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Wild emmer (Triticum turgidum ssp. dicoccoides) genotypes were studied for their

high-nutritional value and good tolerance to various types of stress; for this reason,

several QTL (quantitative trait loci) studies have been conducted to find favorable

alleles to be introgressed into modern wheat cultivars. Given the complexity of the

QTL nature, their interaction with the environment, and other QTLs, a small number

of genotypes have been used in wheat breeding programs. Meta-QTL (MQTL)

analysis helps to simplify the existing QTL information, identifying stable genomic

regions and possible candidate genes for further allele introgression. The study aimed

to identify stable QTL regions across different environmental conditions and genetic

backgrounds using the QTL information of the past 14 years for different traits in wild

emmer based upon 17 independent studies. A total of 41 traits were classified as

quality traits (16), mineral composition traits (11), abiotic-related traits (13), and

disease-related traits (1). The analysis revealed 852 QTLs distributed across all 14

chromosomes of wild emmer, with an average of 61 QTLs per chromosome. Quality

traits had the highest number of QTLs (35%), followed by mineral content (33%),

abiotic-related traits (28%), and disease-related traits (4%). Grain protein content

(GPC) and thousand kernel weight (TKW) were associated with most of the QTLs

detected. A total of 43 MQTLs were identified, simplifying the information, and

reducing the average confidence interval (CI) from 22.6 to 4.78 cM. These MQTLs

were associated with multiple traits across different categories. Nine candidate genes

were identified for several stable MQTLs, potentially contributing to traits such as

quality,mineral content, and abiotic stress resistance. These genes play essential roles

in various plant processes, such as carbohydrate metabolism, nitrogen assimilation,

cell wall biogenesis, and cell wall extensibility. Overall, this study underscores the

importance of consideringMQTL analysis in wheat breeding programs, as it identifies

stable genomic regions associated with multiple traits, offering potential solutions for

improving wheat varieties under diverse environmental conditions.
KEYWORDS

meta-QTL analysis, QTL, wild emmer, quality traits, mineral composition, abiotic-
related traits, disease-related traits
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1 Introduction

Due to the domestication process and systematic breeding

selection, the genetic variability of bread wheat (Triticum

aestivum L.) and durum wheat (Triticum turgidum L. ssp. durum)

is relatively small compared to the diversity found in their tetraploid

progenitor wild emmer (Triticum turgidum ssp. dicoccoides; 2n = 4x

= 28 chromosomes; AB-genomes) (Abbo et al., 2014; Golan et al.,

2015). Historically, yield and yield components have been the main

selection criteria in breeding programs for any staple crop,

including wheat. Generally, there is a negative correlation among

yield components and quality traits (Blanco et al., 2012). In fact,

some studies have found that durum and bread wheat decreased

over selection time in grain protein content (GPC) (Subira et al.,

2014), mineral content (Cakmak et al., 2010), and resistance to

abiotic and biotic stressors in favor of higher yields, test weight, and

thousand kernel weight (TKW) (Peng et al., 2011). Due to the

impacts of climate change and the environmental effect on various

traits, it is imperative to incorporate tolerance to environmental

stressors and diseases into breeding programs, particularly for crops

such as wheat. This necessity extends to the inclusion of crops that

are both healthier and more nutritious while also avoiding intensive

production practices (Longin et al., 2016).

Because of its nutritional values and tolerance to abiotic and

biotic stressors, wild emmer has been used as an alternative crop for

the introgression of favorable alleles into modern wheat genotypes,

expanding the genetic diversity within ongoing wheat breeding

programs (Cakmak et al., 2004; Kuznetsova et al., 2019),

particularly in the cultivation of the crop under adverse

environmental conditions (Beres et al., 2020). The introgression

of specific wild emmer genes into modern wheats has been carried

out for the principal traits important for breeders, the food industry,

and the consumers (Merchuk-Ovnat et al., 2016a, 2017; Kumar

et al., 2020; Liu et al., 2021). Joppa and Cantrell (1990) identified the

first QTL (quantitative trait loci) for GPC in wild emmer lines “FA-

15-3” and “F-28-8-3” from Israel, called Gpc-B1 on chromosome

6B. This genetic locus increased the overall GPC to 18%, 2% higher

than the GPC in the recurrent durum wheat parent “Langdon”

(LDN), which had 16.8% (Joppa et al., 1991). The gene Gpc-B1

encodes for a NO APICAL MERISTEM-B1 (NAM-B1), which

increases nutrient remobilization from leaves to grains related to

the final GPC and mineral composition. However, it was not

functional in modern wheat cultivars (Uauy et al., 2006; Avni

et al., 2014). Since the discovery of Gpc-B1, several other QTLs

have been identified; for example, Peleg et al. (2009a) and Fatiukha

et al. (2019) mapped several QTLs associated with plant

productivity and drought-adaptive traits in a RIL population

derived from a cross between durum wheat (LDN) and wild

emmer (“G18-16”). Subsequently, some of these wild QTLs were

introgressed from G18-16 into an elite Israeli durum material

(“Uzan”) on chromosomes 1B and 2B and bread wheat (“Bar

Nir” and “Zahir”) on chromosome 7A via marker-assisted

selection. The introgressed QTL improved grain yield, biomass,

photosynthetic capacity, and root development across different

environments, particularly under drought conditions (Merchuk-

Ovnat et al., 2016a, b, 2017).
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Several studies have identified QTLs in wild emmer in different

mapping populations and environments. Meta-QTL (MQTL) analysis

developed by Goffinet and Gerber (2000) is an alternative to (i)

facilitate the compilation of information regarding consensus QTLs,

narrowing the QTL regions for a particular trait across different

environments and genetic backgrounds; (ii) allow the study of many

traits at once defining their reliable location and effects across different

genetic backgrounds and environments determining the molecular

markers valuable for marker-assisted selection (MAS) (Goffinet and

Gerber, 2000; Khahani et al., 2021; Soriano et al., 2021); (iii) allow the

identification of QTLs that have pleotropic effects by determining

regions of the genome (MQTL) that contain QTLs for different traits

(Said et al., 2013); (iv) the given MQTL information has been used for

candidate genes detection and for future cloning of the genes

(Colasuonno et al., 2021; Saini et al., 2021).

Meta-QTL analysis has been successfully performed in bread

wheat for yield and related traits (Zhang et al., 2010; Liu et al., 2020;

Miao et al., 2022; Saini et al., 2022a), grain quality traits (Tyagi et al.,

2015), mineral content (Singh et al., 2022), fusarium head blight

(FHB) resistance (Löffler et al., 2009; Venske et al., 2019; Saini et al.,

2022b), and abiotic resistance (Xu et al., 2017; Guo et al., 2023). In

durum wheat, MQTL has been conducted for yield and related traits

(Arriagada et al., 2022); quality traits, abiotic and biotic stressors

(Soriano et al., 2021); pasta making quality (Roselló et al., 2018); GPC

(Saini et al., 2022c); and ortho-MQTL analysis for quality traits

(Marcotuli et al., 2022). To the best of our knowledge, the onlyMTQL

study performed using wild emmer was carried out by Avni et al.

(2018) for grain weight. However, no MQTL studies have been

conducted using different quality traits, mineral composition,

abiotic stressors, or diseases such as FHB in wild emmer.

Considering the helpful information that can be obtained from

MQTL analysis from wild emmer grown in different environments,

the aim of the study was to examine all the existing QTL information

published in the last 14 years in different environments regarding

agronomical and chemical quality traits, mineral composition,

abiotic-related traits, and diseases-related traits to identify MQTL

regions and candidate genes in wild emmer that can be further used

in modern wheats breeding programs in the world.
2 Materials and methods

The MQTL analysis for quality traits, mineral composition

traits, abiotic-related traits, and disease-related traits involved

three main steps: first, a complete compilation of all QTL data

associated with quality, mineral composition, abiotic, and diseases

already reported for wild emmer. A list of traits that belongs to each

category is reported in Table 1. Second, the creation of a consensus

map where the QTLs previously collected from the literature were

projected. Third, the MQTL identification through MQTL analysis.
2.1 Data collection and consensus genetic
map construction

A comprehensive bibliographic search on the Web of Science,

Google Scholar, and PubMed was conducted to find the QTL
frontiersin.org

https://doi.org/10.3389/fpls.2024.1305196
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Cabas-Lühmann et al. 10.3389/fpls.2024.1305196

Frontiers in Plant Science 03
studies associated with quality traits, mineral composition traits,

abiotic-related traits, and diseases in wild emmer. At the end of an

exhaustive search, a total of 17 independent studies from 2009 to

2022 that included F2 mapping populations, recombinant inbred

lines (RILs), recombinant inbred chromosome lines (RICs), and

backcross (BC) were used. The selected QTL studies must contain

the following:
i. a map for the population that includes the wild emmer

parental wheat information

ii. the position of QTL, such as peak position (Pos) and CIs

iii. logarithm of the odds score (LOD) for each QTL

iv. phenotypic variance percentage for each QTL (PVE or r2)
Any QTL study that did not meet these criteria was not

considered in our work. The only disease that met the analysis

requirements was FHB; therefore, it was the only trait considered in

this category.

From the studies, 41 traits were identified. The number of traits

per category was 16 for quality traits, 11 for mineral composition

traits, 13 for abiotic-related traits, and one for disease-related traits.

The name of each trait per category and the number of QTLs per

trait are included in Table 1. The studies and the QTLs used are

available in Table 2. The environmental information per study is in

the Supplementary Table 1.
TABLE 1 Abbreviations and numbers of QTLs for quality, mineral
composition, abiotic, and disease-related traits categories reported in
the QTL studies for wild emmer.

Category Trait Abbreviation
Number
of QTLs

Quality

Grain yield GY 14

Harvest index HI 44

100 kernel weight HKW 2

Kernel length KL 6

Kernel number
per spike KNPS 9

Spike dry matter SDM 18

Rachis fragility
(% shattering) SHT 2

Spike length SL 21

Length
spikelets internode SL/TSN 2

Spikelet number
per spike SNS 15

Number of spikelets
with one fertile floret STSP 1

Tiller number TN 4

Total dry matter TDM 6

Thousand
kernel weight TKW 58

Vegetative dry matter VDM 7

Grain protein content GPC 89

Mineral
content

Grain
aluminium
concentration GAIC 2

Grain
calcium concentration GCaC 25

Grain
copper concentration GCuC 49

Grain
iron concentration GFeC 31

Grain
potassium
concentration GKC 13

Grain
magnesium
concentration GMgC 33

Grain
manganese
concentration GMnC 8

Grain
phosphorus
concentration G_P_C 26

Grain
sulfur concentration GSC 54

GSeC 13

(Continued)
TABLE 1 Continued

Category Trait Abbreviation
Number
of QTLs

Grain
selenium concentration

Grain
zinc concentration GZnC

26

Abiotic-
related traits

Awn length AL 7

Chlorophyll content CHL 31

Carbon isotope ratio CIR 36

Culm length CL 28

Days from heading
to maturity DFHM 26

Days from planting
to heading DFPH 22

Flowering date FD 1

Flag leaf length FLL 9

Flag leaf rolling index FLRI 42

Flag leaf width FLW 22

Osmotic potential
at heading OPH 16

Plant height PH 1

Spike compactness SC 2

Disease-
related traits Fusarium head blight FHB 31
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Each QTL was treated as independent, even if some of them

were detected in multiple environments or genetic backgrounds. If

the CI (95%) for the QTL was not reported, it was calculated using

the following equations described by Guo et al. (2006):

CI (cM) = 163 ÷ (N � R2) for RILs

CI (cM) = 530 ÷ (N � R2)BC and F2 lines

where N is the population size and R2 is the proportion of the

phenotypic variance explained by the QTL.

The collected genetic maps containing their chromosomes,

markers, and positions in cM were integrated individually onto

the durum wheat reference map developed by Maccaferri et al.

(2015). Maccaferri’s map consisted of 30,144 markers spanning

2,631 cM with 11 markers per cM density. The consensus map was

constructed using BioMercator 4.2.3 software (Arcade et al., 2004).
2.2 Projection of QTL and meta-
QTL analysis

The original QTL data from the 17 studies were projected

individually onto the created consensus map by following the
Frontiers in Plant Science 04
homothetic approach described by Chardon et al. (2004). A total

of 14 studies were projected, followed by the MQTL analysis that

was performed per chromosome using the BioMercator V4.2.3

software (Arcade et al., 2004). If the QTL number per

chromosome was higher than 10, the Veyrieras algorithm

available in the software was used for the MQTL analysis

(Veyrieras et al., 2007). The first part of the Veyrieras algorithm

indicated the number of MTQL models generated by different

criteria. The criteria were the Akaike Information Criterion

(AIC), the corrected AIC (AICc), the modified AIC with factor 3

(AIC3), the Bayesian Information Criterion (BIC), and the Average

Weight of Evidence (AWE). The best MQTL model was selected

based on the lowest number in at least three of the five criteria

(Soriano and Alvaro, 2019). Conversely, if the QTL number per

chromosome was ≤ 10, the Goffinet and Gerber approach was

performed for the MQTL analysis (Goffinet and Gerber, 2000). The

final identification of the number of MQTL per chromosome was

based on a delta value ≥ 0.9 value in at least two studies.
2.3 Identification of candidate genes

Gene annotations for the most important marker-trait associations

(MTAs) were performed using the high-confidence genes reported for
TABLE 2 Summary of the QTL studies used for the MQTL analysis for different traits in wild emmer.

Reference Trait N QTLs Pop size Env WE #acc Pop type

Avni et al. (2018) TKW 7 137 4 “Zavitan” RILs

Buerstmayr et al. (2012) FHB, AL, FD, SC 8, 7, 1, 2 134, 129,126 4 “Td161” BC

Buerstmayr et al. (2013) FHB 8 103 4 “Mt. Gerizim #36” BC

Chen et al. (2021) TN 4 116 4 “WE34021” RILs

Deblieck et al. (2022) HI, TKW, SNS, SL 1, 1, 2, 1 150 4 “G18-16” RILs

Fatiukha et al. (2019) GPC, TKW 46, 19 208 5 “Y12-3” RILs

Fatiukha et al. (2020)
G_P_C, GAlC, GCaC, GCuC, GFeC,
GKC, GMgC, GPC, GSC, GZnC 11,2,12,31,15,9,24,23,29,12 150 3 “G18-16” RILs

Fatiukha et al. (2021)

CHL, CIR, CL, DFHM, DFPH, FLL,
FLRI, FLW, GY, HI, KNPS, OPH,
SDM, SL, TKW, VDM 19, 26, 6, 8,6,9,10,22,6,16,5,4,8,19,20,7 150 2 “G18-16” RILs

Garvin et al. (2009) FHB 15 99 3 “Israel A” RICs

Mo et al. (2021) SNS 13 121 8 “LM001” RILs

Peleg et al. (2009a)
G_P_C, GCaC, GCuC, GFeC, GKC,
GMgC, GPC, GSC, GZnC 15,12,18,13,4,18,20,25,13 152 3 “G18-16” RILs

Peleg et al. (2009b)
CHL, CIR, CL, DFHM, DFPH,
FLRI, GY, HI, OPH, SDM, TDM 12,10,22,18,16,32,8,23,12,10,6 152 2 “G18-16” RILs

Peleg et al. (2011) HI, KNPS, TKW 4,4,11 152 2 “G18-16” RILs

Thanh et al. (2013) HKW, PH, SHT, SL/TSN, SL, STSP 2,1,2,2,1,1 144 1 “DCC63” F2

Velu et al. (2017) GFeC, GZnC 3,1 105 3 “MM 5/4” RILs

Yan et al. (2018) GseC 13 152 3 “G18-16” RILs

Zhou et al. (2021) KL 6 121 6 “LM001” RILs
f

Env, environment; N, number; Pop, population; WE #acc, wild emmer accessions.
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the wheat genome sequence (Svevo browser), available at https://

wheat.pw.usda.gov/GG3/jbrowse_Durum_Svevo. The marker locations

were defined by flanking marker positions and the CI of the MQTL.
3 Results

3.1 Features for the studied QTLs under
diverse growing environments

The 17 studies comprised 19 biparental populations and ten

wild emmer accessions. In our study, only the QTLs belonging to

the wild emmer parent were used. A total of 852 QTLs, distributed

across all 14 chromosomes (A and B genomes) of wild emmer, for

the 41 selected traits were collected (Table 2). The number of QTLs

ranged from 24 on chromosome 1B to 96 on chromosome 5A,

averaging 61 QTLs per chromosome (Figure 1A). Overall, quality

was the category with the highest number of QTLs, representing

35% (298 QTLs), followed by mineral content with 33% (280

QTLs), abiotic-related traits with 28% (243 QTLs), and disease-

related traits with 4% (31 QTLs) (Figure 1B). GPC was the trait with

the largest number of QTLs (86), followed by TKW (58

QTLs) (Table 1).

The PVE for each QTL ranged from 0.001 to 0.63, with an

average of 0.08 (Figure 1C). Per category, the PVE ranged as follows:

abiotic-related traits from 0.001 to 0.46; disease-related traits from

0.02 to 0.26; mineral content from 0.005 to 0.24; and quality from

0.006 to 0.63 (Supplementary Figure S1). A total of 94%, 74%, 99%,

and 95% of the QTLs for abiotic-related traits, disease-related traits,

mineral content, and quality had PVE ≤ 0.20, respectively.

The CIs ranged from 0.1 to 234.5 cM, with an average of 22.6 cM.

A total of 529 QTLs, corresponding to 62% of the studied QTLs, were

located between 0.1 and 22.6 cM (Figure 1D). Of those 529 QTLs, 144

corresponded to abiotic-related traits, 23 to disease-related traits, 164

to mineral content, and 205 to quality (Supplementary Figure S2).
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3.2 Projection of the QTLs on the
consensus map

The projection of the QTLs was made using the 17 studies

collected previously indicated; however, only 14 studies were

projected. Of the 852 QTLs available, only 712 were successfully

projected on the consensus map (Figure 2); the remaining 140 QTLs

could not be projected. According to Soriano and Alvaro (2019), the

lack of projection is due to a low PVE between the QTLs, causing a

larger CI and/or the absence of markers between the original map

and the consensus map. The number of QTLs per chromosome

ranged from 15 on chromosome 6A to 81 on chromosome 5B

(Figure 3A). The trait with the most significant number of projected

QTLs was GPC, with 85 QTLs representing 12% of the total QTLs.

Plant height (PH), spike compactness (SC), and number of spikelets

with one fertile floret (STPS) had the lower number of QTLs

projected, with 1 QTL per trait, representing 0.14%, respectively

(Supplementary Table S2). The category mineral content had the

highest number of QTLs projected with 38%, followed by quality,

abiotic-related traits, and disease-related traits with 34%, 23%, and

3.9%, respectively (Figure 3B).

The consensus map included 31,723 markers, covering a length

of 2,879.1 cM. For each chromosome, the size of the genetic map

ranged from 131.2 cM on chromosome 6A to 359.0 cM on

chromosome 5B. In addition, the number of markers ranged from

1,455 in chromosome 4B to 3,421 in chromosome 2B, with an

average of 2,266 marker per chromosome (Supplementary Table S3).
3.3 Meta-QTLs detected for all
studied traits

Of the total 712 projected QTLs, only 395 QTLs were grouped

into 43 MQTLs, which significantly reduced the total number of

projected QTLs (43 MQTLs correspond to equal 11% of 395 QTLs).
B

C D

A

FIGURE 1

Number of QTLs per: (A) chromosome, (B) trait category, (C) PVE, (D) confidence interval based on 852 collected QTLs.
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The remaining 317 QTLs could not be assigned to any MQTL,

staying as a single QTL. This could happen because the predicted

peaks were not included in any MQTL or the CI was too large. The

number of MQTLs ranged from 2 in chromosomes 3B, 4A, 4B, 6A,

and 7B to 5 in chromosomes 2A and 5A, with an average of 3.1

MQTLs per chromosome. dicoccoides_MQTL_7A.2 was the

MQTL with the highest number of QTLs associated (37 QTLs)

vs . dicoccoides_MQTL_1B.2 , dicoccoides_MQTL_3B.2 ,

dicoccoides_MQTL_5B.2 , dicoccoides_MQTL_6A.2 , and

dicoccoides_MQTL_7A.1 with the lowest number of QTLs

associated (3 QTLs).

Each MQTL was linked to at least one specific trait. For

instance, dicoccoides_MQTL_5A.1 and dicoccoides_MQTL_7A.1

were associated with GPC and spike dry matter (SDM),
Frontiers in Plant Science 06
respectively. Notably, dicoccoides_MQTL_7A.2 exhibited

associations with ten distinct traits, as detailed in Table 3.

In the overall analysis, three of the 43 MQTLs were identified with

associations to FHB on chromosomes 2A, 6A, and 6B, specifically

dicoccoides_MQTL_2A.1 , dicoccoides_MQTL_6A.1 , and

dicoccoides_MQTL_6B.2. Furthermore, a subset of four MQTLs out of

the total 43 were exclusively associated with quality traits,

distributed across chromosomes 2A, 5A, and 7A. Examples

include dicoccoides_MQTL_2A.4, dicoccoides_MQTL_2A.3,

dicoccoides_MQTL_5A.1, and dicoccoides_MQTL_7A.1. Similarly,

two MQTLs, specifical ly dicoccoides_MQTL_2B.3 and

dicoccoides_MQTL_5A.5, associated solely with abiotic-related traits

within chromosomes 2B and 5A. Notably, 26 out of the 43 MQTLs

associated with mineral content and they also showed connections to
FIGURE 2

Distribution of the QTLs projected through 14 chromosomes in wild emmer for quality traits (red bars), mineral content (yellow bars), abiotic-related
traits (green bars) and fusarium head blight (blue bars).
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B

A

FIGURE 3

Number of projected QTLs per: (A) chromosome and (B) trait category.
TABLE 3 Characterization of the detected MQTLs for different traits in wild emmer.

MQTL Chr
Position
(cM)

CI
(95%)

N
QTLs

N
studies

Left
marker

Right
marker Traits

dicoccoides_MQTL_1A.1 1A 42.79 6.56 7 3 gwm111 IWA1803 GCaC, GFeC, FLRI

dicoccoides_MQTL_1A.2 1A 60.04 7.26 7 2 IWB53606 IWB48157 GPC, CIR

dicoccoides_MQTL_1A.3 1A 86.88 1.75 5 2 IWB9711 IWB279 G_P_C, TKW, GCaC, HI

dicoccoides_MQTL_1A.4 1A 114.91 5.34 6 2 IWA2404 IWB58389 GKC, TKW

dicoccoides_MQTL_1B.1 1B 28.16 1.99 6 2 barc119 IWA2577 DFPH, HI, KNPS

dicoccoides_MQTL_1B.2 1B 78.83 15.66 3 2 IWB35930 IWB7112 GFeC, TKW

dicoccoides_MQTL_1B.3 1B 135.28 28.75 5 2 IWA3497 IWB31755 GSeC, CHL

dicoccoides_MQTL_2A.1 2A 106.59 0.97 4 2 IWB7658 IWB8175 FHB, OPH

dicoccoides_MQTL_2A.2 2A 114.57 1.49 8 2 wPTt-8216 IWB16917 GMgC, GPC

dicoccoides_MQTL_2A.3 2A 139.34 3.68 5 2 IWB32349 IWB65467 TKW, GSC

(Continued)
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TABLE 3 Continued

MQTL Chr
Position
(cM)

CI
(95%)

N
QTLs

N
studies

Left
marker

Right
marker Traits

dicoccoides_MQTL_2A.4 2A 161.03 9.35 7 3 IWA3629 SBG_188821 GKC, TKW

dicoccoides_MQTL_2A.5 2A 177.72 0.5 5 2 wPt-3865 IWB65261 FLRI, SHT

dicoccoides_MQTL_2B.1 2B 50.99 2.78 11 3 IWB71313 gwm429 HI, TKW,CL

dicoccoides_MQTL_2B.2 2B 123.8 2.89 5 3 IWA6453 IWB29225 GCuC, TKW, GPC

dicoccoides_MQTL_2B.3 2B 146.73 2.27 4 2 IWB2073 IWB41405 DHFM, DFPH

dicoccoides_MQTL_2B.4 2B 156.7 1.52 8 2 IWA8449 IWA3478 GFeC, GMgC, GZnC, FLW

dicoccoides_MQTL_3A.1 3A 50.3 0.95 9 3 SBG_138668 IWA2898 GSC, PH, TKW

dicoccoides_MQTL_3A.2 3A 74.35 2.31 10 3 IWA5164 IWB69857 GMgC, GMnC, GPC

dicoccoides_MQTL_3A.3 3A 100.25 1.54 7 2 IWB35484 IWB73344 CIR, GSC

dicoccoides_MQTL_3B.1 3B 85.86 10.46 9 2 IWB40525 IWB52023 CL, OPH, GPC, GZnC, GMnC

dicoccoides_MQTL_3B.2 3B 198.7 8 3 2 IWB71781 IWB10839 FLW, GFeC

dicoccoides_MQTL_4A.1 4A 38.36 1.65 9 2 IWA4321 IWB34953 CHL, HI, GPC

dicoccoides_MQTL_4A.2 4A 131.23 3.75 31 4 IWB14913 wmc718
GCaC, GCuC, GPC, G_P_C, GSC, SDM,
DFHM, GZnC

dicoccoides_MQTL_4B.1 4B 16.38 3.14 13 2 IWB63596 WB34526 GFeC, GPC, GKC, CHL, GCuC

dicoccoides_MQTL_4B.2 4B 78.98 10.14 5 2 IWA6197 IWB32903 DFPH, FLL, G_P_C

dicoccoides_MQTL_5A.1 5A 35.99 5.11 8 2 IWB31441 IWB30321 GPC

dicoccoides_MQTL_5A.2 5A 48.93 3.65 18 2 IWB59189 IWB14724 DFPH, FLL, GFeC, SL, CL, FLRI

dicoccoides_MQTL_5A.3 5A 106.33 11.09 5 2 IWA6573 WB2066 CIR, TKW

dicoccoides_MQTL_5A.4 5A 142.55 7.03 5 3 IWB3132 SBG_143269 CL, GPC, GSC, HI

dicoccoides_MQTL_5A.5* 5A 190.41 0.01 6 2 IWA7162 IWB12799 CIR, DFHM, SC

dicoccoides_MQTL_5B.1 5B 52.54 0.23 25 7 IWA7227 IWA5280
GCaC, GCuC, GSC, GSeC, GPC, HKW,
TKW, STSP, FLRI

dicoccoides_MQTL_5B.2 5B 123.74 4.8 3 2 IWB40925 barc337 GSC, HI

dicoccoides_MQTL_5B.3 5B 142.43 4.11 11 2 IWB63594 kbo_0309 FLW, CHL, GSC, GMgC, DFHM

dicoccoides_MQTL_6A.1 6A 59.32 0.69 5 3 IWB51739 IWB66638 FHB, TKW

dicoccoides_MQTL_6A.2 6A 84.95 4.31 3 2 IWB9445 IWB4417 CHL, GPC

dicoccoides_MQTL_6B.1 6B 52.19 3.48 12 2 gwm518 barc68 GAlC, GPC, GSC

dicoccoides_MQTL_6B.2 6B 74.40 0.17 6 3 IWA5966 IWB56000 CIR, CL, FHB, GPC, HI

dicoccoides_MQTL_6B.3 6B 140.58 1.51 9 3 IWB62788 IWB8526 CHL, GCaC, GFeC, GMgC

dicoccoides_MQTL_7A.1 7A 59.6 16.59 3 2 SBG_116368 IWA472 SDM

dicoccoides_MQTL_7A.2 7A 132.57 2.5 37 5 IWA7089 IWB45735
CHL, CL, FLW, GCuC, GFeC, GSC, GZnC,
GPC, SL, TKW

dicoccoides_MQTL_7A.3 7A 170.72 5.48 4 2 IWB39743 wPt-5558 GPC, DFHM

dicoccoides_MQTL_7B.1 7B 8.5 0.59 17 2 IWB26957 IWB71139 CL, DFHM, GY, KNPS, HI, TKW, SDM

dicoccoides_MQTL_7B.2 7B 95.98 1.15 10 4 IWA449 IWB56558 GSeC, GZnC, SL, TKW

dicoccoides_MQTL_7B.3 7B 129.11 3.02 15 3 IWB23685 IWB24797 GPC, GMgC, GSC
F
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*The flanking markers, while being the closest ones to dicoccoides_MQTL_5A.5, were situated outside the defined boundaries of the MQTL; Chr, chromosome; CI, confidence interval;
N, number.
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one or more quality traits and abiotic-related traits, as outlined

in Table 3.

The detected MQTLs exhibited a range of average CI (95%),

from 0.01 cM for dicoccoides_MQTL_5A.5 to 28.75 cM for

dicoccoides_MQTL_1B.3, with an overall mean of 4.78 cM (as

shown in Table 3). Interestingly, this average was 4.7 times

smaller than the initial average CI of 22.6 cM. The genomic

region delineated for dicoccoides_MQTL_5A.5 (CI: 0.01 cM)

exhibited an association with six QTLs originating from distinct

studies, one conducted by Buerstmayr et al. (2012) and the other by

Fatiukha et al. (2021), as well as two wild emmer accessions

(Table 2). Notably, these QTLs exclusively pertained to traits

categorized as abiotic related, specifically the carbon isotope ratio

(CIR), days from heading to maturity (DFHM), and SC. It is

noteworthy that the flanking markers associated with these QTLs

were situated external to the defined MQTL region (Table 3). No

discernible genetic associations with genes were identified in

proximity to these markers.

Per chromosome, the average CI ranged from 1.57 cM in

chromosome 7B to 15.47 cM in chromosome 1B.
3.4 Candidate genes

Using the genomic sequences located in the breeding QTL from

“Svevo,” nine candidate genes correlated to MQTL were identified

(Table 4). The flanking markers were aligned with the genome

browsers for both Svevo (durum wheat) reference genome,

accessible at https://iwgs.org/, and after excluding transposable

elements, a total of 25 genes were identified.

The MQTLs that were associated with candidate genes were

located on chromosomes 1A, 2A, 4A, 4B, 6B, and 7B (Table 4). In the

case of chromosome 1A, three MQTLs were associated with genes. In

detail, dicoccoides_MQTL_1A.1 was associated with beta-1,3-

galactosyltransferase, dicoccoides_MQTL_1A.2 was associated with

glycosyltransferase STELLO2, and dicoccoides_MQTL_1A.4 was

associated with SUPPRESSOR OF PHYA-105 1-like. The

chromosome has associated the dicoccoides_MQTL_2A.4 with the

kinesin-like protein KIN-14I and the dicoccoides_MQTL_2A.5
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cysteine-rich receptor-like protein kinase (CRK) 10. The MTQL for

chromosomes 4A, 4B, 6B, and 7B were associated with one gene each.
4 Discussion

4.1 The significance of considering
MQTL analysis

In recent years, various studies have been conducted on modern

wheats, particularly bread wheat, to identify new genetic locations

associated with different quality parameters. These parameters

include yield and related traits (Maccaferri et al., 2019; Arriagada

et al., 2020; Gupta et al., 2020), protein content (Saini et al., 2022c),

mineral content (Fatiukha et al., 2020), abiotic-related traits (Bhusal

et al., 2018), and biotic-related traits such as FHB (Zhang et al.,

2022). Nevertheless, research indicates that intensive breeding

practices in modern wheats have led to increased productivity at

the expense of diminished nutritional value, protein content, and

resistance or tolerance to abiotic and biotic stressors (Cakmak et al.,

2010; Peng et al., 2011; Cabas-Lühmann et al., 2023). Various QTL

studies were conducted, showing the substantial nutritive value and

stress tolerance conferred by wild emmer. These studies primarily

aimed to identify alleles or markers associated with nutritional

value, particularly concerning iron and zinc content (Peleg et al.,

2009a; Liu et al., 2021), protein content (Fatiukha et al., 2019), and

tolerance or resistance to abiotic (Peleg et al., 2005) and biotic

stressors (Huang et al., 2016). Some of these QTLs have been used

in wheat breeding programs to enhance the genotypes by

introducing alleles that broaden their genetic diversity, thereby

improving nutritional content, protein content, and resistance or

tolerance to stressors (Kumar et al., 2018; Fatiukha et al., 2019;

Kuznetsova et al., 2019; Cabas-Lühmann et al., 2023). However,

despite all these studies on QTLs, wheat breeding programs have

used only a limited subset of those genetic resources (Cobb et al.,

2019). This limited adoption is primarily because the expression of

these QTLs is greatly affected by the environment, the genotype by

environment interactions, the mapping population type, and the

statistical method used for the QTL identification (Sandhu et al.,
TABLE 4 Selected candidate genes per MQTL.

MQTL Chr Position (cM) Traits Genes

dicoccoides_MQTL_1A.1 1A 42.79 GCaC, GFeC, FLRI beta-1,3-galactosyltransferase

dicoccoides_MQTL_1A.2 1A 60.04 GPC, CIR glycosyltransferase STELLO2

dicoccoides_MQTL_1A.4 1A 114.91 GKC, TKW SUPPRESSOR OF PHYA-105 1-like

dicoccoides_MQTL_2A.4 2A 161.03 GKC, TKW kinesin-like protein KIN-14I

dicoccoides_MQTL_2A.5 2A 177.72 FLRI, SHT cysteine-rich receptor-like protein kinase 10

dicoccoides_MQTL_4A.1 4A 38.36 CHL, HI, GPC alpha-L-fucosidase 2-like

dicoccoides_MQTL_4B.1 4B 16.38 GFeC, GPC, GKC, CHL, GCuC aminopeptidase M1-B

dicoccoides_MQTL_6B.2 6B 74.4 CIR, CL, FHB, GPC, HI glucose-6-phosphate 1-dehydrogenase

dicoccoides_MQTL_7B.3 7B 129.11 GPC, GMgC, GSC xyloglucan endotransglucosylase/hydrolase protein 24-like
Chr, chromosome.
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2021; Zheng et al., 2021). A Meta-QTL analysis emerges as a

powerful approach to consolidate QTL information from diverse

populations cultivated in various environments. This method

identifies stable QTLs within the plant genome, situated in

genomic regions encompassing valuable and diverse genetic

material for potential integration into wheat breeding programs.
4.2 Quantitative trait loci for quality traits,
mineral content, abiotic-related traits, and
disease-related traits

In this study, a total of 852 QTLs were identified across all 14

chromosomes of wild emmer. The QTLs were distributed as quality

traits (298 QTLs), mineral content (280 QTLs), abiotic-related traits

(243 QTLs), and disease-related traits (31 QTLs). The quality

category exhibited the highest QTL count, encompassing yield,

yield-related traits, and GPC. Within the quality category, TKW

and GPC were the traits with the highest QTL counts, having 58 and

89 QTLs, respectively. The largest number of QTLs associated with

TKW and GPC can be linked to the extensive research conducted

on these traits, given their significance in both wheat yield and

product manufacturing (Avni et al., 2018). For instance, QTL

studies on yield in durum wheat often utilize TKW as a pivotal

yield component (Liang et al., 2017), influenced by environmental

factors during grain filling (Li et al., 2019), that can be used for

genotypes that grow under diverse environmental conditions

(Gupta et al., 2020; Arriagada et al., 2022; Wang et al., 2022).

Since the obtention of high-yield genotypes is necessary for wheat

breeding programs, incorporating accumulated loci associated with

yield components like TKW becomes essential. TKW is not only

influenced by the environment during grain filling, but it is also

positively correlated with overall grain and milling yield (Wang and

Fu, 2020). On the other hand, wild emmer is known as a valuable

genetic reservoir, abundant in allelic variants, offering a substantial

alternative to enhance GPC through the introgression of favorable

alleles into modern wheat varieties (Fatiukha et al., 2019;

Colasuonno et al., 2021). This explains why most of the QTL

studies on this ancient wheat are related to GPC. Interestingly,

the data highlights that the primary locations for QTLs related to

TKW were chromosomes 5A (13 QTLs) and 4A (11 QTLs). In

contrast, QTLs for GPC were predominantly localized on

chromosomes 6A and 7B (8 QTLs each).

Mineral content was the second-highest category in the number

of QTLs, which can be attributed to the substantial genetic diversity

inherent in mineral nutrient concentrations associated with wild

emmer (Cakmak et al., 2004; Peleg et al., 2008). A known QTL

called Gpc-B1 has enhanced both GPC and mineral content upon

introgression into modern wheat. Initially identified by Joppa and

Cantrell (1990) on chromosome 6B in wild emmer lines FA-15-3

and F-28-8-3 from Israel, Gpc-B1 has proven its efficacy. Research

by Distelfeld et al. (2007) has shown that recombinant chromosome

substitution lines (RSLs) carrying the wild Gpc-B1 allele from the

cross “DIC-6B” x LDN exhibited, on average, 12%, 18%, and 29%
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higher concentrations of Zn, Fe, and Mn, respectively, in the grain

compared to LDN. Furthermore, Peleg et al. (2009a) identified 38

stable QTLs associated with the wild alleles from G18-16 within a

RIL population. These QTLs explained variations in grain mineral

nutrient concentrations ranging from 0.7% to 19.2%. In the current

study, most of the collected QTLs related to mineral content were

located on chromosomes 6B (40 QTLs), 2A (34 QTLs), and 7A

(32 QTLs).

Abiotic-related traits comprised the next category, followed by

disease-related traits with only FHB as a trait of interest. The

number of QTLs associated with abiotic-related traits is due to

the focus of many studies on identifying genome locations that

confer tolerance to drought conditions because of the global

warming impact on crop productivity (Shew et al., 2020). Wild

emmer can grow under dry and saline conditions and it has

promising genes allowing to cope with these environmental

constraints (Peng et al., 2003). According to our data, most of the

QTLs for abiotic-related traits were on chromosomes 5A (35 QTLs)

and 5B (33 QTLs). Peleg et al. (2009b) identified 59 QTLs in the

wild emmer accession G18-16 related to better adaptability of the

crop grown under drought conditions from an original RIL

population (durum LDN × G18-16). The major genomic regions

associated with productivity and drought-adaptability traits were

identified on chromosomes 2A, 4A, 5A, and 7B.

FHB is a severe fungal disease-causing significant yield losses,

quality deterioration, and mycotoxin contamination in small grains,

particularly in crops like wheat, with a pronounced impact on

durum wheat. Breeding for FHB resistance poses challenges due to

the polygenic nature of the trait and the substantial influence of

genotype by environment interaction. Burstmayr et al. (2020)

underscore the importance of considering genetic variation and

employing appropriate tools for identifying genotypes for this trait

in the wheat breeding process. Two distinct types of resistance have

been identified: Type 1, which addresses initial infection resistance,

and Type 2, which is the resistance of the spread within the spike.

Type 2 resistance is considered less susceptible to environmental

variations and a more reliable indicator of FHB resistance

(Buerstmayr et al., 2013). Wild emmer QTLs have been related to

both FHB resistance (Otto et al., 2002; Chen et al., 2007; Gladysz

et al., 2007; Buerstmayr et al., 2013) and susceptibility (Garvin et al.,

2009), serving as a potential resource for enhancing durum

wheat genotypes.

Our study showed that the majority of FHB QTLs were situated

on chromosome 2A (15 QTLs), followed by chromosome 6B (six

QTLs), and chromosome 3A (four QTLs). On chromosome 3A, the

QTL Qfhs.ndsu-3AS derived from wild emmer “Israel A” (Otto

et al., 2002; Chen et al., 2007), “Mt. Hermon” (Gladysz et al., 2007),

and “Mt. Gerizim #36” (Buerstmayr et al., 2013) imparted Type 2

resistance. All three accessions exhibited a peak position near the

Xgwm2 microsatellie marker. Soresi et al. (2017) validated the

effectiveness of Qfhs.ndsu-3AS resistance in two Argentinean

durum wheat cultivars. Qfhs.ndsu-3A demonstrated a dominant

allele interaction, enhancing resistance by 50% for both

homozygous and heterozygous genotypes.
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Garvin et al. (2009) identified specific QTLs on the long arm of

chromosome 2A within the wild emmer accession “Israel A,”

precisely located between Xgwm558 and Xgwm445, covering an

approximate distance of 22 cM. Their findings suggested that

chromosome 2A contributes to increased susceptibility to FHB.

One hypothesis proposed by those researchers was that the genes

present on chromosome 2A might mitigate or suppress the effect of

FHB resistance conditioned by Qfhs.ndsu 3AS. In a related study,

Faris et al. (2014), exploring the association between spike

morphology and FHB in wild emmer, reported a QTL for spikelet

numbers per spike (QSpn.fcu-2A) that overlapped with the CI of the

QTL for FHB susceptibility described by Garvin et al. (2009) on

chromosome 2A. It was noted, however, that although they shared

the same genomic region, the QTL for spikelet numbers per spike

(QSpn.fcu-2A) was excluded as a determinant of FHB susceptibility

due to its consideration as an attribute of FHB resistance.
4.3 Meta-QTL and for quality traits, mineral
content, abiotic-related traits, and disease-
related traits

In this study, we conducted the first MQTL analysis for multiple

polygenic traits in wild emmer, and we grouped a total of 395

previously identified QTLs into 43 MQTLs. The results

demonstrated a reduction of existing QTL information for

polygenic traits, aligning with findings by Khahani et al. (2021),

indicating that MQTL analysis enhances precision in detecting

candidate genes by narrowing down the genomic regions for

traits of interest. The average CI of the MQTLs was much

narrower than the average CI of the known QTLs. Specifically,

the average CI of the MQTLs was 4.7-fold lower than the initial

average CI (22.6 cM). This reduction in CI means increased

accuracy and facilitates a more focused exploration of promising

candidate genes within each MQTL (Sandhu et al., 2021). This

refined approach provides a valuable resource for further allele

introgression in wheat breeding.

The MQTL, spec ifica l ly dicoc co ides_MQTL_7A.2 ,

demonstrated clear strength by encompassing the largest number

of associated QTLs (37) from diverse environmental backgrounds.

In general, only a limited number of MQTLs were specifically linked

to a particular category; for quality, there were four of 43 MQTLs,

and for abiotic-related traits, two of 43 MQTLs exhibited category

specificity. The remaining 37 MQTLs exhibited a polygenic trait

from various categories. Interestingly, all MQTLs involving mineral

content traits were associated with traits from other categories,

primarily quality and abiotic-related traits. This information holds

significance for wheat breeding programs, as the identified MQTLs

were linked to multiple polygenic traits. This versatility is important

for potential enhancements in productivity and overall quality,

addressing key and challenging traits in wheat breeding.

Previous MQTL studies in durum wheat have shown similar co-

localization compared to the ones generated in this research. Nine

MQTLs found by Soriano et al. (2021) were closer to or overlapped
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(one MQTL; peak 46.1 cM), 1B (one MQTL; peak 29.3 cM), 2B (two

MQTLs; peaks 59.0 and 147.5 cM), 4B (one MQTL; peak 17.1 cM),

5A (two MQTLs; peaks 48.6 and 143.2 cM), and 5B (two MQTLs;

peaks 122.2 and 139.0 cM). Ten MTQLs identified by Arriagada

et al. (2022) were closer to or overlapped the positions of the ones

encountered in this research in chromosomes 1A (one MQTL; peak

119.2 cM), 1B (one MQTL; peak 71.5 cM), 2A (two MQTLs; peak

139.1 and 139.3 cM), 2B (two MQTLs; peak 56.1 and 51.04 cM), 3A

(one MQTL; peak 75.8 cM), 5A (two MTQL; peak 36.6 cM and

102.83), 5B (one MQTL; peak 44.5 cM), and 6B (one MQTL; peak

74.1 cM). Arriagada et al. (2022) identified some of these MQTLs

under rainfed and/or irrigated conditions of durum wheat. Except

for the MQTL found in chromosomes 2A (one MQTL), 2B (one

MTQL), 3A (one MQTL), and 5B (one MTQL), the rest were

located under rainfed conditions, and all of them related to yield

traits. One genomic region in chromosome 2B was similar and

closer in all three studies reported by Soriano et al. (2021),

durumMQTL2B.2 (peak 59.0 cM) that was associated with grain

selenium yield and GPC; by Arriagada et al . (2022),

yield_MQTL2B.1_I (peak 56.12 cM) that was associated with

TKW and HI; and in the present study, dicoccoides_MQTL_2B.1

(peak 50.99 cM), which associated with HI, GY, and CL. Although

no similar genes were identified in this genomic region, the MQTLs

with abiotic and yield-related traits under adverse growing

conditions can be considered strong genomic regions for wheat

breeding programs to maintain or increase yield under drought

conditions, being a powerful resource in the current worldwide

scenario of climate change.
4.4 Candidate genes identified for the
stable MQTLs

Since this is the first work that tackles multiple traits in wild

emmer, the obtained genes of interest are valuable for their study

and potential use by utilizing the durum wheat reference genome.

In particular, on chromosome 1A, the MQTL_1A.1 for GCaC,

GFeC, and FLRI was associated with a beta-1,3-galactosyltransferase

gene involved in the transfer of a galactose to a terminal GlcNAc

residue in b-1,3-linkage (Rathan et al., 2022). Another association

with genes involved in the cell wall composition, the

glycosyltransferase STELLO2, was detected again on chromosome

1A associated with MQTL_1A.2 (Gómez-Espejo et al., 2022). On

chromosome 1A, a gene was identified, the suppressor of the

PHYTOCHROME A (PHYA), which is involved in regulating

mature plant development and related to TKW and GKC (Garg

et al., 2006). Another correlation with TKW and GKC was reported

with MQTL on chromosome 2A and the gene kinesin-like protein

KIN-14l, which regulates grain length and PH by affecting

expression levels of genes involved in GA synthesis and response

(Wu et al., 2014). An important association was detected on

chromosome 2A with the CRK and FLRI abiotic-related trait.

Many studies suggest the involvement of CRK proteins in plant
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development, cell death, immunity, and responses to abiotic stresses

(Shumayla et al., 2019). A gene related to carbohydrate metabolism,

the alpha-L-fucosidase 2-like was detected on chromosome 4A and

co-localized with MQTL for wheat quality. The literature reported

the importance of this gene in influencing floral organ

differentiation, cell wall biogenesis and degradation, and spike

differentiation (Zhu et al., 2016). A BLAST search revealed an

association with a candidate gene, aminopeptidase M1-B, involved

in plant developmental processes such as embryonic, vegetative,

and reproductive development in agreement with Maulana et al.

(2021) in wheat.

Another relevant association was detected on chromosome 6B

between a MQTL controlling different traits and the glucose-6-

phosphate 1-dehydrogenase gene, which is involved in regulating the

oxidative pentose phosphate pathway. This gene plays a central role

during nitrate assimilation in heterotrophic tissues, contributing to

nitrogen metabolism (Esposito, 2016).

The last association was reported on chromosome 7B between

the xyloglucan endotransglucosylase/hydrolase protein 24-like gene

and GPC, GMgC, and GSC. The xyloglucan endoglycosylases/

hydrolases proteins are involved in constructing and remodeling

cell wall structures and play an essential role in regulating cell wall

extensibility (Han et al., 2023).
5 Conclusions

This comprehensive study was the first work that analyzed 852

already known QTLs across 19 biparental populations of wild emmer,

shedding light on the genetic basis of 41 selected traits. The traits were

reported according to their category as quality traits, mineral content,

abiotic-related traits, and disease-related traits. These QTLs were

distributed across all 14 chromosomes and exhibited a wide range of

phenotypic variation (0.001 to 0.63), with GPC and TKW emerging

as the traits with more QTLs reported in the literature.

Overall, 43 MQTLs were determined, providing a condensed

view of stable genomic regions associated with polygenic traits.

These MQTLs exhibited narrower CIs than known QTLs, with an

average of 4.7-folds lower. The dicoccoides_MQTL_7A.2 had the

most QTLs associated with a total of 37 QTLs from different

environmental backgrounds, reflecting the strength of the found

MQTLs. On the other hand, there was a genomic region, the

dicoccoides_MQTL_2B.1 in chromosome 2B, similar to two other

studies: Soriano et al. (2021), durumMQTL2B.2 (peak 59.0 cM) and

Arriagada et al. (2022), yield_MQTL2B.1_I (peak 56.12 cM). This

offers valuable insights for wheat breeding programs since MTQLs

with abiotic and yield-related traits can be considered strong

genomic regions to maintain or increase yield under stressful

conditions. The obtained MQTLs represent regions rich in

candidate genes, including those related to carbohydrate

metabolism, plant development, and stress responses. This

research underscores the significance of MQTL analysis in
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productivity and quality in the face of evolving sustainable

agricultural challenges and climate change.
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