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Introduction: In the context of climate change, monitoring the spatial and

temporal variability of plant physiological parameters has become increasingly

important. Remote spectral imaging and GIS software have shown effectiveness

in mapping field variability. Additionally, the application of machine learning

techniques, essential for processing large data volumes, has seen a significant

rise in agricultural applications. This research was focused on carob tree, a

drought-resistant tree crop spread through the Mediterranean basin. The study

aimed to develop robust models to predict the net assimilation and stomatal

conductance of carob trees and to use these models to analyze seasonal

variability and the impact of different irrigation systems.

Methods: Planet satellite images were acquired on the day of field data

measurement. The reflectance values of Planet spectral bands were used as

predictors to develop the models. The study employed the Random Forest

modeling approach, and its performances were compared with that of traditional

multiple linear regression.

Results and discussion: The findings reveal that Random Forest, utilizing Planet

spectral bands as predictors, achieved high accuracy in predicting net

assimilation (R² = 0.81) and stomatal conductance (R² = 0.70), with the yellow

and red spectral regions being particularly influential. Furthermore, the research

indicates no significant difference in intrinsic water use efficiency between the

various irrigation systems and rainfed conditions. This work highlighted the

potential of combining satellite remote sensing and machine learning in

precision agriculture, with the goal of the efficient monitoring of

physiological parameters.
KEYWORDS

remote sensing, physiology modeling, carob tree, machine learning, Random
Forest regression
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1 Introduction

Despite the growing scarcity of water and the deterioration of its

quality, irrigated agriculture plays a fundamental role in meeting the

current and future demand for food production (UN-Water, 2021)

which aligns with the sustainable development goal (SDG6): zero

hunger set by the United Nations. Carob tree demonstrates to have

at least three competitive advantages over other silviculture species: i)

ranks first as an agriculture product, with very high annual revenues; ii)

very resistant to drought iii) and very resistant to forest fires, in

particular when compared to pine forests (Dimitrakopoulos and

Papaioannou, 2001). Another added value of the carob tree is the

health properties. The natural antioxidants present in plant-derived

foods and products include vitamins (e.g., vitamin C) and bioactive

phenolics (e.g., flavonoids, procyanidins, etc.). These natural

antioxidants once ingested and metabolized can reach target cells and

organs to exert a beneficial effect on health. Also, the carob tree is a rich

source of phenolics and (poly)phenolics (Goulas et al., 2016). Although

it may seem that carob tree has a low carbon fixation potential when

compared to other species, both due to a slow growth rate and small

densities, this crop has the potential to grow faster and with high density

if conservative irrigation is applied and cultural practices are

implemented. Therefore, Carob tree can be considered as a CO2 sink

under the Kyoto Protocols Article 3.3, due to the lower risk of lost

revenues in the future, which has been keeping investors away from the

market (more on this may be found in Hamilton et al., 2010 and

Chenost et al., 2010). Nowadays, in the context of sustainable

agriculture, the importance of rationalizing water uses and improving

its use efficiency is increasing (Garofalo et al., 2023a). To apply the

correct amount of water in quantity and quality under the conservative

agriculture recommendations, plant-based sensingmethods provide the

most precise measure of plant water status for irrigation management

and water stress monitoring, as they provide the integrated response of

the plant to soil moisture availability and atmospheric influences. These

data could be used to train models for Decision Support System (DSS)

and obtain an optimized irrigation management. Most of these

variables could be continuously monitored using sensors and could

provide a reliable estimate of crop water status (Fernández, 2017), but

their local application does not allow the variability existing within the

plot to be known. Mapping the plot heterogeneity and variability in

plant and soil water status with geospatial models (Panda et al., 2010;

Tsoulias et al., 2019) could support the application of precision

agriculture approaches aimed at identifying and irrigating different

sectors of the plot (management zones) according to their current water

status. This is of much interest especially because of the huge variation

of leaf water parameters (Boutasknit et al., 2020, 2021) under drought

conditions and throughout the course of the growth cycle. To this, using

remote sensing tools, those variations could be captured/sensed and

then translated into efficient irrigation management.
1.2 Remote sensing in agriculture

Remote sensing consists of detecting andmonitoring the properties

of an object present on the surface of the Earth by measuring its

reflected (or emitted) radiation at a distance (Weiss et al., 2020); these
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data are typically acquired by using satellites, aircraft, and more

recently Unmanned Aerial Vehicles (UAVs), with accurate results

and affordable costs (Corwin and Scudiero, 2019). The application of

remote sensing technologies in agriculture has greatly increased in

recent past years (Weiss et al., 2020). UAVs images have been

successfully employed to predict several crop traits, for example,

Kasper et al. (2019a and 2019b) used UAV imagery to predict the

salt-stressed tomato biomass and yield at harvesting time and to map

the phenotypic traits, providing farmers with a way to monitor the

effects of salt stress during the plant cycle. Nevertheless, the use of

aircraft and drones is still expensive and requires operation time; using

satellite images to estimate plant-related parameters could be a viable

option to obtain spectral images to process for agricultural issues with a

low cost and relatively higher rapidity. Also, the application of GIS

software (Geographic information system, e.g., QGIS) is proving to be

useful for mapping the variability of several parameters existing at field

and regional scale (Alhajj Ali et al., 2023). In agricultural applications,

three different approaches are commonly used with remote sensing

data to map the variability of the agronomic or biophysical plant traits

within the field: parametric, physical-based, and non-parametric.

Parametric approaches are the easiest to study the relationship

between remote sensing data and crop variables, nonetheless, they

require that specific assumptions be respected (e.g., normal distribution

of the data); physical-based approaches (e.g., radiative transfer models)

are based on physical laws, but due to their complexity the applicability

is low; non-parametric approaches (e.g., machine learning methods)

are useful for their abilities to find hidden information and relationship

between the data and low sensitivity to non-normally distributed data

(Jiang et al., 2022). The use of machine learning, combined with remote

sensing data, has greatly grown in recent years in many areas of

agriculture (Sharma et al., 2021a). One of the most widely used

machine learning algorithms in agricultural remote sensing

applications is the supervised ensemble-learning algorithm random

forest, for solving classification and regression problems (Belgiu and

Drăgu, 2016). Random forest has been used in different remote sensing

applications; Jiang et al. (2022) demonstrated that the combination of

UAV-based remote sensing and machine learning can predict

important traits of quinoa under abiotic stress conditions. In

addition, machine learning has also been used in combination with

satellite remote sensing. For example, Laroche-Pinel et al. (2021) used

Sentinel-2 imagery to map vine water status in the south of France,

comparing the performances of different machine learning algorithms.

The aim of the presented research work was the developing of

machine learning models to predict net assimilation and stomatal

conductance of the carob tree, using satellite bands reflectance data

as predictors; additionally, these models were used to understand

the differences in the aforementioned parameters across the various

irrigation systems.
2 Materials and methods

2.1 Experimental farm conditions

The experiment was conducted in 2023, at an 8-ha commercial

carob tree orchard (Ceratonia siliqua, L., 1753; cv. Ramillete)
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located in Fuente Álamo de Murcia, Murcia region (South-East of

Spain; 37°45’57.1”N, 1°14’39.6”W; 218 m a.s.l.) (Figure 1); the

orchard was planted in 2014 with a spacing of 12 x 12 m between

trees and rows. The soil has been characterized at two distinct

depths, 30 cm and 90 cm, with 10 soil samples collected at

representative points across the farm for each depth. These

samples have been subsequently mixed based on their respective

depths. Soil parameters were analyzed by a private laboratory in

Murcia (Fitosoil Laboratories, Alcalde Clemente Garcıá, 24/37,

30169 San Ginés – Murcia). The soil texture within the first 30

cm depth was classified as clay loam (36% clay, 38% silt, and 26%

sand), with an average bulk density of 1.37 g cm−3, a pH of 7.67 and

electrical conductivity of 180 µS/cm. Within the first 90 cm depth it

had a loamy texture (22% clay, 30% silt, and 48% sand) with an

average bulk density of 1.49 g cm−3), a pH of 7.85 and electrical

conductivity of 154 µS/cm. In Supplementary Materials, the
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complete results of the soil analyses at the two reported

depths are presented. The orchard management followed the

organic farming guidelines, fertilizers were not applied during

2023. Carob trees were harvested on the 9th of August; 2023 was

not a productive year, in fact, the average production per tree was

14 kg.

The climate of the experimental area is Mediterranean,

classified as BSk, according to Köppen and Geiger; the amount

of annual rainfall is generally little (321 mm), the driest

month is July (3 mm), the warmest month is August (average

temperature of 25.5°C) and the coldest is January (average

temperature of 10.3°C) (Climate-Data.org, 2023). Data related to

reference evapotranspiration (ETo), average temperature, rainfall,

and vapor pressure deficit (VPD) during the period of the

experiment were provided by the agricultural information system

of Murcia (“Sistema de informacioń agrario de Murcia”).
FIGURE 1

(A) Murcia region, Spain (yellow ring); (B) experimental field, red areas indicate zones under subsurface drip irrigation system with 2.3 liters per hour
(SDI 2.3 L) green areas indicate zones under subsurface drip irrigation system with 1.6 liter per hour (SDI 1.6 L), white area indicate rainfed zone (RD).
Orange circles indicate carob trees used to acquire ground data. Images from Google Earth Pro for desktop (7.3.6.9345); Map data ©2015 and
©2020, Google.
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The irrigation system was installed 7 years after the orchard

planting, and it consisted of a double lateral drip line laid on the

subsurface soil at 0.30 cm 1.5 m from the tree trunk and 1.5 between

the drip lines. It provided three self-pressure compensating on-line

emitters per tree discharging 2.3 L h-1 and 1.6 L h-1, spaced 1 m

apart. The irrigation water quality was a mix of rainwater harvesting

and well water with an EC of 1.76 dS/m and a pH: 7.87.

The orchard was divided into three zones under different

irrigation management: subsurface drip irrigation with 2.3 liters

per hour (SDI 2.3 L), subsurface drip irrigation with 1.6 liters per

hour (SDI 1.6 L) and Rainfed (RD) (Figure 1). Irrigation was

applied eight times during the year on the critical phenological

stages for carob tree (Correia and Martins-Loução, 2004; Tous et al.,

2013) - emergency of axillary and apical buds, floral induction, fruit

growth, post-harvesting - on DOYs 10, 114, 135, 136, 198, 233, 240

and 247, for a total amount of 322.56 m3/ha (SDI 1.6 L) and 463.68

m3/ha (SDI 2.3 L); considering that, as for other rainfed species

there are no literature reference for irrigating carob trees, it was

decided to apply the same irrigation time for all the irrigation

interventions, except for the first two (12 hours of irrigation instead

of 6, as for the following ones). Table 1 reports the amount of water

applied per each irrigation intervention.
2.2 Plant physiological measurements

A gas exchange system (LI-6400, LI-COR Inc., Lincoln, NE,

USA) was used to determine net assimilation – the amount of

carbon dioxide used by the leaves per square meter per second -

(Pn, µmol CO2 * m-2 s-1) and stomatal conductance – the stomatal

gas exchanges per square meter per second - (gs, mmol H2O * m-2 s-

1); these parameters were acquired between 11.00 to 13.00 hr solar

at light saturation (PAR ≥ 1600 mol photons * m-2 s-1) on healthy,

mature, fully expanded and sun-exposed leaves on 8 trees per

irrigation system. The intrinsic water use efficiency (iWUE) was
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calculated as the ratio between Pn and gs (Haider et al., 2018).

Measurements were taken around irrigation days and during the

growing season up to pre-harvest.
2.3 Satellite images

Planet Labs PBC (from now on “Planet”) is an American

company that is specialized in capturing high-resolution spectral

images of Earth with high frequency. The spectral images were

acquired from the third-generation satellite of PlanetScope

(Equator crossing time of 7.30-11.30 a.m., local solar time) with

eight spectral bands (PBs) and a spatial resolution of 3 meters

(Imagery© 2023, Planet Labs PBC, San Francisco, CA, USA); the

PBs were coastal blue (431-452 nm), blue (465-515 nm), green

I (513-549 nm), green (547-583 nm), yellow (600-620 nm),

red (650-680 nm), red edge (697-713 nm) and NIR (845-885 nm)

(Planet Imagery Product Specifications, 2022). All the images

were downloaded from the online tool “Planet explorer”

(www.planet.com/explorer) as orthorectified and radiometrically

corrected TIFFs to maintain consistency across localized

atmospheric conditions and to reduce the uncertainty of the

spectral response in time and place to a minimum (Planet

Imagery Product Specifications, 2022). Then the images were

converted to surface reflectance following the instructions in the

metadata provided by Planet. For each tree considered in the study,

the reflectance was considered as the mean value of the reflectance

of the pixels by using the plugin “Zonal statistics” in QGis

(Qgis, 2023).
2.4 Statistical analysis and
machine learning

In this work, Pn and gs measured on field were independently

considered as response variables, using the reflectance of the 8 PBs

as predictors; each dataset (n = 217) was randomly split into a

training dataset (80%) and a testing dataset (20%). The training

dataset was used to fit the developed model and the testing dataset

was used to test the model performance and robustness. The

machine learning algorithm random forest (RF) was used to

predict the variables. RF is a supervised ensemble-learning

algorithm that improves regression combining multiple decision

trees to enhance the accuracy of the model and its generalization.

Due to its accuracy and ability in finding non-parametric

relationships, RF is used in the fields of remote sensing and

agronomy for prediction and modeling (Belgiu and Drăgu, 2016;

Nayak et al., 2022; Silva et al., 2023). In this work, RF model

implemented in the “ranger” package in RStudio was used (Wright

and Ziegler, 2017); to avoid the overfitting of the model, the 10-fold-

cross-validation was applied, by using the trainControl function of

the package “caret” (Kuhn, 2008). In the ranger implementation of

RF model, several hyper-parameters were fine-tuned, including the

quantity of the variables to potentially split each node (mtry), the

splitting rule, and the minimum size of the node. The fine-tuning

model procedure involved several iterations of these parameters,
TABLE 1 Amount of water applied per irrigation intervention in the year
of the experiment for both the irrigation systems: subsurface drip
irrigation with 1.6 liter per hour (SDI 1.6 L) and subsurface drip irrigation
with 2.3 L per hour (SDI 2.3 L).

DOY
m3/ha

SDI 1.6 L SDI 2.3 L

10 64.53 92.76

114 64.53 92.76

135 32.25 46.36

136 32.25 46.36

198 32.25 46.36

233 32.25 46.36

240 32.25 46.36

247 32.25 46.36

Total 322.56 463.68
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except for the number of trees, fixed at 500, due to the absence of a

significant impact on the global performance of the model. The

importance of each variable was assessed through permutation

(Janitza et al., 2013). Furthermore, a linear model (LM) for each

variable to predict was trained with the goal of establishing a

baseline useful for the evaluation of the results; in LM, avoiding

using all the predictors, only the statistically significant variables

were maintained (p< 0.05). To compare the performance of the

models and their robustness, coefficient of determination [R2

(Equation 1)], root mean square error [RMSE (Equation 2)],

normalized root mean square error [nRMSE (Equation 3)] and

mean absolute error [MAE (Equation 4)] were calculated as follows:

R2 = 1 −
Sn
i=1(Ei − Si)

2

Sn
i=(Ei − Ei)

2 (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Si − Ei)

2

r
(2)

nRMSE = 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no0

i=1(Si − Ei)
2

q
nval

(3)

MAE = o
n
i=1 Si − Eij j

n
(4)

where S were the simulated values, E the expected values and n

the number of the observations.

Finally, by using the package “raster” (Hijmans and van Etten,

2012), the RF-based model was applied to further 16 spectral images

downloaded from Planet Explorer to model the trend of the carob

trees physiological parameters from January to September.

To detect the statistical differences between the irrigation

system, the Analysis of Variance test (ANOVA) was carried out,

followed by Tukey’s multiple comparisons test, with significance

level set at 0.05.

RStudio software (RStudio, 2020 for Windows, Version

2023.06.0 + 421, PBC, Boston, MA) and SigmaPlot (SigmaPlot,

Systat Software Inc, Version 14 for Windows) were used for

machine learning and statistical analyses, modeling, and

graph plotting.
3 Results

3.1 Field data

3.1.1 Climatic conditions
During the experiment, the lowest average temperature was

recorded in January on DOY 29 (5.4°C) and the highest in July on

DOY 200 (31.89°C); during the growing season, the daily average

temperature remained around 20°C in the first part of May, until

DOY 131, reaching 24.14°C on DOY 119, then dropped to

temperatures around 16°C and started to increase again in the

last part of May and June; particularly, during the summer and

until the harvest the daily average temperature remained above

25.24°C; the highest monthly values of ETo there were in June
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(154.46 mm) and in July (172.02 mm). The lowest values of VPD

were recorded in the second half of May and June, peaks of VPD

have occurred in June (DOY 177, 2.42 kPa), July (DOY 200, 2.33

kPa and DOY 206, 2.98 kPa) and August (DOY 214, 2.31 kPa)

(Figure 2). The rainiest months were May (84.10 mm

concentrated in the last 10 days of May) and June (14.50 mm

concentrated in the first 10 days of June), the driest months were

July (2.80 mm) and August (0.20 mm).

3.1.2 Plant physiological parameters
From January to May, until DOY 137, the level of Pn was

generally low: over this period, the means of the Pn values of both

SDI systems and RD remained below 10 µmol CO2 * m-2 s-1. In

DOY 118, after the second irrigation application, no statistically

significant difference was observed between the SDI systems and

RD, but an increase of Pn was recorded for both SDI systems

compared with the previous date, except for RD. A peak of the

values was registered in the middle of June (DOY 164) for both

systems and RD; then, in the last two measurement dates (DOY 180

and 194) the values of Pn dropped again, those of RD remained

higher than the two irrigation systems, in Doy 180 SDI 2.3 L carob

trees showed significant lower Pn (12.06 µmol CO2 * m
-2 s-1) than

SDI 1.6 L and RD carob trees; in DOY 194 Pn of RD carob trees was

significantly higher than SDI 2.3 L and SDI 1.6 L carob

trees (Figure 3A).

For most of the measurement period, gs remained stable and low

until June (average gs values lower than 90 mmol H2O * m-2 s-1), with

a slight increase on the measurement date after the second irrigation

(DOY 118), when the medians of both the irrigation systems were

higher than those recorded on the previous date; on DOY 114 RD, gs

was significantly higher (59.94 mmol H2O * m-2 s-1) than SDI 2.3 L

and SDI 1.6 L, on DOY 118 no statistical significant differences were

found between the irrigation systems and RD. On DOY 164, SDI 2.3

L carob trees showed significantly higher values of gs (56.68 mmol

H2O * m-2 s-1) compared with SDI 1.6 L, but not compared with RD

carob trees. Generally, high values of gs were recorded in the two last

dates of measurement (DOY 180 and 194), with higher values for RD

in both dates (Figure 3B).
FIGURE 2

Daily variation of average temperature, reference evapotranspiration
(ETo) and Vapour Pressure Deficit (VPD) in the area of the
experiment (Fuente Álamo de Murcia, Spain).
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3.2 Random forest and linear model
prediction performance

3.2.1 Random forest
The modeling procedure to predict Pn involving RF in training

had good fit (R2 = 0.96) and low error (nRMSE = 4.6%), the

performance of the model in testing was positive, with an R2 = 0.81

and a nRMSE of 11.7% (Table 2). The results of the optimization of

the model parameters are reported in Figure 4A: based on the lowest

RMSE value, 8 variables as mtry, extratrees as splitting rule and 1 as

minimum node size were used in the final model. The two most

important bands in the prediction of Pn were yellow and

NIR (Figure 5A).

In the prediction of gs, RF had a R2 = 0.89 and a nRMSE of 6.7%

in training and maintained good performance in testing (R2 = 0.70

and nRMSE = 11.6%) (Table 2). Figure 4B shows the results of the

optimization of the model parameters: based on the lowest RMSE

value, 5 variables as mtry, extratrees as splitting rule and 3 as

minimum node size were used in the final model. The two most
Frontiers in Plant Science 06
important bands in the prediction of gs were red and coastal

blue (Figure 5B).

3.2.2 Linear model
In the prediction of Pn, LM showed low fit in training with a R2

= 0.53 and nRMSE = 16.3% and poor performance in testing (R2 =

0.52; nRMSE = 18.7%) (Table 2). Based on the p-value, the

predictors maintained in LM were the spectral bands: coastal

blue, green, yellow, red, red edge and NIR.

In the prediction of gs, results were similar in terms of

performance parameters (R2 = 0.35 and nRMSE = 17.9% in

testing) (Table 2). The spectral bands maintained in LM for the

prediction of gs were blue, green I, yellow and red edge.
3.3 Remote sensing physiology modeling

Each RF-based model found for the prediction of the

physiological parameters was applied to further Planet spectral
B

A

FIGURE 3

Boxplot of the field data used to train the models; (A) net assimilation (Pn) and (B) stomatal conductance (gs) of the carob trees under subsurface
drip irrigation with 1.6 l/h (SDI 1.6 L), subsurface drip irrigation with 2.3 l/h (SDI 2.3 L) and rainfed carob trees (RD). Letters indicate significant
differences among the systems (p< 0.05).
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images; thus, information on physiological patterns of the carob

trees were obtained even in the phase of the growing season in

which there were no field data.

3.3.1 Predicted net assimilation
The values of Pn remained low until mid-February, without

differences among the systems and RD. From the end of February

values started to increase until mid-March, particularly, at the end of

February SDI 1.6 L Pn (11.45 µmol CO2 * m
-2 s-1) was significantly

higher than RD (7.42 µmol CO2 * m-2 s-1), but not statistically

significantly different than SDI 2.3L (9.79 µmol CO2 * m
-2 s-1). From

the end ofMarch to the end of April, Pn decreased and no statistically

significant differences there were among the systems and RD; at the
Frontiers in Plant Science 07
end of March Pn values of SDI 2.3 L and SDI 1.6 L (11.84 and 13.11

µmol CO2 * m
-2 s-1, respectively) were significantly higher than RD

(10.31 µmol CO2 * m
-2 s-1). After the third irrigation in mid-May, no

statistically significant differences were found between the systems

and RD, then Pn values started to increase in all the systems, reaching

a peak in mid-June, when Pn of SDI 2.3 L and SDI 1.6 L carob trees

(20.35 and 19.63 µmol CO2 * m
-2 s-1, respectively) were statistically

significant higher than RD carob trees (17.10 µmol CO2 * m
-2 s-1); at

the end of June Pn values dropped again. From mid-July a weak

increasing recovery of Pn was recorded for all the systems, with a

further decline in mid-August, when SDI 2.3 L and SDI 1.6 L Pn

(13.19 and 12.09 µmol CO2 * m
-2 s-1, respectively) were significantly

higher than RD Pn (10.51 µmol CO2 * m
-2 s-1) (Figure 6).
B

A

FIGURE 4

Optimization of Random Forest parameters (splitting rule; min. node size; mtry) for the predictive model of net assimilation (A) and stomatal
conductance (B) of the carob tree under different drip irrigation systems.
TABLE 2 Performance parameters of Random Forest (RF) and Linear Model (LM) predicting stomatal conductance (gs) and net assimilation (Pn).

Training Testing

R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

Pn
RF 0.96 1.09 4.6 0.84 0.81 2.31 11.7 1.79

LM 0.53 3.90 16.3 3.08 0.52 3.71 18.7 2.90

gs
RF 0.89 20.89 6.7 12.92 0.70 36.84 11.6 25.44

LM 0.46 46.17 14.5 34.06 0.35 56.14 17.9 39.32
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3.3.2 Predicted stomatal conductance
From January to mid-February no statistically significant

differences were observed between the systems and RD; from the

end of February gs increased until the end of March, with

significantly higher values observed on carob trees under SDI 2.3

L and SDI 1.6 L systems (60.78 mmol H2O * m-2 s-1 and 68.99 mmol

H2O * m-2 s-1, respectively) than RD (45.52 mmol H2O * m-2 s-1).
Frontiers in Plant Science 08
Then, from mid-April, gs decreased in all systems and RD, and no

statistically significant differences were found after the second and

the third irrigation application. At the end of March gs values of

both systems and RD markedly increased and then sharply

decreased again in mid-June, without any significant difference.

At the end of June a peak of gs values, with significantly higher gs

for SDI 1.6 L carob trees (176.93 mmol H2O * m-2 s-1) than RD

carob trees (148.81 mmol H2O * m-2 s-1), but not significantly

differences were observed between SDI 1.6 L and SDI 2.3L and

between SDI 1.6 L and RD. Afterwards, gs values dropped again for

all systems and RD until mid-August, when gs was significantly

higher for irrigated carob trees than RD carob trees (Figure 7).
3.3.3 Intrinsic water use efficiency
Calculated as the ratio between predicted-Pn and predicted-gs,

iWUE had no statistically significant differences among the systems

until mid-April, when the RD iWUE was significantly higher than

the two irrigation systems; after the second irrigation application

the SDI 2.3 and SDI 1.6 iWUE remained stable and RD iWUE

decreased, without statistically significant differences; after the third

irrigation, iWUE values were comparable with the previous and

dropped at the end of May. Higher values of iWUE were obtained in

mid-June for both systems and RD, without significant differences;

in mid-June iWUE dropped and started to rise gradually from mid-

July (Figure 8).
B

A

FIGURE 5

Results of the permutation process showing the importance (%) of the predictors in Random Forest modeling used for the prediction of net
assimilation (A) and stomatal conductance (B) of the carob tree under different drip irrigation systems.
FIGURE 6

Inter-seasonal trend (mean and standard error) of net assimilation
(Pn) of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L) and 1.6 l/h
(SDI 1.6) carob trees and rainfed (RD) carob trees, predicted with
Random Forest. Letters indicate significant differences among the
systems (p< 0.05).
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3.3.4 Relationship between the
physiological parameters

The relationship between predicted-Pn and predicted-gs was

investigated for both systems and RD, in each case the relationship

was significant (p< 0.01); nonetheless the higher R2 (0.49) was

found for RD carob trees, and the lower (R2 = 0.32) for SDI 2.3 L

carob trees (Figure 9A). Furthermore, the relationship between the

reciprocal of the iWUE and gs was significant (p< 0.01) for the SDI

and RD carob trees, with a higher R2 (0.59) for RD carob trees than

SDI carob trees (Figure 9B).
4 Discussion

Crop monitoring is a key factor in understanding the response

of plants to the environment and agronomic practices; nonetheless,

it requires time-consuming fieldwork and efforts in order to get

sufficiently representative data (Sishodia et al., 2020). Field

measurements require a lot of effort to obtain data sufficiently
Frontiers in Plant Science 09
representative from a spatial and temporal point of view, resulting

in time-consuming and expensive work for farmers and technicians.

In this work a method based on the integration of machine learning

and remote sensing techniques has been proposed, with the purpose

of having a tool to understand the variability of Pn and gs between

systems and over time, reducing fieldwork.

According to the performance parameters of the RF-based

modeling procedure, high accuracy in predicting both the

physiological parameters considered was obtained in this work.

RF has been widely employed in remote sensing applications for

classification problems (Belgiu and Drăgu, 2016), while few studies

have been conducted to predict continuous data. Until now, the

combination of RF and remote sensing has been used more in

forestry than agriculture; for example, D’este et al. (2021)

implemented an RF regression algorithm using satellite data to

estimate fine dead fuel and improve fire risk assessment. In

agriculture, RF has mainly been used to predict the yield of

herbaceous crops (Johansen et al., 2020; Dhillon et al., 2023);

furthermore, Lee et al. (2020) used RF and UAV spectral imagery

to predict nitrogen management in maize, achieving good results

(R2 = 0.85). For agricultural issues and in combination with satellite

data, RF modeling has had less application, especially considering

high-resolution satellite images (Planet imagery). The results

obtained in the present research are comparable to those obtained

by Garofalo et al. (2023b) in the prediction of the water status of the

olive tree (stem water potential) in the south of Italy, using Planet

imagery and an RF model; moreover, the authors found that RF

outperformed the LM, as in the present research for both the

targeting variables considered. Thus, these results confirm the

applicability and the benefits of combining the machine learning

approaches and data from high-resolution satellites. Nevertheless, it

should be considered that other satellite platforms (e.g., Sentinel 1

and 2, Landsat 8) provide images freely, instead of Planet, whose

images are not available for free; this could certainly represent a

limitation of the applicability of the workflow presented in this

study in commercial farming.

The results of the variable importance in RF modeling suggest

that the spectral bands used as predictors didn’t have the same

power to estimate the physiological variables. In the prediction of

Pn, the yellow band had the highest importance, appearing directly

linked to the photosynthetic rate of the leaves. In a previous study,

Adams et al. (1999) found that a vegetation index considering the

spectral region of yellow, the Yellowness Index, could measure leaf

stress linked to alterations in pigment absorption, particularly

chlorophyll; total chlorophyll content is well known to be closely

associated with the photosynthetic rate, due to the requirement of

chlorophyll molecules in driving the electron transport reaction

(Buttery and Buzzell, 1977; Croft et al., 2017). In the prediction of

gs, the most important band was red; according to Rapaport et al.

(2015), this spectrum region is generally related to pigments that

could react to water stress (e.g., xanthophyll), which directly affects

gs through osmotic stress (Chaves et al., 2009), explaining the

importance of the red band for the gs prediction found in this study.

Given the good performance of RF-based approach, the

developed models were utilized to predict and analyze the

seasonal trends of Pn and gs, and then to calculate the iWUE.
FIGURE 8

Inter-seasonal trend (mean and standard error) of intrinsic water use
efficiency (iWUE) of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L)
and 1.6 l/h (SDI 1.6) and rainfed (RD) carob trees, predicted with
Random Forest. Letters indicate significant differences among the
systems (p< 0.05).
FIGURE 7

Inter-seasonal trend (mean and standard error) of stomatal
conductance (gs) of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L)
and 1.6 l/h (SDI 1.6) carob trees and rainfed (RD) carob trees,
predicted with Random Forest. Letters indicate significant
differences among the systems (p< 0.05).
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The behavior of Pn and gs appeared linked to temperature,

considering that, generally, with higher temperatures, Pn

increases up to an optimum temperature, and gs increase

exponentially (Yamori et al., 2005). Probably, the peak in Pn

occurred in mid-March was due to the precipitations that fell in

the first half of the month. The sharp decrease of gs found in mid-

June could be explained by an asphyxia condition caused by soil

flooding (as shown in the results section, a large amount of rainfall

fell in May and June), in fact a reduction in oxygen concentration in

the root zone could determine a rapid decline of gs (Smith et al.,

1989; Barickman et al., 2019). Nevertheless, waterlogging could also

affect the activity of photosynthetic enzymes, resulting in decreased

Pn (Sharma et al., 2021b); during the above-mentioned period, as

explained, a reduction of gs was recorded, but Pn had a peak,

probably due to the optimal high temperatures recorded in the first

part June and the rainfall occurred before the waterlogging;

moreover, the negative effects of waterlogging might be

manifested more gradually on Pn than gs (Yordanova and

Popova, 2007), in fact, a sharp decline of Pn was observed at the

end of June, when, on the other hand, gs had recovered, maybe due

to high temperatures and no precipitations in the second part of

June, resulting in evaporation of the water from the soil and then

better conditions of the root system. However, based on the current

knowledge it is not possible to determine with accuracy the

temporal dynamics of the effects of waterlogging specifically on

carob trees. iWUE also had a peak in mid-June, suggesting that

under waterlogging conditions, carob tree might prevent the stress

driven by soil flooding with a reduction of water losses, as also

reported in a study on pepper (Ou et al., 2011); in another study on
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forest tree species (Schinus terebinthifolius and Rapanea ferruginea),

flooding system significantly increased iWUE compared to the

control (Mielke et al., 2005). August was the hottest month of the

season, Pn slightly declined and gs sharply increased until

September, confirming the previously mentioned relationship

with the temperature trend; furthermore, irrigation was applied

after the harvest, leading to higher values of Pn and gs for SDI than

RD carob trees; according to Tous et al. (2013), the cambium of the

carob tree is active until September, hence, better physiological

conditions in this period may result in a better overall status of the

trees in the following productive year as well.

The study revealed that the RD system consistently exhibited

higher gs values, particularly noticeable at specific stages of the

vegetative cycle. This observation aligns with the findings of Ezzine

et al. (2023), regarding the resilience of C. siliqua stomata under low

water potentials, demonstrating their ability to maintain high

relative water content through osmotic adjustment. Additionally,

the notable Pn increase of the RD carob trees underscores their

complex adaptive mechanisms for sustaining photosynthetic

activity under drought conditions, a phenomenon previously

documented by Lo Gullo and Salleo (1988). A similar trend was

also observed in the later stage of the growth cycle, corroborating

the patterns reported in Battle and Tous (1997).
5 Conclusions

This study successfully integrated machine learning, specifically

the Random Forest model, with high-resolution satellite imagery to
B

A

FIGURE 9

(A) relationship between net assimilation (Pn) and stomatal conductance and (B) relationships between the reciprocal of the water use efficiency (1/
iWUE) and stomatal conductance of subsurface drip irrigated with 2.3 l/h (SDI 2.3 L) and 1.6 l/h (SDI 1.6) and rainfed (RD) carob trees, predicted with
Random Forest.
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monitor carob trees’ physiological parameters (net assimilation,

stomatal conductance and intrinsic water use efficiency). The

approach presented in the study tries to provide technicians and

farmers with a tool to reduce the time and labor typically required

for field measurements, aligning with the need for efficient and

representative data collection in agriculture. The significant role of

specific spectral bands in predicting physiological parameters has

been highlighted in the study. For instance, the yellow band was

closely associated with Pn, highlighting its connection to

photosynthetic rates and chlorophyll content, while the red band

played a crucial role in predicting gs. The results of the research also

indicated that carob trees might mitigate the stress caused by soil

flooding through adaptive mechanisms. In addition, the importance

of irrigation management in influencing Pn and gs, especially after

harvest, has been demonstrated. The study’s findings contribute

significantly to the understanding of carob tree-environment

interactions and the potential of technology in enhancing

agricultural productivity and resource management.
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V., et al. (2021). Towards vine water status monitoring on a large scale using sentinel-2
images. Remote Sens. (Basel). 13 (9), 1837. doi: 10.3390/rs13091837

Lee, H., Wang, J., and Leblon, B. (2020). Using linear regression, random forests, and
support vector machine with unmanned aerial vehicle multispectral images to predict
Frontiers in Plant Science 12
canopy nitrogen weight in corn. Remote Sens. (Basel). 12 (13), 2071. doi: 10.3390/
rs12132071

Mielke, M. S., Almeida, A. A. F. D., Gomes, F. P., Oliveira Mangabeira, P. A., and
Da Costa Silva, D. (2005). Effects of soil flooding on leaf gas exchange and growth of
two neotropical pioneer tree species. New Forest. 29, 161–168. doi: 10.1007/s11056-005-
0247-7

Nayak, H. S., Silva, J. V., Parihar, C. M., Krupnik, T. J., Sena, D. R., Kakraliya, S. K.,
et al. (2022). Interpretable machine learning methods to explain on-farm yield
variability of high productivity wheat in Northwest India. Field Crops Res. 287.
doi: 10.1016/j.fcr.2022.108640

Ou, L. J., Dai, X. Z., Zhang, Z. Q., and Zou, X. X. (2011). Responses of pepper to
waterlogging stress. Photosynthetica 49, 339–345. doi: 10.1007/s11099-011-0043-x

Panda, S. S., Hoogenboom, G., and Paz, J. O. (2010). Remote sensing and geospatial
technological applications for site-specific management of fruit and nut crops: A
review. Remote Sens. 2, 1973–1997. doi: 10.3390/rs2081973

Planet Imagery Product Specifications (2022). Available online at: https://www.
planet.com/products/planet-imagery/ (Accessed 18/09/2023).

QGIS.org. (2023). QGIS geographic information system (QGIS Association).
Available at: http://www.qgis.org.

Rapaport, T., Hochberg, U., Shoshany, M., Karnieli, A., and Rachmilevitch, S. (2015).
Combining leaf physiology, hyperspectral imaging and partial least squares-regression
(PLS-R) for grapevine water status assessment. ISPRS. J. Photogrammetry. Remote Sens.
109, 88–97. doi: 10.1016/j.isprsjprs.2015.09.003

RStudio Team. (2020). RStudio: integrated development for R (Boston, MA: RStudio,
PBC). Available at: http://www.rstudio.com/.

Sharma, A., Jain, A., Gupta, P., and Chowdary, V. (2021a). Machine learning
applications for precision agriculture: A comprehensive review. IEEE Access 9, 4843–
4873. doi: 10.1109/ACCESS.2020.3048415

Sharma, S., Sharma, J., Soni, V., Kalaji, H. M., and Elsheery, N. I. (2021b).
Waterlogging tolerance: A review on regulative morpho-physiological homeostasis of
crop plants. J. Water Land. Dev. 49, 16–28. doi: 10.24425/jwld.2021.137092

Silva, J. V., Heerwaarden, J., Reidsma, P., Laborte, A. G., Tesfaye, K., and van
Ittersum, M. K. (2023). Big data, small explanatory and predictive power: Lessons from
random forest modeling of on-farm yield variability and implications for data-driven
agronomy. Field Crops Res. 302. doi: 10.1016/j.fcr.2023.109063

Sishodia, R. P., Ray, R. L., and Singh, S. K. (2020). Applications of remote sensing in
precision agriculture: A review. Remote Sens. 12 no. 19, 3136. doi: 10.3390/rs12193136

Smith, G. S., Buwalda, J. G., Green, T. G. A., and Clark, C. J. (1989). Effect of oxygen
supply and temperature at the root on the physiology of kiwifruit vines. New Phytol.
113, 431–437. doi: 10.1111/j.1469-8137.1989.tb00354.x

Tous, J., Romero, A., and Batlle, I. (2013). “The Carob tree: botany, horticulture, and
genetic resources,” in Horticultural. reviews, vol 41. Ed. J. Janock (Wiley, Hoboken),
385–456. doi: 10.1002/9781118707418.ch08

Tsoulias, N., Paraforos, D. S., Fountas, S., and Zude-Sasse, M. (2019). Calculating the
water deficit spatially using LiDAR laser scanner in an apple orchard. Precis. Agric. 19,
115–121. doi: 10.3920/978-90-8686-888-9_13

UN-Water. (2021). Summary Progress Update 2021: SDG 6 – water and sanitation for
all. Version: 1 (Geneva, Switzerland). Available at: www.unwater.org/publications/
summary-progress-update-2021-sdg-6-water-and-sanitation-for-all.

Weiss, M., Jacob, F., and Duveiller, G. (2020). Remote sensing for agricultural
applications: A meta-review. Remote Sens. Environ. 236, 236. doi: 10.1016/
j.rse.2019.111402

Wright, M. N., and Ziegler, A. (2017). Ranger: A fast implementation of random
forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17. doi: 10.18637/
jss.v077.i01

Yamori, W., Noguchi, K., and Terashima, I. (2005). Temperature acclimation of
photosynthesis in spinach leaves: Analyses of photosynthetic components and
temperature dependencies of photosynthetic partial reactions. Plant Cell Environ. 28,
536–547. doi: 10.1111/j.1365-3040.2004.01299.x

Yordanova, R. Y., and Popova, L. P. (2007). Flooding-induced changes in
photosynthesis and oxidative status in maize plants. Acta Physiol. Plant 29, 535–541.
doi: 10.1007/s11738-007-0064-z
frontiersin.org

https://doi.org/10.1016/bs.agron.2019.07.001
https://doi.org/10.1111/gcb.13599
https://doi.org/10.3390/rs13091658
https://doi.org/10.3389/frsen.2022.1010978
https://doi.org/10.1023/a:1011641601076
https://doi.org/10.1038/s41598-023-31664-y
https://doi.org/10.3390/horticulturae3020035
https://doi.org/10.3390/agronomy14010001
https://doi.org/10.3390/agronomy14010001
https://doi.org/10.3390/agronomy13112821
http://www.google.com
https://doi.org/10.3390/ijms17111875
https://doi.org/10.1111/j.1469-8137.1988.tb04162.x
https://doi.org/10.1080/17429145.2018.1432772
http://CRAN.R-project.org/package=raster
https://doi.org/10.1186/1471-2105-14-119
https://doi.org/10.1186/1471-2105-14-119
https://doi.org/10.1007/s11119-021-09870-3
https://doi.org/10.3389/frai.2020.00028
http://www.jstatsoft.org/
https://doi.org/10.3390/rs13091837
https://doi.org/10.3390/rs12132071
https://doi.org/10.3390/rs12132071
https://doi.org/10.1007/s11056-005-0247-7
https://doi.org/10.1007/s11056-005-0247-7
https://doi.org/10.1016/j.fcr.2022.108640
https://doi.org/10.1007/s11099-011-0043-x
https://doi.org/10.3390/rs2081973
https://www.planet.com/products/planet-imagery/
https://www.planet.com/products/planet-imagery/
http://www.qgis.org
https://doi.org/10.1016/j.isprsjprs.2015.09.003
http://www.rstudio.com/
https://doi.org/10.1109/ACCESS.2020.3048415
https://doi.org/10.24425/jwld.2021.137092
https://doi.org/10.1016/j.fcr.2023.109063
https://doi.org/10.3390/rs12193136
https://doi.org/10.1111/j.1469-8137.1989.tb00354.x
https://doi.org/10.1002/9781118707418.ch08
https://doi.org/10.3920/978-90-8686-888-9_13
http://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-for-all
http://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-for-all
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1111/j.1365-3040.2004.01299.x
https://doi.org/10.1007/s11738-007-0064-z
https://doi.org/10.3389/fpls.2024.1302435
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Predicting carob tree physiological parameters under different irrigation systems using Random Forest and Planet satellite images
	1 Introduction
	1.2 Remote sensing in agriculture

	2 Materials and methods
	2.1 Experimental farm conditions
	2.2 Plant physiological measurements
	2.3 Satellite images
	2.4 Statistical analysis and machine learning

	3 Results
	3.1 Field data
	3.1.1 Climatic conditions
	3.1.2 Plant physiological parameters

	3.2 Random forest and linear model prediction performance
	3.2.1 Random forest
	3.2.2 Linear model

	3.3 Remote sensing physiology modeling
	3.3.1 Predicted net assimilation
	3.3.2 Predicted stomatal conductance
	3.3.3 Intrinsic water use efficiency
	3.3.4 Relationship between the physiological parameters


	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


