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atrous spatial pyramid pooling
improved UNet with weight
compression loss
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1School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China,
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Introduction: Early detection of leaf diseases is necessary to control the spread

of plant diseases, and one of the important steps is the segmentation of leaf and

disease images. The uneven light and leaf overlap in complex situations make

segmentation of leaves and diseases quite difficult. Moreover, the significant

differences in ratios of leaf and disease pixels results in a challenge in

identifying diseases.

Methods: To solve the above issues, the residual attentionmechanism combined

with atrous spatial pyramid pooling and weight compression loss of UNet is

proposed, which is named RAAWC-UNet. Firstly, weights compression loss is a

method that introduces a modulation factor in front of the cross-entropy loss,

aiming at solving the problem of the imbalance between foreground and

background pixels. Secondly, the residual network and the convolutional block

attention module are combined to form Res_CBAM. It can accurately localize

pixels at the edge of the disease and alleviate the vanishing of gradient and

semantic information from downsampling. Finally, in the last layer of

downsampling, the atrous spatial pyramid pooling is used instead of two

convolutions to solve the problem of insufficient spatial context information.

Results: The experimental results show that the proposed RAAWC-UNet

increases the intersection over union in leaf and disease segmentation by

1.91% and 5.61%, and the pixel accuracy of disease by 4.65% compared

with UNet.

Discussion: The effectiveness of the proposedmethod was further verified by the

better results in comparison with deep learning methods with similar

network architectures.
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1 Introduction

The apple leaf is an important organ for the growth and

development of apples. Apple is also the most grown fruit in

northern China because of its high nutritional value, containing

high levels of calcium, iron, zinc and other trace elements (Su et al.,

2022). According to Shenzhen Daochuang Intelligence, China’s

annual apple bagging output will reach 36.8 million tons in 2023.

A key factor affecting apple yield is leaf photosynthetic area.

However, its cultivation often breeds different diseases. Apples

grow many diseases during cultivation and leaf diseases are a

common plant disease (van Bruggen et al., 2016). The diseases

are caused by fungi, bacteria, or viruses and can affect leaf

respiration, which in turn affects apple growth and yield (Lee

et al., 2020). Therefore, the quick detection of apple leaf diseases

and precise spraying of pesticides according to the size of the leaf

disease area are essential to guarantee the healthy growth of apples

(Sun et al., 2021). Precision disease control techniques also play a

decisive role in securing apple yields (Tang et al., 2023).

Traditional apple leaf and disease detection methods usually

rely on manual visual identification or capture of pests to determine

the likelihood of disease occurrence (Liu and Wang, 2021). The

method involves high labor costs, lengthy time consumption, and is

easily influenced by subjective factors (Li et al., 2021). With the

development of image segmentation technology, traditional

segmentation includes the Canny Edge Detection Algorithm

(Xizhen et al., 2021), the Region Growing Algorithm (Jin et al.,

2018), the Watershed Algorithm (Jin et al., 2018), and so on. These

methods primarily concentrate on the local pixel relationships and

can easily lead to the misconception of local optimization.

Traditional segmentation techniques tend to produce

discontinuous or incomplete segmentation results when applied

to images with complex textures or shapes (Lu et al., 2023b).

Moreover, it requires manual adjustment of certain parameters,

which can be challenging for non-professionals. Lychee picking

robots using artificial intelligence algorithms to proactively remove

obstacles have been proposed, which provide an intelligent

technology that reduces labor costs (Wang et al., 2023).

The combination of metaheuristics and machine learning

methods is also an important research direction. The enhanced

version of the firefly algorithm (FA) makes a great contribution to

the prevention of overfitting in network training (Bacanin et al.,

2021). A hierarchical feature selection method based on genetic

algorithm for handwritten word recognition is proposed, which

uses a hierarchical feature selection model to optimize the

handwritten word images and extract the local and global features

(Malakar et al., 2020). The genetically guided best artificial flora

algorithm is proposed, which is used to solve the problems of

artificial neural network training and feature selection (Bacanin

et al., 2022). To predict the number of COVID-19 cases, a novel

technique that combines machine learning and beetle antennae

search methods is proposed, providing an effective technical

support for controlling the outbreak of the epidemic (Zivkovic

et al., 2021). A new deep neural network with transfer learning in

remote object detection from drone is proposed, where the use of

migration learning accelerates the training process and improves
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the generalization ability of the model (Woźniak et al., 2022).

Although these articles may require further personalization to suit

the specific research needs, they provide us with useful experiences

and methods that can be fully utilized in further studies. The fusion

of deep learning and image processing algorithms to detect and

count banana strings method is proposed which combines the

advantages of deep learning and image processing to improve the

efficiency of counting (Wu et al., 2023). Automatic and intelligent

data collectors and classifiers have been proposed. It is used for data

collection, detection and classification of pearl millet rust and rice

blast disease (Kundu et al., 2021). The articles provide a variety of

techniques available for leaf and disease segmentation.

In recent years, convolutional neural networks have made

significant advancements in leaf and disease detection, which is

an end-to-end learning approach (Shi et al., 2023). It can

automatically extract advanced image features and reduce the

need for human intervention (Lu et al., 2023a).Convolutional

neural networks demonstrate strong generalization capabilities,

thus holding great potential for applications in disease detection

(Liu et al., 2017). Full convolutional neural networks (Long et al.,

2015) achieved pixel-level classification for the first time.

Furthermore, the adaptability and transferability of various

versions of DeepLab (Chen et al., 2017) and UNet (Ronneberger

et al., 2015) have attracted a large number of researchers. A Survey

of Deep Convolutional Neural Networks Applied for Prediction of

Plant Leaf Diseases was raised. The article details summarize the

advantages and disadvantages of different deep learning techniques

for the agricultural sector (Dhaka et al., 2021). It is able to cope with

the task of segmenting different diseases and is highly effective in

dealing with simple environmental segmentation. In indoor

environments, the segmentation of apple leaves and diseases

performs well. However, in outdoor environments, the

segmentation result on leaves and diseases is not satisfactory, due

to the interference of light and overlapping.

With the application of relevant deep learning methods, more

and more scholars have conducted extensive research on their

application in apple leaf and disease segmentation (Wani et al.,

2022). A fully automatic segmentation method for plant leaf images

in complex environments was presented (Gao and Lin, 2019). A

simple and effective semantic segmentation architecture based on a

composite backbone, where OTSU was used to obtain a binary

image (Yan et al., 2023b). CoAtNet integrates the attention

mechanism of transformers into convolution operations for

segmenting cotton leaves. Detection and classification of citrus

leaf diseases based on MobileNet and self-structuring was

introduced (Barman et al., 2020). The method incorporates

channel attention (CA) mechanism into the ShuffleNet

architecture and uses squeeze-and-excitation blocks as the CA

mechanism to enhance the performance of ShuffleNet in grape

leaf segmentation (Tang et al., 2020). The research of the mentioned

has achieved good performance in leaf segmentation. However, in

outdoor environments, diseases on the leaves cannot be accurately

identified. Wang Y et al. put forward a lightweight single-stage

network, which named as MGA-YOLO (Wang et al., 2022b). Based

on the AlexNet model, Fu uses dilated convolution to extract

coarse-grained features of diseases in the model, and extracts
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apple leaf diseases at multiple scales (Fu et al., 2022). A two-stage

DeepLabv3+ with adaptive loss is introduced, which incorporates

receptive field block and reverse attention modules, and adjusts the

speed of dilated convolutions in atrous spatial pyramid pooling

(ASPP) for the segmentation of apple leaf images in complex scenes

(Zhu et al., 2023a).The ALDD-YOLO lightweight apple leaf disease

detection model has been raised, which introduces Mobilenet-v3s to

compress model size (Xu and Wang, 2023). The EADD-YOLO by

improving lightweight YOLOv5 was presented. It reconstructs the

backbone network with lightweight inverted residual modules and

introduces them into the network to reduce feature extraction and

fusion, thereby improving the efficiency of segmenting leaves (Zhu

et al., 2023b). The above papers all focus on the segmentation of

apple leaves and diseases from the lightweighting, and they perform

well in real-time detection on mobile devices, but there may be

shortcomings in disease segmentation. A lightweight dense scale

network (LDSNet) for corn leaf disease classification and

recognition was proposed by Zeng Y et al (Zeng et al., 2022),

using different expansion rate convolutions and attention fusion

methods to improve the recognition of leaves and diseases. The

apple leaf and disease segmentation recognition model based on a

hybrid loss function and the Convolutional Block Attention Module

(CBAM) was proposed (Zhang et al., 2023). The Swin Transformer

is a network model for enhancing data and identifying cucumber

leaf disease (Wang et al., 2022a). An enhanced TransUNet deep

learning network was posed for recognizing rice leaves (Yan et al.,

2023a). An improved DeepLabv3+ deep learning network structure

for segmenting grape leaf black rot has been proposed (Yuan et al.,

2022). The above method is suitable for single background and

high-resolution apple leaf disease images, but it does not perform

well in mixed environments.

Based on the above discussion, The advances of this paper are

that it proposes an improved UNet that has residual attention and an

atrous spatial convolutional pooling pyramid with weight

compression loss. The primary task of the proposed network is to

address the pixel-scale imbalance problem that exists in mixed scenes,

especially when the network captures apple leaf and disease images.

Accurate segmentation of leaves and diseases provides reliable

technical means for precise analysis of apple health and helps to

improve the intelligence and efficiency of orchard management.

The main novelties of this work are as follows:
Fron
•To overcome the imbalance in pixel representation between

leaves and diseases in mixed environments, the weighted

compression loss function includes a variable modulation

factor before CE, enhancing the network’s sensitivity to

diseases during the training process.

•Res_CBAM is formed by integrating the residual structure

with CBAM. The proposed Res_CBAM allows the network

to capture multi-layered disease features and pay more

attention to disease edge pixels.

•The improved ASPP structure allows the model to capture

contextual information through multiscale receptive fields

and different sampling rates, thereby enhancing its

performance in the segmentation of diseased pixels.
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The rest of the paper is structured as follows: In Section 2, the

related materials and methods are presented. The material includes

the obtained datasets and how to deal with them, while the

methodology is a description of the details of the proposed

RAAWC-UNet. The experimental results are analyzed, and the

impact of network modules is discussed in Section 3. Section 4

summarizes the whole paper and makes recommendations for

future research.

2 Materials and methods

2.1 Data processing

2.1.1 Image datasets
Images used in the study were collected from the Northwest

Agriculture and Forestry University (Northwest A&F University)

Baishui Apple Experiment Station (Baishui County, Weinan City,

Shaanxi Province), Luochuan Apple Experiment Station (Luochuan

County, Yan’an City, Shaanxi Province), and Qingcheng Apple

Experiment Station (Qingyang County, Qingyang City, Gansu

Province). The apple leaf and disease datasets produced by

Northwest A&F University. Most of the image were taken on a

sunny day with good light, and a few pictures were collected on a

rainy day. It was taken at a distance of 10-15 cm using an ABM-

50OGE/BB-500GE color digital camera and an Honor V10 mobile

phone. The environmental conditions include sunny, cloudy, and

rainy days, and different collection environments can further

enhance the diversity of the datasets.

In complex field environments, the influence of leaf

characterization factors, environmental factors, and leaf disease

types makes the precise delineation of leaf diseases quite difficult.

(1) The influence of leaf characteristic factors: the shape, color,

texture and other characteristics of leaves will affect the division of

leaf diseases. For example, the disease may change the color of the

leaf or cause spots, and image processing algorithms can use these

features to detect and segment diseased areas. (2) Influence of

environmental factors: Environmental factors such as light

conditions, humidity, and temperature can also affect the

classification of leaf diseases. Poor lighting conditions or shadows

can affect the image quality and thus the segmentation of the

disease. Changes in humidity and temperature may also cause

water droplets to appear on the surface of the leaf, thus affecting

disease segmentation. (3) Types of leaf diseases: Different types of

leaf diseases may be affected by different characteristics and

environmental factors. For example, some diseases may cause an

overall discoloration of the leaf, while others may cause spots only

on specific areas of the leaf.

Figure 1 illustrates the influence of outdoor environments on

leaves. Figure 1A demonstrates the effect of light and shadow on

apple leaves, Figure 1B displays folding leaves at the edges of the

leaf, Figure 1C reveals wrinkled edges of the leaf, and Figure 1D

shows water droplets on the leaf. Apple leaf and diseases include

blotch, brown spot, grey spot, rust, and mosaic disease. The total

number of original images of the four apple leaf diseases is 1866,

and the resolution of the images are all 512×512 pixels. Table 1
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shows the indoor and outdoor distribution of four apple leaf

disease pictures.

Figure 2 presents representative images of four apple leaf

diseases, emphasizing the different types of diseases and

distinctions. Each type of disease is selected from indoor and

outdoor respectively to show the original image and label. Brown

spot disease only has indoor images. The disease in Figure 2A is

apple alternaria blotch spot, which mainly affects apple leaves,

petioles, branches and fruits, producing very small brown spots

on the young leaves of new shoots. The spots are often surrounded

by a purple halo with clear margins. As the temperature rises, the

spots can expand to 5-6 millimeters and become dark brown. The

cause of alternaria blotch spot is mainly a strong virus strain of

Streptomyces apples, which affects the normal growth of leaves,

often resulting in twisted and wrinkled leaves, scorched parts of the

disease. The disease in Figure 2B is brown spot, with a diameter of

3-5 millimeters. There are larger brown-green spots around the

diseases, which are irregularly shaped, hence it is called green-

brown disease. The pathogen of brown spot disease is caused by

bivalve infestation, which leads to early defoliation of apple trees,

reduces photosynthesis of apple leaves, causes malnutrition, and

reduces the economic benefits of fruit growers. The disease in

Figure 2C is a grey spot, usually 2-6 mm in diameter, with clear,

reddish-brown edges that turn grey later, with small black dots

scattered in the center, and is mainly caused by the pear leaf spot

fungus. Leaves caused by this disease usually don’t turn yellow and

fall off, but severely affected leaves will scorch, which in turn affects

apple yield. The disease shown in Figure 2D is rust, which is initially

orange-red in color and consists of small dots about 1 to 2 mm in

diameter. If not controlled, the spots will grow larger and darker in

the middle until they become black dots. At this time, the outermost

ring of the spot is relatively light in color, and the pathogen severely

damages the young fruits, resulting in the development of bad fruits.

Figure 3 shows the box plots of each category of the ALDD

datasets, respectively analyzing the characteristics and differences of
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the four types of disease datasets under indoor and outdoor

conditions. From Figures 3A, B, it can be seen that the RGB pixel

values of the same type of disease are similar, the distribution range

shows a decreasing trend, and the outliers of the disease are few.

Due to the large difference in the pixels of the background, the RGB

channel pixel values of the indoor are higher than those of the

outdoor. Figure 3C is Brown spot, which only has indoor disease,

reflecting that the pixels of the leaves and disease of brown spot are

relatively complex, while the pixels of the background are relatively

concentrated. Figures 3D, E are grey spots, and Figures 3C, D have

the same mean value of the background pixels, and by looking at the

original datasets, it can be noticed that the indoor background of the

brown spot and the grey spot are close to each other. Figures 3F, G

are Rust, the background category pixel range in Figure 3F is

smaller than that in Figure 3G and relatively more concentrated.

2.1.2 Image preprocessing
Firstly, preprocessing operations were performed on the images.

The data on brown spots, grey spots, and rust spots in the outdoor

environment were selected from the datasets. The leaves and

diseases were labeled using Photoshop and Labelme, respectively,

under the guidance of an apple leaf disease recognition expert.

Photoshop was used to quickly mark leaves and background on

apple leaves using the magic wand tool. The marking of diseases

using Labelme allows for precise labeling of diseases on leaves. The

final labels are saved in PNG format, which makes the labeling more

precise and efficient. The labeling style is shown in Figure 4.

Secondly, in order to avoid the overfitting problem in the later

network training, improve the generalization ability of the model,

and enhance diversity, the image was enhanced to simulate the

complexity of the outdoor environment. Such as light intensity,

light color temperature, and shadow effect. As shown in Figure 5,

there are two main methods for image enhancement: (1) A

geometric transformation of the image, which randomly flips and

crops the original image horizontally and vertically. (2) Pixel
TABLE 1 Amount of data on apple leaf disease species.

Alternaria blotch Brown spot Grey spot Rust Total

indoor 125 277 177 424 1003

outdoor 270 – 167 51 488

total 395 277 344 475 1491
fronti
A B DC

FIGURE 1

Apple leaves and diseases in outdoor environments. (A) Light effects. (B) Leaf edge folding. (C) wrinkled edges of the leaf. (D) Water droplet effects.
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A B D

E F G

C

FIGURE 3

Box plots of RGB pixels of different diseases for the ALDD datasets. (A) Indoor Alternaria Blotch. (B) Outdoor Alternaria Blotch. (C) Indoor Brown
Spot. (D) Indoor Grey Spot. (E) Outdoor Grey Spot. (F) Indoor Rust. (G) Outdoor Rust.
A B DC

FIGURE 2

Four types of apple leaves and diseases. (A) Alternaria Blotch. (B) Brown Spot. (C) Grey Spot. (D) Rust.
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transformation of the image, where the image brightness is

randomly varied by 0.5–1.2 times, the contrast is randomly varied

by 0.5–2.5 times, and the chromaticity is randomly varied by 0.5–

2.5 times.

Then, color augmentation were applied to the indoor apple

leaf datasets, increasing it from 1,003 images to 2,006 images.

The outdoor datasets was expanded by randomly changing

brightness, contrast, and color. The outdoor apple datasets was

expanded from 488 to 1,952 sheets. This ensured that the indoor-

to-outdoor ratio was as close to 1:1 as possible, thus reducing

experimental error. The major apple leaf diseases included in the

datasets were alternaria, brown spot, grey spot, and rust. Figure 5

illustrates the five enhancement methods for apple brown spots

as an example.
Frontiers in Plant Science 06
2.2 The proposed method

In this section, we present the proposed framework called

RAAWC-UNet and the components of each module. Residual

convolutional block attention module and atrous spatial pyramid

pooling improved UNet with weighted compression loss is

simplified as RAAWC-UNet. The proposed network mainly

consists of two improved modules and the proposed loss

function. Residual and CBAM are combined into Res_CBAM,

and ASPP is improved into a module suitable for leaf datasets

segmentation with the proposed weight compression loss.

2.2.1 RAAWC-UNet framework
The outdoor image is affected by light, water droplets, bad

weather, and the overlap of some outdoor leaves and target leaves,
A B

D E F

C

FIGURE 5

Image Enhancement. (A) Original image. (B) Color change. (C) Contrast change. (D) Brightness change. (E) Vertical flip. (F) Horizontal flip.
A B C

FIGURE 4

Image annotation. (A) Original Image. (B) Label Image. (C) Label Visualization.
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which leads to the difficulty of segmenting outdoor leaves and

diseases. UNet performs well when dealing with single background

leaf and disease segments. However, its performance is slightly

lacking when coping with small target segments, such as diseases on

apple leaves. On the one hand, the reduction of feature maps in

UNet’s downsampling process can decrease the amount of

information for small targets. On the other hand, during the

decoding process of UNet, information is recovered from lower-

level feature maps. However, this process may lose some global

information, leading to the loss of context information in different

regions. Therefore, to overcome this difficulty, more powerful

feature extraction and detail preservation mechanisms need to be

introduced into UNet to better handle these challenging small target

segmentation tasks.

In order to improve the accuracy and robustness of apple leaf

and disease segmentation, this study introduces an improved model

on UNet, namely RAAWC-UNet. In this model, we use UNet as the

backbone network and make a series of improvements based on it to

better adapt to the challenging requirements of small

target segmentation.

In the RAAWC-UNet model, the main improvement is in the

convolutional blocks in the encoder part. The Residual and CBAM

modules were introduced and integrated to form the Res_CBAM

module. The Residual structure not only maintains the stable

transmission of features but also helps to retain the detailed

information in the network. It enables the network to be better

adapted to the segmentation of small target areas, which are

diseases. The CBAM makes the network more attentive to the

pixel regions in the image that are decisive for classification while

ignoring insignificant regions in both the channel and spatial

dimensions. The merged Res_CBAM blocks help to integrate

high-level and low-level semantic features, thus effectively
Frontiers in Plant Science 07
combining detailed information with the global context. The

model can better understand the features of the diseased region

and improve the accuracy and robustness of segmentation.

In addition, we replace the last downsampling layer with ASPP.

The ASPP module can cover image features of different sizes within

the perceptual region by utilizing different hollow rates of multiscale

convolutional operations. It captures fine-grained information in

leaf and disease images while also capturing a wider range of

contextual relationships. Applying the modified ASPP structure to

the last layer of downsampling not only improves ability to segment

but also enhances generalization to a wide range of complex field

scenarios. Overall, the improvement greatly enriches the model’s

ability to understand the disease, thus enabling it to exhibit higher

accuracy and robustness in pixel-level image segmentation. The

network architecture of the proposed RAAWC-UNet is shown in

Figure 6. The specific parameters of the proposed network structure

are shown in Table 2. The proposed model can be reconstructed

based on the structure of the proposed network diagram and the

detailed operational parameters in the table.

2.2.2 Res_CBAM module
Residual module is a type of building block commonly used in

deep convolutional neural networks, originally proposed by residual

network in 2015 (Yang et al., 2023). As shown in Figure 7, the

module aims to solve the problem of vanishing and exploding

gradients during training, and the skipping mechanism of the

residual module allows UNet to capture feature information at

different levels. For apple leaf and disease segmentation, different

levels of features can provide rich contextual information to

accurately distinguish between diseased and normal regions.

UNet can combine low-level detailed features with high-level

semantic features to obtain better segmentation results. In
FIGURE 6

The general architecture of RAAWC-UNet with 4 encoders and 4 decoders, encoding and decoding are connected by a modified ASPP. The
downsampling block, the convolutional block and Res_CBAM form an encoder, and the decoder consists of a convolutional block connected by
Concat and residuals.
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addition, since leaf and disease segmentation tasks are very sensitive

to edge information, the residual can provide better edge retention.

In this study, the UNet encoder adds the residual structure. The

residual network was proposed by (He et al., 2016). To ensure that

the size of the feature map obtained after two convolution

operations is the same as the size of the skip connection output,

we use a 1 × 1 convolution kernel to tune the channels. Thus, if the
Frontiers in Plant Science 08
input is represented by x, the modified Res output is represented by

a function: f(x) + g(x).

The following are typical representatives of channel and

spatial attention:
(1) The Squeeze-and-Excitation (SE) block (Deng et al., 2023) is

a network module proposed in 2018. The SE module first

averages the input feature maps globally and secondly

compresses the information from each channel into a

scalar value. Finally, it is processed using the nonlinear

activation function ReLU. The SE fundamentally removes

the weights of each channel.

2) The Efficient Channel Attention (ECA) block aims to

improve the computational efficiency of channel attention

(Yuan et al., 2022). The core of ECA is to adjust the

importance of channel features by introducing an

adapt ive weight on each channel . A different

convolutional kernel is applied on each channel to

adaptively compute the attention weights for each

channel, and these weights need to be normalized. To

create a weighted feature map, the original feature map is

dot-multiplied with the normalized weights. The weighting

enhances the attention to the important channels and thus

improves the discriminative properties of the features. The

ECA is not designed for global average pooling, so it is more

computationally efficient than SE.

(3) The CBAM is the attention module proposed by (Woo et al.,

2018). There are two main directions for modules that

improve network performance: channels and spatial

attention. The channel module is similar to the channel

of SE. The spatial module aims to weight different spatial

locations to capture key parts of the image. All of this

information is then fused through a convolutional layer to

generate spatial attention weights.
In order to make the network more focused on the disease and

ignore irrelevant background information. The CBAM is added to

the downsampling of the network. The CBAM consists of channel

and spatial attention modules. The channel attention module

reinforces the channel features of the disease and adaptively

selects the channel features related to the disease to better capture

the boundary of the disease. The spatial attention module focuses

on the spatial dimension and extracts key features. Feature maps are
TABLE 2 Parameters of each module in the proposed model.

Layer Operation Size Output

Encoder1

Input
Conv×2
Residual
Res_CBAM

3×512×512
3×3, 3×3
3×3, 1×1
1×1, 7×7

-
64×512×512
64×512×512
64×512×512

Encoder2

Downsampling
Conv×2
Residual
Res_CBAM

2×2, stride=2
3×3, 3×3
3×3, 1×1
1×1, 7×7

64×256×256
128×256×256
128×256×256
128×256×256

Encoder3

Downsampling
Conv×2
Residual
Res_CBAM

2×2, stride=2
3×3, 3×3
3×3, 1×1
1×1, 7×7

128×128×128
256×128×128
256×128×128
256×128×128

Encoder4

Downsampling
Conv×2
Residual
Res_CBAM

2×2, stride=2
3×3, 3×3
3×3, 1×1
1×1, 7×7

256×64×64
512×64×64
512×64×64
512×64×64

ASPP
Dilation_Conv
Downsampling

Rate: 6, 12, 18
2×2, stride=2

1024×64×64
1024×32×32

Decoder1

Up_Conv
Concat
Conv×2
Residual

Scale_factor=2
-
3×3, 3×3
3×3, 1×1

512×64×64
1024×64×64
512×64×64
512×64×64

Decoder2

Up_Conv
Concat
Conv×2
Residual

Scale_factor=2
-
3×3, 3×3
3×3, 1×1

256×128×128
512×128×128
256×128×128
256×128×128

Decoder3

Up_Conv
Concat
Conv×2
Residual

Scale_factor=2
-
3×3, 3×3
3×3, 1×1

128×256×256
256×256×256
128×256×256
128×256×256

Decoder4

Up_Conv
Concat
Conv×2
Residual
Output

Scale_factor=2
-
3×3, 3×3
3×3, 1×1
1×1

64×512×512
128×512×512
64×512×512
64×512×512
3×512×512
FIGURE 7

Modified residual structure, x represents the input, and x goes into two convolution blocks and a 1×1 convolution block, respectively. The output F(x)
and g(x) tensors have the same dimension, and then F(x) and g(x) are summed up.
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generated through pooling operations to highlight the spatial

locations of leaves and diseases. The spatial attention module

helps the model better adapt to different lighting and shading

situations. Figure 8 illustrates the channel and spatial attention

module. The CBAM module combines channel and spatial

information to enhance the expressive and sensory capabilities of

the model. It improves the performance, generalization, and

interpretability of the model. This provides important

applications for apple leaf and disease segmentation.

Given a feature map T ∈ RC�1�1 as input, the 1D channel

feature map Pc ∈ RC�1�1 and the 2D spatial feature map Ps ∈
RC�1�1, are derived sequentially (Equations 1–3):

T 0 = Pc(T)⊗T , (1)

T 00 = Ps(T
0)⊗T 0, (2)

O = T + T 0 + T 00 (3)

⊗ represents the multiplication between elements. The essence

is to perform a broadcasting mechanism. T 00 is the output after

passing through channel attention and spatial attention. O is the

output after residual attention. The Res_CBAM involves connecting

the features before attention, the features enhanced by channel

attention, and the features with spatial attention on top of channel

attention through residual connections. The Res_CBAM example

diagram is shown in Figure 9.

The feature map fused different levels of feature information

through the residual structure. The feature map improves the

accuracy of apple leaf disease segmentation through channel

attention and spatial attention, emphasizes the key features, and

enhances the segmentation results.

2.2.3 Modified ASPP module
ASPP is commonly used in image semantic segmentation tasks

(Wang et al., 2021). The ASPP module is designed to help the

network perceive information from different sensory fields. It
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operates with multiple parallel convolutional branches with

different sampling rates to extend the receptive field and capture

information at different scales without introducing additional

parameters. The common sampling rates include 3, 6, 12, 18, etc.,

with larger sampling rates providing a wider range of contextual

information and smaller sampling rates retaining more details. The

output of the ASPP module is usually a splice or overlay of the

outputs of the branches. The model can then acquire contextual

information at different scales to better understand the image

content and perform accurate segmentation. The modified ASPP

structure removes the Conv1 × 1 and pooling operations and only

keeps three Conv3 × 3 with different expansion rates. Therefore, it is

possible for the modified ASPP to significantly reduce the number

of parameters and the amount of float computation while still

maintaining the ability to efficiently extract leaf and disease

features. The modified ASPP structure is shown in Figure 10.

2.2.4 Weight compression loss
Cross entropy (CE) is a commonly used loss function in

segmentation networks to measure the difference between model

predictions and true segmentation labels. However, CE loss has

limitations when dealing with apple leaf and disease segmentation

problems. On one hand, CE loss cannot effectively deal with the

category imbalance problem, which may cause the model to be

biased towards more healthy pixels. On the other hand, CE loss

cannot capture spatial continuity, and diseased regions may be

disconnected or blurred.

CE loss is the classical loss function in semantic segmentation

(Jadon, 2020), which is defined in Equation 4:

Lce(y, p) =
−log   (p) if   y = 1

−log(1 − p) if   y = 0

(
(4)

The p represents probability between the predicted value and

the true value. To address the drawback of CE loss, the proposed

loss function primarily deals with the issue of foreground and

background pixel imbalance. We have named it WC_Loss. The
FIGURE 8

The channel and spatial attention module, MaxPool and AvgPool represent global maximum pooling and average pooling respectively. Shared MLP
represents shared fully connected layers. ⊕ represents addition, ⊘ stands for sigmoid operation. [MaxPool, AvgPool] represents concatenation of the
global maximum pooling and average pooling.
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Loss function is defined in Equation 5:

WCLce(y, p) =
−(1 − arctan(p))g log(p) if y = 1

−(arctan(p))g log(1 − p) if y = 0

( )
(5)

The arctan(p) maps the input probability values to (0,p/4),
while [1 − arctan(p)] is mapping the probabilities to (1 − p/4,1). In
contrast to the CE loss function, the weights in front of the CE loss

are always 1 and are not elastic. [1 − arctan(p)]2 has the advantage

of shortening the mapping range and adaptively adjusting the size

of the front weights. The adjusted values of the weight compression

loss function for mixed environments, leaf and disease pixel regions

will be more continuous, helping the model to adapt more smoothly

to difficult and easy samples during training.

For the apple leaf disease segmentation task, the proposed loss

function WC_Loss has the following advantages: Firstly, in the apple

leaf disease segmentation task, the pixel ratios of healthy and diseased

leaves are unbalanced. The proposed loss function reduces the weight

of easy-to-categorize samples and pays more attention to difficult-to-

categorize samples, which effectively handles the imbalance between

leaf and disease categories. Secondly, by introducing an adjustable

hyperparameter g, WC_Loss is able to focus on the difficult samples
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and improve the learning ability for apple leaf and disease samples.

When g = 0, WC_Loss becomes CE_Loss. Thirdly, the value of the

modulation factor [1−arctan(p)] is determined by the probability p,

which decreases as the probability p increases. When p increases, the

pixels representing the leaf and the background are easy to classify. g
increases, the modulation factor [1 − arctan(p)] compresses. It is not

the larger g the better the accuracy of segmentation, but g has to find a

suitable value. Finally, the contribution to the overall loss reduces the

effect of apple leaf samples and improves the accuracy of disease

category classification. In conclusion, WC_Loss is a loss function that

can effectively solve the problem of a serious imbalance in the

proportion of leaf and disease pixels and improve the generalization

ability of the model.

As shown in Figure 11, five different hyperparameters g are set. As
the value of g increases, the possibility of fixing the probability of true
labeling, the strength of the modulation factor compression increases.

The curve of the loss function shows that as the confidence level

p increases, the loss value becomes smaller. According to the

experimental results in Subsection 3.5, it is found that the best

performance is achieved with g = 2, combining leaf segmentation

and disease segmentation.
FIGURE 10

Modified ASPP module. The expansion factors of the 3 pooled pyramids are 6, 12, and 18, respectively, which are concatenated after passing
through the feature layer of the pooled pyramid, and then the number of channels is varied using a 1×1 convolution.
FIGURE 9

Residual convolutional block attention module, where ⊗ denotes the corresponding element multiplication and ⊕ represents the element addition,
before the multiplication operation, the channel attention and spatial attention need to be broadcast according to the spatial dimension and channel
dimension respectively.
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3 Results and discussion

In this section, the experimental settings, evaluation metrics,

and experimental results will be described in detail. The chapter

includes the tuning of the loss functions of the participating designs,

baseline comparisons, and ablation experiments containing

individual modules. Then, the advantages and limitations of the

proposed model are discussed.
3.1 Experimental setup

The experimental software environment is PyTorch 2.0.0 and

Python 3.9. The server configuration is an Intel(R) Core (TM) i9-

10900K CPU @ 3.70 GHz, 128.0 GB RAM, NVIDIA Quadro RTX

8000, CUDA 11.7. The server system is Ubuntu 18.04, and the

hyperparameters are determined as follows: The initial learning rate

is set to 1e-4, the number of epochs is 200, the batchsize is 4, and the

model is optimized by the SGD optimizer. At the same time, the

learning rate decay strategy is used to make the late gradient descent

smooth and easy to converge, and the algorithm is easy to

approximate the optimal solution. The experiment is done three

times, and the distance of each evaluation measure is controlled at

0.0001–0.0005, which is regarded as the model being close to the

optimum. The hyperparameters are set as shown in Table 3.

In the experiments of this study, the initialization images were

used with a size of 512×512×3. For effective training and evaluation.

The datasets are divided into training sets, validation sets, and test

sets, which are in the ratio of 6: 2: 2 and it is ensured that the

datasets cover four different disease scenarios. The training sets

contains 2374 images, and the validation and test sets contain 792

images each. With this division, each type of datasets contains a

variety of diseases to ensure the comprehensiveness and robustness

of the model.

This normalization operation not only helps to speed up the

convergence of the neural network and improve generalization
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ability, but also effectively deals with the problem of vanishing

gradients. This stage is crucial to the entire research process since it

helps the model comprehend the characteristics of the images and

produce predictions that are more precise.

Figure 12 illustrates the training indicators for the RAAWC-UNet

model. The loss curves for the training and validation sets are shown in

Figure 12A. Figure 12A shows the loss curves for the training and

validation sets. It is clear from Figure 12A that the loss curves for both

training and validation sets show a satisfactory trend. This indicates

that the model performs well during the training process. The accuracy

curves for the three categories of background, leaf, and disease are

shown in Figure 12B. As seen in Figure 12B, the model performs

admirably in terms of handling the three categories of complex

background, leaves, and diseases. Figure 12C demonstrates the

variation of mean Intersection over Union (mIoU). The model also

produces good results in terms of mIoU, as can be seen in Figure 12C.

In summary, Figure 12 visualizes the performance of the

RAAWC-UNet model during the training process. The good

performance of the loss curves, accuracy and mIoU further

validates the correctness of the model for apple leaf and disease

segmentation tasks.
3.2 Evaluation indicators

To evaluate the performance of apple leaf and disease

segmentation network models in complex environments. Three

types of evaluation metrics are used, which are overall

performance metrics, pixel-level metrics and additional metrics

for leaves and diseases.

Firstly, the overall performance evaluation metrics for the leaf

and disease segmentation task were used as Accuracy (Equation 6).

Accuracy is the ratio between the number of samples correctly

predicted by the model and the total number of samples and is used

to measure the overall predictive accuracy of the model over the

entire datasets.

Acc  =
TP + TN

TP + FN + FP + TN
(6)

Secondly, the pixel-level metrics include Precision (Equation 7),

Recall (Equation 8), F1 Score (Equation 9), mPA (Equation 10) and

mIoU (Equation 11). Precision is a measure of the proportion of

pixels predicted to be in the positive category by the model over all

the pixels labelled as positive. Recall indicates the proportion of
TABLE 3 Hyperparameter settings.

Hyperparameter Values

Num_classes 3

Batch Size 4

Epochs 200

Optimizer SGD

Learning_rate 1e-4

Momentum 0.9
FIGURE 11

Comparison of weight compression loss and hyperparameter g.
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pixels correctly marked as positive by the model over all the pixels

in the actual positive category. F1 Score is a performance metric that

combines Precision and Recall. It aims to balance the accuracy and

the percentage coverage of the model.

P  =
TP

TP + FP
(7)

R  =
TP

TP + FN
(8)

F1 =
2�P�R
P + R

(9)

TP in the formula indicates the number of samples correctly

identified as positive category, TN is the number of samples correctly

identified as negative category, FP is the number of samples

incorrectly identified as positive category, and FN indicates the

number of samples incorrectly identified as negative category.

The mPA of accuracy category is calculated for each category at

the pixel level and then averaged across all categories of accuracy.

The mIoU is an important measure of the model’s segmentation

performance, and its size directly reflects the model’s performance

for pixel-level segmentation tasks. Where k denotes the total

number of categories, Pii denotes the number of pixels predicted

to be category i and truly belonging to category i, Pij represents the

number of pixels predicted to be category i but really correspond to

category j, and Pij indicates the number of pixels predicted to be

category j but actually refer to category i. The mIoU is the pixel
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accuracy predicted by the model on each category and averages the

results across all categories to assess the metrics.ok
j=0 Pij means the

number of pixels of category i that are partitioned into a total of k

categories, and ok
j=0 Pji means the number of pixels of category j

that are redundantly partitioned into the i-th category.

mPA =
1

k + 1o
k

i=0

pii

ok
j=0Pji

, i = 0, 1, 2,…, k (10)

mIoU =
1

k + 1o
k

i=0

pii

ok
j=0Pij +ok

j=0Pji − Pii
, i = 0, 1, 2,…, k (11)

Finally, the additional metric uses Cohen’s kappa coefficient

(Equation 12). It is used in statistics to evaluate the consistency of a

multicategorical accuracy model for background, leaf, and disease.

The po is the empirical probability of a label assigned to any sample,

and pe is the expected consistency between two annotators when

they randomly assign labels.

k = (po − pe)=(1 − pe) (12)
3.3 Discussion of different
attention modules

In complex outdoor environments, leaf images are easily

affected by environmental factors. In order to accurately capture

the texture boundary information of leaf diseases. The spatial
A B

C

FIGURE 12

Training indicators. (A) Loss function curve. (B) Accuracy curve. (C) Mean intersection over union curve.
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attention module of CBAM helps to extract information at different

scales in the image, better capturing the boundaries and spatial

distribution of the diseases. SE and ECA segment the leaves and

diseases only from the channel. CBAM has strong performance in

two dimensions, it performs better in segmenting apple leaves

and diseases.

The comparison results of objective indicators using different

attentional mechanisms are shown in Supplementary Table 1. It can

be seen that the addition of the SE, ECA and CBAM modules

increases the overall accuracy of the network on the validation sets

by 0.36%, 0.31%, and 0.39%, and the IoUs of the apples leaf pixel

segmentation on the test sets by 0.83%, 0.84%, and 1.21%, and that

of the disease pixel segmentation by 1.22%, 1.57%, and 3.9%. The

mPA and mean precision on the test sets increased by 1.44%, 1.53%,

1.7% and 0.83%, 0.81%, 0.96%. Supplementary Table 1 reveal that

the encoder needs to consider not only channel attention but also

spatial attention during feature extraction. It shows that the

attention mechanism of the model plays a key role in both

channel and spatial aspects in a particular task.

Supplementary Figure 1 shows the results of image

segmentation using different attention modules. By comparing

Supplementary Figures 1C–F, it can be observed that the ability

of the model to extract small lesions is enhanced with the addition

of the attention module. The comparison of Supplementary Figures

1D–F shows that SE and ECA attention modules only have channel

attention to extract a small number of minor illnesses pixels. CBAM

has both channel and spatial attention and will be more

comprehensive in extracting small diseases. According to the

experimental results, CBAM performs better in apple leaf and

disease segmentation compared to the other two attention

modules. The objective results presented in Supplementary Table

1, as well as the multiple subjective validations in Supplementary

Figure 1, indicate the relative superior performance of CBAM in the

segmentation tasks of leaves and diseases. The effectiveness of

CBAM in improving the model’s ability to focus on image details

and specific regions is emphasized.
3.4 Discussion on hyperparametric
optimizers and learning rate

Through the comparative analysis of three sets of experiments,

the best choices of learning rate and optimizer were determined.

The results of the experiments are shown in Supplementary Table 2.

In the experiments, 1e-4 and 5e-4 were tried as two different

learning rates, while two optimizers, SGD and Adam, were used.

The experimental results show that leaf and disease segmentation

perform better when the learning rate is set to 1e-4. Although the

Adam optimizer can achieve faster model convergence, the stability

of the results is poor, so SGD is finally chosen as the optimizer.
3.5 Discussion on the hyperparameter g

To verify the effectiveness of the weight compression loss, we

performed integration using Res_CBAM and a modified ASPP to
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validate the equation of the modulation factors. The experiment was

set up for five groups and the hyperparameter g was changed

regularly to find the most appropriate hyperparameter configuration.

Theoretically, a larger value of g indicates that the model pays

more attention to the difficult-to-categorize disease pixels and

ignores the samples of relatively easy-to-categorize leaves during

the training process. But in practical applications, as shown in

Supplementary Table 3, when the g value is too large, it often leads

to the occurrence of overfitting phenomenon, which negatively

affects the model’s performance. Therefore, when weighing the

importance of difficult samples and the generalization ability of

the model, it is crucial to choose the g value reasonably. From

Supplementary Table 3, it can be seen that when the g value is 2, the
model performs optimally.
3.6 Ablation experiments

In this subsection, five sets of experiments are designed to

validate the high accuracy of the proposed network. The control

variable method is adopted to test the effectiveness of each module

in the network to extract leaf and disease.

As shown in Supplementary Table 4, the baseline for Test 1 is

UNet. For Test 2, the CE loss used in Test 1 is replaced with the

proposed weight compression loss. Tests 3 and 4, based on Test 2,

add the Res_CBAM module and the modified ASPP module,

respectively. Test 5 integrates Res_CBAM and revised ASPP, and

the loss function uses our proposed weight compression loss.

Comparing test 1 and test 2 it can be observed that the IoU of

leaves and diseases increased by 0.54% and 3.96% respectively, on

the test sets after using the weighted compression loss function. The

overall mPA and mean precision increased by 1.51% and 0.65%. It

can be seen that the imbalance in the proportion of leaf and disease

pixels can be effectively dealt with after using the weighted

compression loss. Comparison between Test 2 and Test 3, the

IoU of leaf and disease increased by 0.84% and 0.94%, and the

overall mPA and mean precision increased by 0.26% and 0.31%,

which shows that Res_CBAM improves the model’s ability to

express and perceive leaf and disease. Comparing Test 4 and Test

2, the last layer of the model is replaced with a modified ASPP, the

IoU for leaves and diseases increased by 1.31% and 1.38%, and the

overall mPA and mean precision increased by 0.38% and 0.54%. It

enables the model to integrate different scales of semantic

information and improves the adaptive ability of the network.

Test 5 was compared with Test 4 and Test 2. After adding

Res_CBAM and modified ASPP, the model’s IoU values for

leaves and diseases were higher than when only Res_CBAM or

ASPP were added.

Supplementary Figure 2 show the original and ground truth

images. The weight compression loss can be observed by comparing

Supplementary Figures 2C, D, which improves the extraction of

disease information. Based on the segmentation results of

Supplementary Figures 2E–G, the following conclusion can be

drawn: The model with the blend Res_CBAM and modified

ASPP module performs better in leaf and disease segmentation

extracted from the outdoor environment.
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To better understand the performance of the proposed model,

the model was validated on the test sets and the confusion matrix

was plotted, which can intuitively show the prediction results of the

classification model on each category. Supplementary Figure 3

presents the confusion matrix for the three types of pixel value

percentages, where it can be observed that the percentage of pixels

for the disease category is lower than that of the background and

leaves. In the confusion matrix, the disease category Ground Truth

was incorrectly predicted as leaves with 7.72% overall. It indicates

that there is still some difficulty in segmenting the small size of

the disease.

Supplementary Table 5 objectively shows the accuracy of the

proposed network in each category of pixels on the four disease test

sets. From Supplementary Table 5, it can be observed that the

Brown Spot segmentation metrics are higher than Alternaria

Blotch, Grey Spot, and Rust in all categories of pixels because

Brown Spot exists only in indoor environments without the

disturbance of outdoor environments. In contrast, Alternaria

Blotch and Grey Spot segmentation metrics are relatively low, not

only with the interference of background factors, but also with

smaller and more diseased pixels.
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3.7 Comparison of results for different
segmentation networks

To validate the performance of the proposed network for apple

leaf and disease segmentation in mixed environments, the results of

the proposed network were compared with those of other different

networks on the same datasets. FCN model (Gao and Lin, 2019),

SegNet mode (Badrinarayanan et al., 2017), PSPNet model (Zhu

et al., 2021), DeepLabv3+ model (Yuan et al., 2022), SwinUnet

model (Wang et al., 2022a), UTNet model (Gao et al., 2021), DFL-

UNet +CBAM model (Zhang et al., 2023), and TransUNet model

(Yan et al., 2023a) are selected as the comparison methods. The

above network architecture and proposed method are used to

compare the effects of leaf and diseases segmentation on the same

datasets. In the following experiment, we used five objective

evaluation indicators, including mIoU, mPA, mPrecision,

mRecall, and accuracy, to compare the performance of

segmentation of each method. As can be seen from Table 4, the

proposed network architecture has 87.15% IoU and 92.34% Recall

on disease segmentation. Table 4 demonstrate that the proposed

network, RAAWC-UNet, outperforms some mainstream
TABLE 4 Results of different segmentation networks on the ALDD test sets.

Model Categories IoU/(%) R/(%) P/(%) F1/(%) k

FCN Background 98.98 99.45 99.52 99.48

Leaf 96.33 98.37 97.89 98.12 0.9410

Disease 74.97 83.36 88.17 85.69

SegNet Background 99.43 99.64 99.78 99.70

Leaf 97.66 99.22 98.42 98.81 0.9238

Disease 81.26 85.96 93.70 89.66

PSPNet Background 99.36 99.67 99.69 99.67

Leaf 97.55 98.90 98.62 98.75 0.9643

Disease 82.00 88.34 91.95 90.10

ENet Background 99.14 99.52 99.61 99.56

Leaf 96.87 98.66 98.16 98.40 0.9218

Disease 78.22 85.43 90.27 87.78

Deeplabv3+ Background 99.44 99.70 99.74 99.71

Leaf 97.72 98.99 98.71 98.84 0.9635

Disease 82.25 88.73 91.85 90.26

Swin-UNet Background 97.77 98.58 99.16 98.86

Leaf 94.06 97.64 96.25 96.94 0.9182

Disease 79.15 87.26 89.48 88.35

UTNet Background 99.21 98.42 99.73 99.07

Leaf 94.59 99.09 98.15 98.61 0.9304

Disease 82.56 87.11 93.09 90.00

(Continued)
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segmentation networks including FCN, SegNet, PSPNet, ENet,

Deeplabv3+, Swin-UNet, UTNet, DFL-UNet +CBAM, and

TransUNet. It increased the IoU for leaf segmentation by 2.02%,

0.69%, 0.8%, 1.48%, 0.63%, 4.29%, 3.76%, 0.21%, and 7.68%.

Additionally, the IoU for disease segmentation increased by

12.18%, 5.89%, 5.15%, 8.93%, 4.9%, 8%, 4.59%, 0.83%, and 7.96%.

The precision of leaves and diseases increased by 1.15%, 0.62%,

0.42%, 0.88%, 0.33%, 2.79%, 0.89%, 0.03%, 6.14% and 6.03%, 0.5%,

2.25%, 3.93%, 2.35%, 4.72%, 1.11%, 0.53%, and 3.09% respectively.

The recall of leaves and diseases increased by 0.92%, 0.07%, 0.39%,

0.63%, 0.3%, 1.65%, 0.2%, 0.15%, 1.87% and 8.71%, 6.14%, 3.76%,

6.67%, 3.37%, 4.84%, 4.99%, 0.04%, and 6.28%, respectively. The
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RAAWC-UNet is higher than the above-mentioned other

network structures.

Figure 13 shows the impact of different segmentation models on

the segmentation of dense leaves and diseases in outdoor

environments. Figure 13A is a typical representation of leaf and

dense disease segmentation under complex backgrounds.

Figure 13B shows leaf and disease segmentation ground truth. As

shown in Figure 13C, FCN has the worst segmentation effect, only

large diseases can be segmented, and the edges of the leaves cannot

be segmented with the effect of the saw tooth of the original leaves.

Compared to Figures 13D, E, G, B, SegNet, PSPNet, and Deeplab v3

+ are unable to segment small diseases in dense areas. The
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FIGURE 13

Comparison of different methods for leaf and disease segmentation. (A) Original images. (B) Ground truth. (C) FCN. (D) SegNet. (E) PSPNet. (F) ENet.
(G) Deeplab v3+. (H) Swin-UNet. (I) UTNet. (J) DFL-UNet +CBAM. (K) TransUNet. (L) Proposed method.
TABLE 4 Continued

Model Categories IoU/(%) R/(%) P/(%) F1/(%) k

DFL-UNet +CBAM Background 99.15 99.62 99.32 99.46

Leaf 98.14 99.14 99.01 99.07 0.9647

Disease 86.32 92.06 93.67 92.85

TransUNet Background 96.07 97.01 99.00 97.99

Leaf 90.67 97.42 92.90 95.10 0.9020

Disease 79.19 85.82 91.11 88.38

RAAWC-UNet Background 99.59 99.77 99.82 99.79

Leaf 98.35 99.29 99.04 99.16 0.9788

Disease 87.15 92.10 94.20 93.13
frontie
The bold values are the maximum values of the comparison algorithm in the three categories.
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segmentation results of Figures 13F, K indicate that Enet and

TransUNet incorrectly segmented overlapping leaves in an

outdoor environment. As displayed in Figures 13H–J, Swin-UNet,

UTNet, and DFL-UNet +CBAM cannot effectively segment

wrinkles, wavy leaves, and diseases in dense areas. From

Figure 13L, it can be concluded that the proposed method is

better than other models for both leaf and disease segmentation

in outdoor environments.

Figure 14 shows a comparison of multiple segmentation

networks for leaves and diseases affected by water droplets.

Figure 14A is a typical representation of leaf and disease

segmentation under the influence of water droplets. Figure 14B

shows ground truth for leaf and disease segmentation. Comparison

of Figures 14C, D, F, J shows the poor effectiveness of FCN, SegNet,

ENet and DFL-UNet +CBAM segmentation of long strips of

disease. Figures 14H, I compared to Figure 14B show that

SwinUNet and UTNet have jagged tooth-like segmentation of

disease pixels. The comparison of disease segmentation between

Figures 14E, G, K with Figure 14B reveals that PSPNet, Deeplab v3

+, and TransUNet are not precise in segmenting water droplet-

affected diseases. From Figure 14L, it is clear that the proposed

method performs better than the other models in disease

segmentation for long strips and affected by water droplets.

Figure 15 shows the different segmentation models for leaf and

disease segmentation affected by light. Figure 15A presents a typical

schematic of leaf and disease segmentation under the influence of

light. Figure 15B demonstrates the ground truth for leaf and disease

segmentation. Figure 15C FCN has the worst results, the leaves do

not have the megadentate shape of the ground truth, and
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Figures 15D, H illustrate the poor segmentation of large disease

pixels in SegNet and SwinUNet under the influence of light.

Figures 15E, F, I, J exhibit the inability of PSPNet, ENet, UTNet

and DFL-UNet +CBAM to accurately segment small diseases in

dense areas affected by light. Figures 15G, K show that Deeplab v3+

and TransUNet incorrectly segmented the leaf pixels, and

Figure 15L displays that the proposed network segmented the leaf

pixels relatively well compared to the other networks under the

influence of light.

The objective results of different segmentation networks on the

ALDD test sets show that the proposed network has better

segmentation ability for leaves and diseases than other models in

various complex environments.
3.8 Evaluation metrics for different
segmentation networks within
multiple scenarios

To further validate the performance of the proposed model and

other comparative algorithms for segmentation of background, leaf

and disease in different scenarios, the experiments are conducted

with FCN, SegNet, PSPNet, ENet, Deeplabv3+, Swin-UNet, UTNet,

DFL-UNet+CBAM, TransUNet, and the proposed RAAWC-UNet

on both indoor and outdoor scenarios with Alternaria blotch,

Brown spot, Grey spot and Rust.

Supplementary Table 6 objectively shows the mIoU and mPA of

the above 10 segmentation algorithms on the test sets with 7

scenarios. As a whole, the two objective indicators of our
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FIGURE 14

Comparison of multiple segmentation networks for leaves and diseases affected by water droplets. (A) Original images. (B) Ground truth. (C) FCN.
(D) SegNet. (E) PSPNet. (F) ENet. (G) Deeplab v3+. (H) Swin-UNet. (I) UTNet. (J) DFL-UNet +CBAM. (K) TransUNet. (L) Proposed method.
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proposed model surpass those of other models, which demonstrates

the superiority of our model. In addition, it is worth noting that due

to the dense and widespread occurrence of Grey spot, the

segmentation performance of the proposed RAAWC-UNet is

comparatively the poorest among the various types of diseases.

However, it is still higher than that of the other algorithms

mentioned above in Grey spot segmentation.
4 Conclusions

In this study, the proposed RAAWC-UNet was developed for

segmenting apple and leaf diseases in mixed environments by

incorporating ASPP, fusing residual and CBAM modules into

UNet with weight compression loss. RAAWC-UNet performs

outstandingly in disease segmentation compared to other leaf and

disease segmentation networks. The Res_CBAM module effectively

captures features at different levels while integrating channel and

spatial information. It not only enriches contextual information but

also enhances the model’s perceptual capabilities, addressing the

issue of foreground and background pixel imbalance. The ASPP

module adapts by utilizing different dilation rates, flexibly adjusting

the convolution kernel’s perceptual field to accommodate various

leaf and disease pixel sizes. The weight compression loss helps with

fast convergence early in the model training. The proposed method

is better than most of the segmentation algorithms, and the model

presents superior performance especially when dealing with small

size and diverse disease segmentation tasks.
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Compared with some commonly used networks, the model has

lower computational complexity and fewer parameters. While, its

computational complexity and parameter quantity are slightly higher

in comparison of some lightweight networks. However, the model was

better at the task of segmenting leaves and diseases when dealing with

factors such as light and water droplets in outdoor environments.

In addition, the following research direction will focus on

expanding the scope of data collection and considering various

harsh environmental conditions, such as fog, rain and frost, to

further study the impact of these environments on the performance

of the model. Eventually, we are committed to research on model

optimization to meet the needs of resource constrained

environments. This effort will further promote the research and

development of smart agriculture.
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