: the relative cultivation of the AEZs also appears to be
Frontiers in Plant Science 12
proportional to their area (Chi-Square Goodness of Fit Test, p =

0.9999). The largest AEZs, 5 and 9, represented the areas with the

largest proportions of soybean cultivation, and the smallest AEZs, 2

and 4, represented the areas with the least proportions of

soybean cultivation.
4.2 Maturity groups

Because the map was generated from the designations of check

varieties, and the highest maturity check within the NUST system is

a late IV, or 4.5, the maturity map we generated labeled maturity
A

B

FIGURE 8

(A) Heatmap of the means of the WorldClim bioclimatic variables for each agroecological zone, colored by extremity. Each row contains the means
of the bioclimatic variables for an AEZ, with the AEZs indicated by the label on the right side of the plot. The dendrogram on the left of the plot
indicates the similarity of the AEZs to each other. Each column contains the mean values of a bioclimatic variable for each of the thirteen AEZs, with
the variables indicated by the diagonal labels at the bottom of the plot. The dendrogram above the plot indicates the similarity of the bioclimatic
variables to each other. The rows and columns of the plot were arranged by dendrogram structure. Cells were colored by the z-score of the value
relative to the scaled bioclimatic variable, or the extremity of that value versus the mean of the bioclimatic variable, with blue indicating positive
values and red indicating negative values. (B) The same style of heatmap, but comparing the means of soil properties across AEZs.
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groups IV or greater as IV+ (Figure 5). This limitation was

mitigated by the fact that past MG IV an ‘optimum’ soybean

maturity value becomes more difficult to determine. Soybean

farmers in the southern United States commonly plant cultivars

with designations of MG III or IV in the zones assigned to MGs V,

VI, and VII as part of an early soybean production system (ESPS),

using the earlier-maturing varieties to avoid drought stress during

the reproductive stages of the plant’s development (Purcell et al.,

2003; Heatherly and Elmore, 2004; Heitholt et al., 2005). Soybean

farmers in the southern United States may also plant earlier

maturing varieties as part of systems of double-cropping (Kyei-

Boahen and Zhang, 2006). Within these systems farmers plant and

harvest a crop of wheat before planting soybean. Because wheat

harvests occur after the optimal range of planting dates for full-

season soybean, double-crop soybean is planted later in the season

and earlier-maturing varieties are used to compensate (Santos

Hansel et al., 2019; Minor and Wiebold, 1998).

Although our intention was to use the NUST data to create an

updated map of soybean maturity, the map we created greatly
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resembles the classic map of soybean maturities published by Scott

and Aldrich in 1970 (Scott and Aldrich, 1970). While the modeled

map lacks the right-upward curve of the Scott-Aldrich map, maturity

groups 00 – IV were nearly identical in breadth and placement. The

map therefore also resembles an updated map of optimum soybean

maturity published in Zhang et al., 2007, which was similar to the

Scott-Aldrich map for MGs 0 – III. Unlike the Scott-Aldrich map, the

Zhang map was not speculative, but was generated by kriging data

from soybean varietal trials. Compared to the Zhang map, the map

generated here again lacks a right-upward curve and has a thinner

MG 0, which shifts MG 00 further south (Zhang et al., 2007). In other

respects, however, the maps were similar.

The consistency of our map with older maturity classifications

conflicts with the updated maturity map generated in Mourtzinis and

Conley, 2017. The Mourtzinis & Conley used more, and more recent

varietal performance data than the Zhang 2007 map to reassess

soybean maturity groups across the United States. Compared to the

map generated here, the optimum maturity groups of Mourtzinis &

Conley map are less regular and are shifted almost one MG farther
A

B C

FIGURE 9

(A) The soybean TPE and its AEZ-MG classifications, excluding AEZs 12 and 13. Regions are labeled with their AEZ-MG designation and colored by
the number of replicates that were tested at sites within that area. (B) The same map of the soybean TPE and its AEZ-MG classifications. Regions are
labeled and colored by the change in capacity, in number of replicates, that was recommended under the strategy of distribution by cultivation
frequency. (C) The same map of the soybean TPE and its AEZ-MG classifications. Regions are labeled and colored by the change in capacity, in the
number of replicates, which was recommended under the strategy of distribution by environmental variation.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1310461
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gilbert and Martin 10.3389/fpls.2024.1310461
north (Mourtzinis and Conley, 2017). Our results suggest that despite

recommendations to update optimum maturity groups with

changing climates and new varietal data, optimum MGs have

remained largely unchanged over time.
4.3 Application to the 2021 NUST

The distribution of testing in the 2021 NUSTs was not

proportionate to either strategy of representation (cultivation

frequency or environmental variation), at any level (AEZ, MG,

AEZ-MG) at which the distribution of testing was assessed.

Both strategies recommended decreasing testing in AEZs 1, 6,

and 9 and increasing testing in AEZs 2, 3, and 4 (Figure 9). The

strategy of representation by cultivation frequency recommended

decreasing testing in AEZs 7 and 8 and increasing testing in AEZ 5,

while representation by environmental variation recommended

increasing testing in AEZ 10. Both strategies overall recommended

decreasing testing in MGs 00 and III and increasing testing in MG 0

and IV+. The strategy of representation by cultivation frequency

recommended adding testing to MGs I and II, while representation

by environmental variation recommended removing it.

The disproportionate amount of testing that that occurred

within AEZ 1 and MG 00 under both strategies of representation

might be explained by the increasing development of earlier-

maturing soybean varieties in Canada in response to warming

conditions (Qian et al., 2023).

The overrepresentation of testing in AEZs 9 under both strategies

may be influenced by the presence of several university sites, such as
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those of the University of Illinois at Champaign Urbana and Purdue

University, which have the capacity and resources to test a large

number of varieties. This effect is more pronounced under the

strategy of representation by environmental variation, as this area

of the Midwest is largely environmentally homogenous.

AEZs 12 and 13 were excluded from the analysis of testing

distribution because the public soybean test sites within those

regions were associated with the Southern Uniform Soybean

Tests, which were not included in our dataset. AEZs 10 and 11,

and MG IV+ are underrepresented under both strategies of

representation. Although these regions do contain NUST sites,

the underrepresentation of testing within these regions may be

similarly affected by the absence of records from SUST sites.
4.4 Potential of AEZs for strategizing
resource distribution

The final product of this research is an AEZ-MG characterization

of the soybean TPE, which may be used to guide the distribution of

MET testing in terms of environmental representativity to the area of

soybean production in North America (Figure 10).

AEZs have several advantages as a method of environmental

characterization. The first is that they are meaningful. AEZs are

created using bioclimatic variables which capture the annual trends,

seasonality, and extreme factors that affect soybean growth and

adaptation (Atlin et al., 2000; Hyman et al., 2013). By using AEZs,

breeders can directly interpret the effects of particular parameters,

such as heat or water availability, on soybean development
FIGURE 10

Map of the AEZ-MG characterization of the environment of soybean cultivation in North America.
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(Williams et al., 2008; Heinemann et al., 2022). AEZs also have the

advantage of stability. AEZs created with the means of long-term

climatic data represent the normal conditions of a region and are

more likely to reflect the future conditions of the TPE. This makes

them useful for informing long-term trial design decisions like the

placement of new test sites (Zan et al., 2019).

The AEZs’ basis in agronomically relevant variables and their

stability between years together give AEZs the advantage of

predictiveness when combined with crop models. Incorporating

the AEZ affiliation of MET data as a random genotype x zone effect

has been shown to improve the predictive accuracy of genomic

selection models (Buntaran et al., 2019, Buntaran, 2021a, Buntaran

et al., 2021). Performance predictions derived from models

incorporating zonal effects are more accurate, within each AEZ,

than predictions derived from general performance over the TPE,

and more reliable in accuracy than predictions derived from the

results of a single nearest test location (Atlin et al., 2000;

Annicchiarico et al., 2005; Piepho and Möhring, 2005; Lado et al.,

2016; Neyhart et al., 2021).

Another advantage of AEZs is that they can be defined solely

with environmental data. Because AEZs are defined with

environmental data that can be interpolated to any location, they

have explicit spatial extents within the TPE. This makes it easier to

understand the effects of bioclimatic variables within particular

AEZs, or to make comparisons between them (Costantini et al.,

2016). Being able to link AEZs to specific geographic extents allows

breeders to identify miscellaneous environmental pressures that

may exist within those regions, such as the presence of specific

diseases, differences in soil, or seasonal weather conditions (Caldiz

et al., 2002; Williams et al., 2008; Xu, 2016). Predicting genotype

performances within AEZs also provides boundaries for where

varieties are best adapted and would be recommended

(Annicchiarico et al., 2005; Hyman et al., 2013; Bhardwaj

et al., 2022).

Within an AEZ system, the environmental affiliation of a

location can be determined simply by whether it falls within the

boundaries of the AEZ. This presents an advantage over methods

like GGE biplot or AMMI analysis, which require specific trial data

to determine the classification of a site (Yan et al., 2000). The ability

to determine the AEZ affiliation of a site without specific genotype

performance data is particularly useful for trial resource

distribution because it allows breeders to determine the

environmental affiliation of target growing environments or

potential new test sites which would otherwise lack the

appropriate records (Williams et al., 2008; Hyman et al., 2013;

Pérez-Rodrıǵuez et al., 2017; Bhardwaj et al., 2022).
4.5 Future directions

This research demonstrated two strategies for how AEZ-MG

classifications may be used to guide the distribution of test resources

within in MET. These strategies assess the environmental

representation of the MET in terms of the proportionate presence

of specific environments within the network of test sites. They do
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not, however, account for representation on a more specific level,

such as how replicates were distributed between test sites or where

those sites were located.

The proportionate distribution strategies operate as if each of

the test sites within the AEZ equally represents the total

environment of the AEZ. In reality, the distribution of resources

between test sites and the location of those test sites will have their

own effects on representation. Each site within an AEZ will

represent each point within the AEZ to a greater or lesser extent

based on the environmental similarity of those two points.

Increasing the number of replicates at a single site may increase

the representation of the AEZ-MG environmental class within the

MET, but it will not equally increase the environmental

representation of each location within the AEZ-MG. Instead, the

number of replicates at a single test site will weight the specific

representation of that site, to what degree the site has with each

point within the AEZ.

The assumption that each site equally represents the total

environment of the AEZ prevents this method from evaluating

the value of the environmental representation of specific test sites.

This information would be useful to inform a decision between one

or more new test locations within the same AEZ, or to identify

environmentally redundant sites to remove from the trial network.

Future research will quantify the value of the representation of each

test site within the MET. This information will be used to assess

how sites contribute to the trial network’s environmental

representation of the TPE, and to select a set of test sites which

most efficiently represent its environmental variation.
5 Conclusion

The characterization created in this study captures the major

components of the environment, spatial climatic variation, and

optimum maturity, which influence the range of adaptation of

soybean varieties. Breeders may use this characterization to assess

the representation of a multi-environment trial of soybean varieties

and strategize the distribution of testing resources within the trial,

such as the intensity of testing within a particular environment, or

the use and disuse of particular test sites, accordingly. By improving

the representation of the trial network to the area that it represents,

breeders may more efficiently develop adapted soybean varieties to a

changing environment.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

CG: Data curation, Formal analysis, Investigation, Methodology,

Software, Visualization, Writing – original draft, Conceptualization.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1310461
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Gilbert and Martin 10.3389/fpls.2024.1310461
NM: Conceptualization, Funding acquisition, Investigation, Project

administration, Resources, Supervision, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was supported by SOYGEN3: Building capacity to

increase soybean genetic gain in future environments for seed

yield and composition through combining genomics-assisted

breeding with environmental characterization (H010154507).
Acknowledgments

I would like to thank the NUST breeders for their invaluable

feedback to this research, and for contributing the experience required

to develop a method of characterization that could be used in future

soybean variety tests. I would especially like to thank Aaron Lorenz, for

speaking with me about the design and operation of the NUSTs, Brian
Frontiers in Plant Science 16
Diers, for contributing his perspectives as a NUST breeder, and Matt

Hudson, for his insight on variety distribution and testing. Finally, I

would like to thank Kendra Armstrong for her support and guidance

since the beginning of this project.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
AAFC (2022) Spatial Density of Major Crops—Open Government Portal. Available
online at: https://open.Canada.ca/data/en/dataset/fdf82539-5a74-440b-86ef-
a16b7801c706.

Alabi, T. R., Adebola, P. O., Asfaw, A., De Koeyer, D., Lopez-Montes, A., and Asiedu,
R. (2019). Spatial multivariate cluster analysis for defining target population of
environments in West Africa for yam breeding. Int. J. Appl. Geospatial Res. 10, 1–30.
doi: 10.4018/IJAGR.2019070104

Allen, F. L., Comstock, R. E., and Rasmusson, D. C. (1978). Optimal environments for
yield testing. Crop Sci. 18, 747–751. doi: 10.2135/cropsci1978.0011183X001800050013x

Annicchiarico, P., Bellah, F., and Chiari, T. (2005). Defining subregions and
estimating benefits for a specific-adaptation strategy by breeding programs: A case
study. Crop Sci. 45, 1741–1749. doi: 10.2135/cropsci2004.0524

Arya, H., Singh, M. B., and Bhalla, P. L. (2021). Towards developing drought-smart
soybeans. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.750664

Atlin, G. N., Baker, R. J., McRae, K. B., and Lu, X. (2000). Selection response in
subdivided target regions. Crop Sci. 40, 7–13. doi: 10.2135/cropsci2000.4017

Bandillo, N. B., Anderson, J. E., Kantar, M. B., Stupar, R. M., Specht, J. E., Graef, G. L.,
et al. (2017). Dissecting the genetic basis of local adaptation in soybean. Sci. Rep. 7,
17195. doi: 10.1038/s41598-017-17342-w

Bhardwaj, V., Rawat, S., Tiwari, J., Sood, S., Dua, V. K., Singh, B., et al. (2022).
Characterizing the potato growing regions in India using meteorological parameters.
Life (Basel Switzerland) 12, 1619. doi: 10.3390/life12101619

Boitt, M., Mundia, C., and Pellikka, P. (2014). Modelling the impacts of climate
change on agro-ecological zones – a case study of Taita Hills, Kenya. Geosciences J. 2,
172–179. doi: 10.13189/ujg.2014.020602

Brown, A. V., Conners, S. I., Huang, W., Wilkey, A. P., Grant, D., Weeks, N. T., et al.
(2021). A new decade and new data at SoyBase, the USDA-ARS soybean genetics and
genomics database. Nucleic Acids Res. 49, D1496–D1501. doi: 10.1093/nar/gkaa1107

Buntaran, H. (2021a). Statistical methods for analysis of multienvironment trials in
plant breeding.

Buntaran, H., Forkman, J., and Piepho, H. P. (2021). Projecting results of zoned
multi-environment trials to new locations using environmental covariates with random
coefficient models: accuracy and precision. Theor. Appl. Genet. 134, 1513–1530.
doi: 10.1007/s00122-021-03786-2

Buntaran, H., Piepho, H.-P., Hagman, J., and Forkman, J. (2019). A cross-validation
of statistical models for zoned-based prediction in cultivar testing. Crop Sci. 59, 1544–
1553. doi: 10.2135/cropsci2018.10.0642

Caldiz, D. O., Haverkort, A. J., and Struik, P. C. (2002). Analysis of a complex crop
production system in interdependent agro-ecological zones: A methodological
approach for potatoes in Argentina. Agric. Syst. 73, 297–311. doi: 10.1016/S0308-
521X(01)00085-3
Castrignanò, A., De Benedetto, D., Giacoma, G., Guastaferro, F., and Sollitto, D. (2010).
Characterization, delineation and visualization of agro- ecozones using multivariate
geographical clustering. Ital. J. Agron. 5, 121–132. doi: 10.4081/ija.2010.121

Chenu, K. (2015). “Characterizing the crop environment – nature, significance and
applications,” in Crop physiology (London UK, Waltham MA, and San Diego CA:
Academic Press), 321–348. doi: 10.1016/B978-0-12-417104-6.00022-4

Cooper, M., Messina, C. D., Tang, T., Gho, C., Powell, O. M., Podlich, D. W., et al.
(2022). “Predicting genotype × Environment × Management (G × E × M) interactions
for the design of crop improvement strategies,” in Plant Breeding Reviews (Hoboken,
New Jersey: John Wiley & Sons, Ltd), 467–585. doi: 10.1002/9781119874157.ch8

Costantini, E. A. C., Lorenzetti, R., and Malorgio, G. (2016). A multivariate approach
for the study of environmental drivers of wine economic structure. Land Use Policy 57,
53–63. doi: 10.1016/j.landusepol.2016.05.015

Crespo-Herrera, L. A., Crossa, J., Huerta-Espino, J., Mondal, S., Velu, G., Juliana, P.,
et al. (2021). Target population of environments for wheat breeding in India: definition,
prediction and genetic gains. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.638520

Di Mauro, G., Parra, G., Santos, D. J., Enrico, J. M., Zuil, S., Murgio, M., et al. (2022).
Defining soybean maturity group options for contrasting weather scenarios in the
American Southern Cone. Field Crops Res. 287, 108676. doi: 10.1016/j.fcr.2022.108676

Ersoz, E. S., Martin, N. F., and Stapleton, A. E. (2020). On to the next chapter for crop
breeding: Convergence with data science. Crop Sci. 60, 639–655. doi: 10.1002/csc2.20054

Fick, S. E., and Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution
climate surfaces for global land areas. Int. J. Climatology 37, 4302–4315. doi: 10.1002/
joc.5086

Forsythe, W. C., Rykiel, E. J., Stahl, R. S., Wu, H., and Schoolfield, R. M. (1995). A
model comparison for daylength as a function of latitude and day of year. Ecol. Model.
80, 87–95. doi: 10.1016/0304-3800(94)00034-F

Gao, X.-B., Guo, C., Li, F.-M., Li, M., and He, J. (2020). High soybean yield and
drought adaptation being associated with canopy architecture, water uptake, and root
traits. Agronomy 10, 608. doi: 10.3390/agronomy10040608

Garner, W. W., and Allard, H. A. (1930). Photoperiodic Response of Soybeans in
Relation to Temperature and Other Enviromental Factors. 719–735.
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