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Introduction: For nearly two centuries, cranberry (Vaccinium macrocarpon Ait.)

breeders have improved fruit quality and yield by selecting traits on fruiting stems,

termed “reproductive uprights.” Crop improvement is accelerating rapidly in

contemporary breeding programs due to modern genetic tools and high-

throughput phenotyping methods, improving selection efficiency and accuracy.

Methods: We conducted genotypic evaluation on 29 primary traits

encompassing fruit quality, yield, and chemical composition in two full-sib

cranberry breeding populations—CNJ02 (n = 168) and CNJ04 (n = 67)—over 3

years. Genetic characterization was further performed on 11 secondary traits

derived from these primary traits.

Results: For CNJ02, 170 major quantitative trait loci (QTL; R2
≥ 0.10) were found

with interval mapping, 150 major QTL were found with model mapping, and 9

QTL were found to be stable across multiple years. InCNJ04, 69 major QTL were

found with interval mapping, 81 major QTL were found with model mapping, and

4 QTL were found to be stable across multiple years. Meta-QTL represent stable

genomic regions consistent across multiple years, populations, studies, or traits.

Seven multi-trait meta-QTL were found in CNJ02, one in CNJ04, and one in the

combined analysis of both populations. A total of 22 meta-QTL were identified in

cross-study, cross-population analysis using digital traits for berry shape and size

(8 meta-QTL), digital images for berry color (2 meta-QTL), and three-study

cross-analysis (12 meta-QTL).
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Discussion: Together, these meta-QTL anchor high-throughput fruit quality

phenotyping techniques to traditional phenotyping methods, validating state-

of-the-art methods in cranberry phenotyping that will improve breeding

accuracy, efficiency, and genetic gain in this globally significant fruit crop.
KEYWORDS

American cranberry, QTL, meta-QTL, BLUP, phenotyping, perennial crops,
fruit breeding
1 Introduction

The “American” cranberry (Vaccinium macrocarpon Ait.) is

part of a rich and diverse genus with over 500 species adapted to live

in marginal habitats—thriving in acidic, peaty bogs, on the rims of

sulfur-belching volcanoes, and as epiphytes in the upper story of

forests (Vander Kloet, 1988; Vander Kloet and Avery, 2010). Prior

to its breeding in the past two centuries, cranberry had been (and

continues to be) a cultural, economic, and culinary facet of some

indigenous peoples (especially those from modern-day “North

America”) for several millennia. The development and

advancement of Vaccinium germplasm for wide commercial use

offers a chance to expand agriculture beyond fast-dwindling arable

land, offering opportunities to expand nutritional diversity to the

human diet.

Cranberry is one of the most important commercial species in

the Vaccinium genus, along with blueberries, bilberries, and

lingonberries (Chandler et al., 1947; Vorsa and Zalapa, 2019). In

2022, global yield of cranberries was around 600,000 metric tonnes,

with the United States (USA) producing just over 60% of global

yield, followed by Canada at around 35% and Chile (extrapolated)

at just under 4% (FAOSTAT, 2022). The estimated raw production

value of the USA 2022 cranberry harvest was around $304 million

USD (USDA NASS, 2022), not considering value-added products

(Alston et al., 2014). Despite its economic importance and nearly a

century of breeding, most planted cultivars are limited to only one

or two generations beyond wild germplasm, with only recent

introduction of third-generation cultivars in managed marshes

(Diaz-Garcia et al., 2020). Limited breeding progress stems from

large planting space requirements, long establishment times (3–4

years), and extended evaluation times of 6–8 years before

commercial release (Vorsa and Zalapa, 2019).

Cranberries exhibit unique plant architecture among woody

fruit crops, with a growth habit that is characterized by low-growing

vines producing short vertical lateral branches known as “uprights.”

These uprights are classified into two types: vegetative uprights and

reproductive uprights. Vegetative uprights develop apical buds with

only vegetative meristems (vegetative buds) and thus only produce

leaves. Reproductive uprights develop both vegetative and floral

meristems (reproductive buds) and thus produce leaves while also

sustaining the development of flowers and fruit. Apical bud
02
induction and differentiation is determined by both management

practices and by genetics (Bolivar-Medina et al., 2019). Cranberry

yield traits, such as fruit size, quality, shape, and number, were

traditionally measured on these flowering vines on a per-upright

basis. As such, “reproductive upright traits” have been the

traditional target of selection to phenotypically improve berry

quality and yield. However, given the substantial cost and time

required to accurately phenotype these traits, convention is

transitioning toward measuring yield and chemistry on a plot-

level (or per-unit-area) basis (Vorsa and Zalapa, 2019).

The past 7 years have shown incredible progress in cranberry

molecular resource development and utilization (Covarrubias-

Pazaran et al., 2018; Vorsa and Zalapa, 2019). In cranberry,

advancement and cost-reduction in high-throughput genome

sequencing technologies have enabled assembly of plastid and

mitochondrial genomes (Fajardo et al., 2013; Diaz-Garcia et al.,

2019, 2014), construction of two high-quality genome (Diaz-Garcia

et al., 2021; Kawash et al., 2022), de-novo sequencing of cranberry

transcriptomes (Georgi et al., 2013; Sun et al., 2015; Diaz-Garcia

et al., 2021), linkage map development for agronomic traits (Georgi

et al., 2013; Schlautman et al., 2015, 2017a; Covarrubias-Pazaran

et al., 2016; Daverdin et al., 2017), and pilot applications in

association mapping and genomic selection (Covarrubias-Pazaran

et al., 2018; Diaz-Garcia et al., 2020; Neyhart et al., 2022).

These technologies have enabled several marker-trait

association studies on an array of commercially important

cranberry traits. For example, Georgi et al. (2013) found evidence

of several quantitative trait loci (QTL) in four related populations

for field fruit-rot resistance, titratable acidity (TA), fruit weight, and

sound fruit yield (SFY). Schlautman et al. (2015) constructed a high-

density microsatellite linkage map in a breeding population and

discovered QTL for mean fruit weight (MFW), total yield (TY), and

biennial bearing index (BBI). Daverdin et al. (2017) generated high-

density linkage maps in four diverse populations selected to

demonstrate high levels of segregation for field fruit-rot resistance

and found 15 QTL across all populations while demonstrating that

yield traits segregate independently of field fruit-rot resistance.

Image analysis and wet chemistry techniques have demonstrated

the power to rapidly generate fruit shape, size, and color descriptors,

which are important proxies for fruit quality and yield, and have

identified QTL for anthocyanin production, MFW, and shape
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descriptors that are important for sweetened dried cranberry (SDC)

production (Covarrubias-Pazaran et al., 2018; Diaz-Garcia et al.,

2018a, 2018b). Finally, pilot applications in association mapping

and genomic selection have been recently conducted in cranberry

(Covarrubias-Pazaran et al., 2018; Diaz-Garcia et al., 2020; Neyhart

et al., 2022).

Despite these significant advancements in molecular methods

and genetic tools, no study has yet compared or validated trait

phenotypes derived from traditional versus contemporary methods.

We conducted QTL analysis on trait phenotypes obtained from

contemporary phenotyping methods developed in the last three

decades and on traditional phenotyping techniques that have been

implemented by cranberry breeders in the last two centuries

(Franklin et al., 1958; Eck, 1990; Vorsa and Zalapa, 2019). Many

of the traits used in the current study are relevant to modern high-

throughput phenomic tools, and others are traits traditionally

collected per upright to make selection decisions (Diaz-Garcia

et al., 2016). Leveraging advanced genomic and phenomic tools

will accelerate genetic gain in cranberry breeding programs and

improve understanding of which traditional traits are still useful

and relevant in the modern context. This paper is the first to report

correlations, heritabilities, and QTL based on both traditional and

modern phenotyping methods. We propose that modern

phenotyping methods are at least as accurate as traditional

phenotyping methods, if not more so, for detecting heritable

variation in reproductive upright traits, leading to identification

of multi-year QTL for fruit yield and quality. We further expect that

QTL identified across years and across studies (meta-QTL) will offer

robust opportunities to perform marker-assisted selection for

cranberry fruit quality and yield traits. Finally, validation of

modern methods against traditional methods will open the doors

to more efficient selection for these critically important traits.
2 Materials and methods

2.1 Plant material and traits collected

The two full-sib populations used in this study, CNJ02 (n = 168)

and CNJ04 (n = 67), represent the most highly studied populations in

the cranberry fruit yield and quality scientific literature (Schlautman

et al., 2015, 2017b; Covarrubias-Pazaran et al., 2018; Diaz-Garcia et al.,

2018b; Vorsa and Zalapa, 2019; Diaz Garcia et al., 2021). These

populations were established in 2007 in 2.3 m2
field plots at Rutgers’

P.E. Marucci Center for Blueberry and Cranberry Research and

Extension, Chatsworth, NJ (Vorsa and Johnson-Cicalese 2012), with

experimental design described in previous studies (Schlautman et al.,

2015; Covarrubias-Pazaran et al., 2016; Schlautman et al., 2017b; Diaz-

Garcia et al., 2018b). CNJ02 was derived from a cross between seed-

bearing parent, CNJ97_105_3 (cv. Mullica Queen®) and pollen-

donating parent, NJS98_23 (cv. Crimson Queen®); CNJ04 was

derived from reciprocal crosses between CNJ97_105_3 (cv. Mullica

Queen®) and cv. Stevens. Naming conventions of individual genotypes

fo r popu la t i ons CNJ02 and CNJ04 are as fo l l ows :

CNJ<YY>_<CN>_<GID>, where <YY> is a two-digit designation

indicating the year of the cross (2002 or 2004, respectively), <CN> is
Frontiers in Plant Science 03
a number indicating the cross number (CN) for that year, <GID> is a

genotype identifier (GID), and the underscore separates identifiers in

the string. For example, CNJ02_1_38 is a progeny from CNJ02, derived

from the first cross (CN = 1) made in 2002, with genotype individual

number 38 of that cross (GID = 38).

From 2011 to 2014, reproductive uprights were collected from field

plots, 10 uprights per genotype. Traits from CNJ02 and CNJ04 each

were recorded over 3 years, with CNJ02 sampled for the years 2011–

2013 andCNJ04 sampled for 2011, 2012, and 2014. The traits measured

largely comprise those traditionally considered to be commercially

important in cranberries (Vorsa and Zalapa, personal communication),

along with new fruit quality traits. Traits were loosely categorized into

attributes measured directly, and traits features derived from other

attributes. Traits measured directly include the categories Upright

Traits, Largest Berry Traits, and Plot Traits; derived traits fall into the

category Berry Shape Chimera Parameters calculated from berry shape

composite representations (Supplementary Table S1). Traits will

frequently be referred to by both their full names and acronyms to

facilitate figure interpretation and cross-referencing with the

manuscript. Trait acronyms will be defined once again in each new

section or paragraph.

Plot Traits were sampled the same years as the uprights and are

based on 0.09 m2 plot samples of fruit. These include TY, SFY,mean

fruit mass (MFM), percent fruit rot (PFR), total anthocyanins

(Tacy), soluble solids (Brix), TA, and proanthocyanins (PACs)

(Supplementary Table S1) (Diaz-Garcia et al., 2018b).

Upright Traits, which include Largest Berry Traits, were

recorded per upright, and their abbreviations are always prefixed

with the letter “U” (Supplementary Table S1). Upright Traits

include total berry mass (UTBM), length (UL), secondary length

(USL), dry leaf mass (UDM), rebud (URB), mean fruit mass

(UMFM), number of pedicels (UNPs), number of pedicels without

berries (UN0), number of pedicels with mature berries (UNBs),

number of pedicels with aborted flowers (UNAFs), and number of

pedicels with aborted berries (UNABs).

Largest Berry Traits were measured on the largest berry per

upright (10 berries per genotype). Largest Berry yield traits include

berry length (UBL), berry width (UBW), berry length:width ratio

(ULvW), and berry mass (UBM). Largest Berry quality traits include

berry shape (UBS), number of seeds (UNSs), calyx diameter (UCD),

calyx lobe fold pattern (UCLP), calyx lobe size (UCLS), calyx end

shape (UCES), berry pedicel end shape (UBES), and berry bloom level

(UBBL)—a measure of berry epicuticular wax levels.

Berry Shape Chimera Properties are derived from the composite

representations, or chimeras, of five berry shape categories

(Figure 1). The berry chimera is rendered from the average shape

of the 10 largest berries (Figure 2). These parameters were extracted

and mapped to provide a data integrity benchmark of the subjective,

categorical berry shape traits against their per-upright berry trait

analogs (Supplementary Tables S1 and section 2.2).
2.2 Trait evaluation and transformation

All categorical traits were transformed to numeric, discrete

values (except for largest berry shape). Higher values represent
frontiersin.org
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more favorable characteristics. Supplementary Table S3 displays the

conversions of categorical traits to numeric values.

Largest berry shape was quantified by replacing scored shape

categories with their canonical digital image shapes using the

template images provided to trait evaluators (Figure 1). Digital

image shape descriptors derived from the representative berry

chimera are listed in Supplementary Table S1 under category Berry

Shape Chimera Parameters. These images were initially converted to

binary images, normalized by centering all representations, and

scaling so that all shape templates have the same area. Thereafter, a

chimeric berry representation was derived for each genotype year by

combining and thresholding the differential distance transformed

representations of each corresponding upright’s normalized berry

shape (Figure 2). A distance transform representation of a binary

image is the Euclidean distance of any foreground pixel to its nearest

background pixel. The differential distance transformation is the

difference between the distance transformation of the normalized

binary berry template image and the same image inverted. Positive
Frontiers in Plant Science 04
values indicate foreground pixels, with higher values indicating the

centroid of binary images. By combining the differential distance

transforms and thresholding on positive values, a chimeric binary

berry image representation per genotype year can be generated. The

berry chimera therefore represents a synthesized berry image derived

from the composition of multiple categorical berry shapes (10 berry

shape classes per genotype). Shape descriptors are calculated from the

synthesized berry chimera, allowing for quantitative analysis of shape

traits for mapping. Traits upright chimera unsigned manhattan chain

code–X-axis (UKUX) and upright chimera unsigned manhattan chain

code–Y-axis (UKUY) are log   10   derivations of unsigned manhattan

chain codes (UMCC) (Žalik et al., 2016). A chain code is a numerical

representation describing the contour path of an object. UMCCs are

one of many chain codes used to describe contour shapes and were

chosen here for their highly compressible representation. Other

chimera shape descriptors outlined in Supplementary Table S1

include chimera shape eccentricity (UKEC), chimera length:width

ratio (UKLvW), chimera tortuosity (UKTO), and chimera solidity
FIGURE 1

Examples of categories of berry shape parameters used to help classify cranberry shape. Modified from (Franklin et al. 1958).
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(UKSO). Eccentricity (EC) of a closed contour is a mathematical

descriptor for the curvature of an ellipse, with zero indicating a

perfect circle and values closer to one signifying a higher length:width

ratio. Tortuosity describes the “waviness” of an object’s contour and,

in this case, a slope chain code (SCC) method was applied to generate

this tortuosity value (Bribiesca, 2013). Solidity describes the shape

density relative to its convex hull. Lower solidity values indicate more

waviness in the berry contour, while higher values have smoother

contour curvature.

All traits were curated by removing entries marked as rotten,

and outliers were detected and trimmed with the outlierTest()

function of the car package (RRID: SCR_022137) with a default

cutoff of p < 0.05 using a linear model of the trait regressed on

population, genotype, and year (Fox and Weisberg, 2019).

Additional observations were culled if they exceeded three

standard deviation units from the mean under a Gaussian

standard distribution. Subsequent analysis and trait mapping were

applied to all traits based on the mean trait values across the ten

sampled uprights, for each genotype year. From these upright

means, Pearson correlation coefficients were calculated for all

traits and averaged across months and all sampled years.

Correlation heatmap plots were generated using the corrplot

package (RRID: SCR_023081), with statistical p values calculated
Frontiers in Plant Science 05
using the ggcorrplot package (Kassambara, 2019; Wei and Simko,

2021). Trait correlations were partitioned using hierarchical

agglomerative clustering cut at an absolute value correlation tree

height equal to 0.6. These partitions form clusters, or cliques, of

traits, delineated by heavy black lines in the generated heatmaps.

Only non-singleton clusters are reported in the results.
2.3 Linkage maps

Linkage maps used in this study were previously created from a

combination of robust single sequence repeat (SSR) markers and

genotype-by-sequencing (GBS) single-nucleotide polymorphic

(SNP) markers (Schlautman et al., 2017b). SSR marker data

generated for CNJ02 (541 SSRs) and GRYG (189 SSRs) were

discovered and curated as described in Schlautman et al. (2015)

and Covarrubias-Pazaran et al. (2016). For GBS markers, genomic

DNA was extracted from flash frozen leaf tissue and EcoT221-

digested DNA fragments were uniquely barcoded for all progeny

and parents of CNJ02 and CNJ04 using the approach described by

Elshire et al. (2011). These fragments were sequenced (single-end)

at the Cornell University Biotechnology Resource Center Genomics

Facility on a Illumina HiSeq 2000 platform. A reference Tassel GBS
FIGURE 2

Example showing the methodology for generating representative genotype shape, or berry chimera, from 10 upright samples. This berry chimera is
subsequently used as an image to generate digital image processing shape descriptors used in creating quantifying features for QTL mapping.
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analysis pipeline (Bradbury et al., 2007) was used to filter and

process the resulting sequence reads and call SNPs in the resulting

datasets for the CNJ02 and CNJ04 populations using the parameters

described in Schlautman et al. (2017b) and aligned to the cranberry

reference genome produced by Polashock et al. (2014). SNPs

with >20% missing data, minor allele frequency (MAF) of <10%,

or severely distorted segregation ratios were removed. Linkage

analysis on the filtered SSR and SNP markers was performed with

JoinMap v4.1, using a pseudo-testcross method, and biparental

consensus linkage maps were separately generated for CNJ02 (n =

3925) and CNJ04 (n = 3081) (Schlautman et al., 2017b).

Additionally, a composite linkage map (n = 1560) derived from

three cranberry populations, CNJ02, CNJ04, and GRYG, was

generated using a linear programming approach as described by

Schlautman et al. (2017), and is available on the Genome Database

for Vaccinium site under the map identifier Cranberry-

Composite_map-F1 (https://www.vaccinium.org/bio_data/1070).

QTL generated herein used the composite linkage map in order

to facilitate cross-population comparison. Population-specific

biparental consensus linkage maps were used to produce the

additive genomic relationship matrices described in Equation 2.1.
2.4 Estimating breeding values
and heritability

Equation 2.1 shows the mixed model used in estimating best

linear unbiased predictors (BLUPs) within years (Henderson,

1975). The equation variables are defined as follows: y =

phenotype value, m = intercept (global mean of trait), Zg =

genotype random-effect incidence matrix, g = genotypic effects

(BLUPs), Zr = row random effect incidence matrix, r = row effect,

Zc = column random effect incidence matrix, c = column effect, Zs =

2D-spline random effect incidence matrix, s = spline effect, e =

residuals, G = genotype variance-covariance matrix (De Los

Campos et al., 2015), A = additive genomic relationship matrix

(Endelman, 2011), s 2
a = additive genomic variance, I = identity

matrix, s 2
r = row variance, s 2

c = column variance, s 2
s = 2D-spline

variance, s2
e = residual error variance.

y = m + Zgg + Zrr + Zcc + Zss + e 2:1

where g ∼ N (0,G), G = As 2
a , r ∼ N (0, Is 2

r ), c ∼ N (0, Is 2
c ),

s ∼ N (0, Is 2
s ), and e ∼ N (0, Is 2

e ).

Equation 2.2 displays the across year mixed model used in

estimating BLUPs. Year is modeled as a fixed effect. All symbols are

the same as in Equation 2.1 but with the additional term Xe = fixed-

effect year incidence matrix, e = year effect, Zge = genotype-by-year

random-effect incidence matrix, ge = genotype-by-year effect, and

sge = genotype-by-year variance.

y = m + Xee + Zgg + Zgege + Zrr + Zcc + Zss + e 2:2

where levels of Xe ∈ 2011, 2012, 2013, 2014f g, and ge ∼ N (0,s 2
ge).

The mixed models detailed in Equations 2.1 and Equation 2.2

were fit using utilities defined in the R package (R Core Team, 2024)

sommer (Covarrubias-Pazaran, 2016). The additive genomic
Frontiers in Plant Science 06
relationship matrix A (also known as additive relationship

matrix) is a variance-covariance matrix that was constructed

using the sommer function A.mat() on biallelic markers (SNP)

from each population’s respective biparental consensus linkage

map. Modeling the genetic relatedness between genotypes with

the A matrix adjusts for differences absent a structured

experimental design. Spatial effects were also compensated for by

modeling this variation as 2D-spline random effects and as row and

column random effects. The 2D-spline effects are continuous

random variables that model spatial variation that does not track

first-order polynomial (straight-line) field effects or does not trace

along the row and column effects. The row and column random

effects models spatial variation by blocking according to the

predefined row and column indices of the plots. The BLUPs [also

known as genomic estimated breeding values (GEBV)], were

estimated using the mmer() function of the sommer package.

Model selection was performed from a full model search on the

random terms of models defined in Equation 2.1 or Equation 2.2

using the Akaike Information Criteria (AIC) (Akaike, 1974). The

model with the lowest AIC was subsequently used to estimate

BLUPs, balancing model complexity with parsimony. For across-

year mixed model BLUP estimates, the genotype-by-year

interaction effect was excluded from the model fit if it did not

display significance (p < 0.05) using a likelihood ratio test. Random

term variance estimates were used to calculate additive genomic

heritability (h2) of each trait (De Los Campos et al., 2015).

Equation 2.3 displays the formula for calculating within-year

narrow-sense genomic heritability, using variances estimated from

fitting the mixed model (Equation 2.1). Across year genomic

heritability is calculated as shown in Equation 2.4, using variances

estimated from the mixed model (Equation 2.2), with n

representing the number of distinct years fit per trait.

h2 =
s 2
a

s 2
a + s2

e
2:3

h2 =
s 2
a

s 2
a +

s2
ge

n + s 2
e
n

2:4
2.5 QTL mapping

QTL mapping was performed by using the CRAN (RRID:

SCR_003005) package r/QTL (RRID: SCR_009085), a software

toolkit for mapping experimental crosses (Broman et al., 2003).

To infer QTLs, previously modeled genotype BLUPs were

substituted in lieu of raw phenotypes in the R/qtl cross table.

QTL were detected using two methods: a single-QTL interval

mapping method and a model selection approach. Both methods

used Haley-Knott regression to model QTL between genetic map

markers (Haley and Knott, 1992). The single-QTL method uses the

scanone() function, with significant QTL determined using scanone

() run against 1,000 permutations of the phenotypes in order to

simulate the log of odds (LOD) distribution of the NULL model.

The model selection approach uses the stepwiseqtl() function,
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which runs a forward/backward model search algorithm by which

additive and interacting terms are successively added to the model,

followed by “backward” pruning of other model terms that

optimizes a penalized LOD score. The penalized LOD score uses

nth percentile thresholds derived from running scantwo() against

1,000 permutations of the phenotypes in order to control the false

positive rate at n percent (Broman et al., 2009). More complex

models are penalized higher to reduce model overfitting. For single-

QTL interval mapping, the significance threshold was set for QTL

with LOD scores above the 80th permutation percentile, while for

model selection, penalized LOD scores were derived from

thresholds determined from the 95th permutation percentile. QTL

inferred through statistical association mapping approaches are

subsequently referred to as principal or primary QTL.
2.6 Meta-QTL

Co-located QTL, or meta-QTL, represent collections of

principal marker associations that are stable across corresponding

traits, years (multiple models), populations, QTL inference

methods, and/or other studies. Major QTL are defined as those

QTL with a mean percent marker variance explained (marker R2)

greater than or equal to 10%. Within-trait major QTL found for

populations CNJ02 and CNJ04 were assembled from principal QTL

that were stable in at least three of the four models (single-year

models on three separate years as defined in Equation 2.1 and the

multi-year model defined in Equation 2.2). To construct multi-trait

composite meta-QTL, traits were grouped into correlated sets based

on observed trait Pearson correlation blocks (Figure 3) for this

study, or similar groups of traits across studies. Multi-trait

composite meta-QTL were grouped according to the categories

detailed in Tables 1A, 1B, Supplementary Tables 1A, 1B. Within-

trait major meta-QTL were assigned a separate group per trait.

Using the lower and upper LOD 1.5 interval extents, all pairwise

principal QTL within the same group were represented in an

undirected graph structure, where nodes constitute the primary

QTL and edges indicate QTL–QTL overlap. A graph was assembled

for each set and trait group using the Python library NetworkX, and

composite meta-QTL were synthesized from a maximal clique

approximation algorithm, where each maximal clique represents a

new meta-QTL (Van Rossum, 2007; Hagberg et al., 2008). For each

maximal clique, the new left and right extents of the meta-QTL were

taken from the maximal LOD 1.5 left extent and the minimal LOD

1.5 right extent. The meta-QTL’s synthetic position was calculated

as the center, or mean, of its extents. Additionally, information was

recorded for each meta-QTL by compiling summary statistics such

as population count, study count, year count, mapping method

count, trait count, and mean marker variance explained by QTL.

Other meta-QTL information compiled included the composite list

of traits, populations, models (temporal consistency), and studies.

Genomic plots of composite meta-QTL were generated using a

customized version of the CRAN package LinkageMapView (Ouellette

et al., 2018). For each multi-trait set annotated in Tables 1A, 1B, a

representative linkage map of selected meta-QTL was generated. Line

segments represent the maximal LOD position of the principal trait
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QTL, linkage map fills represent the original LOD 1.5 intervals, labels

identify the respective traits of the composite, and interval bars

demarcate the intersection of principal QTL 1.5 LOD intervals.

Traits and intervals are colored as defined in each figure’s respective

legend (Figures 4–6). Within-trait meta-QTL for CNJ02 and CNJ04 are

graphed similarly to multi-trait meta-QTL, but with each linkage group

subdivided into four columns delineating the year models (Figure 4).
3 Results

3.1 Correlations

Prominent trait correlations illuminate phenotypic

relationships for population CNJ02 (A and B) and CNJ04 (C and

D) (p < 0.05) (Figure 3). The bar plots in Figures 3B, D show the 15

top positive and 15 bottom negative inter-trait correlations per

respective population. Only significant correlations (p < 0.05) are

displayed in Figures 3B, D. Correlated trait clusters in CNJ02

include {PACs, TY, SFY}, {MFM, UMFM, UBM, UTBM}, and

{UCLP, UCLS}, {UKTO, UKUY}, {biennial bearing index-total

yield (BBITY), biennial bearing index-sound fruit yield (BBISFY)},

{UNAFs}, {UBL, UDM}, and {UBL, UKLvW, UKEC, ULvW, UKUX}

(Figure 3A). Pairwise positive associations evident in the CNJ02

dataset include {SFY × TY}, {MFM × UBM}, {MFM × UMFM},

{UBM × UTBM}, and {MFM × UBW}. Negative pairwise

correlations found in the CNJ02 dataset include {TY × PAC},

{UCLP × UCLS}, {SFY × PAC}, {SFY × Tacy}, {PAC × UNABs},

{MFM × PAC}, {MFM × UNAFs}, and {MFM × UBBL}. For CNJ04,

correlation clusters include the {TY, SFY, UTBM, UNBs} cluster and

the {MFM, UMFM, UBM} cluster (Figure 3C).
3.2 Heritabilities

Generally, all-year model trait BLUPs (Equation 2.2) have larger

heritabilities relative to their respective fitted model trait BLUPs for

individual years. Traits with consistently high heritability in both

populations are displayed in Figure 7. Heritability values are

calculated from the inter-population mean of the all-year model

heritability (Figure 7A), and separately, the within-year model

heritability averages between CNJ02 and CNJ04 (Figure 7B). ULvW

has remarkably high heritability in both populations, followed by UBL

and UNSs. Tacy, a desirable trait associated with fruit color, also shows

evidence of high heritability. High heritabilities in UBM, UMFM, and

TY indicate strong potential for selecting for higher yields in both

populations. The fruit rot SFY and PFR exhibited low to modest

heritabilities (0.3 ≤ h2 ≤ 0.6) in both populations. Fruit quality traits

such as TA and Brix exhibit very low all-year heritabilities in

population CNJ02 but higher heritability in CNJ04 (Figure 8).
3.3 Breeding value estimates

Population CNJ02 and CNJ04 both displayed evidence of

transgressive segregation for many of the traits. Tables 2, 3 show
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summary statistics for traits and their associated BLUPs for the

all-year model. Rows are sorted by decreasing heritability, and

only display the top 50% of models based on heritability

(h2   ≥   0:47) and with significant genotypic effects (p < 0.05).

Raw trait associated statistics are subscripted with the italicized

letter r, and BLUP associated statistics are subscripted with the

italicized letter b. The top and bottom five representative

genotypes are also presented both for recorded traits and for

genotype BLUPs.
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3.4 QTL analysis

3.4.1 CNJ02 population
For the CNJ02 population, around six QTL per trait × model

were found for the scanone method and 10 QTL per trait × model

were found for the stepwiseqtl method. Of the 385 additive scanone

QTL found in models with significant genotype effects (p < 0.05),

170 were major QTL (marker PVE ≥ 0.1). Of the stepwiseqtl

additive QTL found in models with significant genotype effects,
FIGURE 3

Trait phenotype correlation heatmaps for traits in cranberry populations CNJ02 (A, B) and CNJ04 (C, D). Only traits found within non-singleton
hierarchical clusters are shown in (A, C), where black squares delineate clusters. The 15 largest positive and 15 smallest negative correlations are
shown in (B,D). Only significant pairwise trait correlations (p < 0.05) are displayed.
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TABLE 1A Trait groupings for each set of co-located QTL in present study.

Trait Groupsa Filterb

CNJ02 R2 ≥ 10%

mean fruit mass (MFM, UMFM); berry width (UBW);
berry mass (UBM); total berry mass (UTBM)

Year count ≥ 4

total yield (TY); sound fruit yield (SFY); proanthocyanins (PAC)

berry length (UBL); chimera eccentricity (UKEC);
berry length:width (ULvW), chimera length:width UKLvW);

upright length (UL); upright dry leaf mass (UDM)

number of pedicels (UNP); number of pedicels with aborted flowers (UNAF)

CNJ04 R2 ≥ 10%

UNP; UNAF Year count ≥ 4

upright secondary length (USL); UDM

number of seeds (UNS); UBW, MFM, UMFM; UBM

number of pedicels with mature berries (UNB); TY; SFY; UTBM

UBL; ULvW, UKLvW; UKEC

CNJ0x R2 ≥ 10%

UNP; UNAF Year count ≥ 4

MFM, UMFM; UBM; UBW; Populations ≥ 2

TY; SFY

UBL; ULvW, UKLvW; UKEC
F
rontiers in Plant Science 09
aBold entries designate the separate sets used in co-location QTL analysis. bMultiple filter rules are combined with a logical AND operation. Trait groupings for each set of co-located QTL in
present study. Trait groups were selected based on correlated clusters or similar categories of traits. The filter column details the constraints applied to the synthetic meta-QTL that are displayed

in the linkage maps. R2 is the mean percent marker variance explained across all composite QTL. Trait acronyms are provided upon first use in table and are abbreviated thereafter.
TABLE 1B Trait groupings for each set of co-located quantitative trait loci (QTL) across cranberry studies (present study included).

Trait groupsa Populations Filterb

CNJ0x & Diaz-Garcia 2018a CNJ02, CNJ04, GRYG R2 ≥ 10%

MFM, UMFM, UBM, UTBM, BW, UBW, UBL, BL, berry area (BA) Trait count ≥ 3

TY, SFY, PAC Study count ≥ 2

EC, UKEC, LvW, ULvW

CNJ0x & Diaz-Garcia 2018b CNJ02, CNJ04, & GRYG R2 ≥ 10%

MFM, UMFM, UTBM, UBW, UBM, UBL Populations ≥ 2

TY, SFY, PAC Study count ≥ 2

Berry color (BCOLOR), berry color variance (BCOLORVAR)
total anthocyanin (Tacy),
total anthocyanin in September (TACY_SEP),
total anthocyanin in October (TACY_OCT),
difference in Tacy between Sept. and Oct. (TACY_DIFF)

CNJ0x & Schlautman 2015 CNJ02, CNJ04 R2≥10%

MFM, UMFM, UTBM, UBM, UBL, UBW Study count ≥ 2

TY, SFY, PAC

CNJ0x & Schlautman 2015 & Diaz-Garcia 2018a CNJ02, CNJ04, GRYG R2 ≥ 10%

(Continued)
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150 of 702 were major. The average scanone percent variance

explained (PVE) per QTL was 9.8%, with an average model PVE

of 71.5%. The mean stepwiseqtl QTL PVE was 7.2%, with an

average model PVE of 89.9%. A full list of QTL and their effect

sizes can be found in Supplementary Tables S4, S5.

A summary of stable multi-model, within-trait meta-QTL for

CNJ02 are displayed in Figure 4A, Table 4. The Tacy trait displays a

prominent meta-QTL on linkage group 3 (position 55.8 cM) with

an average paternal effect of −11 mg units per 100 mg fruit. UBM,

UTBM, and PFR all have proximal QTL on linkage group 11

(around 30 cM) with UBM and UTBM having similar average

paternal effect sizes of −0.34 g and −0.29 g. A meta-QTL for MFM

(per upright) is found very close to the berry mass and upright berry

mass on linkage group 11 (position 38.1 cM) with a similar paternal

effect size of −0.3 g/fruit. PFR has around 10% decrease for both the

maternal and paternal effects. A meta-QTL is found very close to the

UBM and UTBM on linkage group 11 (position 38.1 cM), with a
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similar paternal effect size of −0.3 g/fruit. SFY has a meta-QTL on

linkage group 12 at 40.4 cM, with a maternal effect size of 10 g/0.09

m2 and a paternal effect size of 46 g/0.09 m2. UKLvW has a modest

meta-QTL on linkage groups 3 (position 30.7 cM) and 9 (position

82.7 cM). UBL has a meta-QTL on linkage group 10 (position 53.0

cM) with a maternal effect size of −1.8 mm and paternal effect size

of 1.1 mm.

3.4.2 CNJ04 population
Despite having a lower population size (n = 67), and thus lower

power to find statistically significant QTL, prominent QTL were

found in CNJ04. An average of three QTL per trait × model were

found using scanone and nine QTL per trait × model were mapped

with stepwiseqtl. Of the 90 scanone QTL found in models with

significant genotype effects, 69 were major QTL. Of the stepwiseqtl

QTL found in models with significant genotype effects, 81 of 365

were major. The scanone average total BLUP variance explained per
FIGURE 4

Co-located, stable QTL in cranberry populations CNJ02 (A) and CNJ04 (B) found in at least three of four BLUP models. Only QTL with R2 ≥ 10% are
shown. Shaded bars represent the 1.5LOD confidence interval for the original QTL, with the darker line segments indicating the location of the QTL.
The linkage groups are divided into four columns, one for each fitted BLUP model—from left to right: 2011, 2012, 2013, and all years (A); and 2011,
2012, 2014, and all years (B). Each QTL interval is color-coded by its corresponding trait. The labels and interval lines to the right of linkage groups
show the stable meta-QTL associated with their respective genomic regions.
TABLE 1B Continued

Trait groupsa Populations Filterb

MFM, UMFM, UTBM, UBM, BL, UBL, BW,UBW, BA Trait count ≥ 3

TY, SFY, PAC Study count ≥ 2

EC, UKEC, LvW, ULvW
aBold entries designate the separate sets used in co-location QTL analysis.
bMultiple filter rules are combined with a logical AND operation.
Trait groupings for each set of co-located quantitative trait loci (QTL) across cranberry studies (present study included). Trait groups were selected based on correlated clusters or similar

categories of traits. The filter column details the constraints applied to the synthetic meta-QTL that are displayed in the linkage maps. R2 is the mean percent marker variance explained across all
composite QTL. Trait acronyms are provided upon first use in table and are abbreviated thereafter.
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QTL was 16.9%, with an average BLUP variance explained by all

QTL per trait × model of 67%. The stepwiseqtl average total BLUP

variance explained per QTL was 7%, with an average BLUP variance

explained by all QTL per trait × model of 96.6%. A full list of QTL

and their effect sizes can be found in Supplementary Tables S6, S7.

Table 5, Figure 4B show the inventory of durable multi-model,

within-trait meta-QTL for CNJ04. PAC content has a meta-QTL on

linkage group 7 (position 28.7 cM) with a mean maternal effect size

of 0.14 mg/g fruit and a mean paternal effect size of 0.19 mg/g fruit.

A meta-QTL associated with the trait UKLvW can be found on

linkage group 11 (position 10.3 cM), with similar maternal and

paternal effect sizes of 0.1. A meta-QTL associated with trait UBL is

located nearby the trait ULvW meta-QTL on linkage group 11

(position 16.0cM) and has maternal and paternal effect sizes of 1.1

and 1.3, respectively. A meta-QTL for UTBM is found on linkage
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group 9 (position 82.6cM) with a maternal effect size of 0.44 g fruit/

upright and paternal effect size of 0.19 g fruit/upright.

3.4.3 Multi-trait Cross-population meta-QTL
Co-located trait-marker associations representing stable, cross-

population QTL are shown in Figure 5. Together, they represent

stable meta-QTL derived from the primary QTL found in the

current study for CNJ02, CNJ04, and CNJ0x. The traits that pass

the filtering constraints outlined in Table 1A are all yield or yield-

adjacent traits. Composite multi-trait QTL are found on linkage

groups 2, 3, 10, 11, and 12 for set CNJ02 (Table 1A, Figure 5A);

linkage group 11 for set CNJ04 (Table 1A, Figure 5B); and linkage

groups 3, 11, and 12 for set CNJ0x (Table 1A, Figure 5C).

For set CNJ02 (Table 1A, Figure 5A), linkage group 2 has a

composite QTL for {UBL, ULvW, UKLvW, UKEC} (position 72.6
FIGURE 5

Noteworthy multi-trait, co-located QTL for cranberry populations CNJ02 (A), CNJ04 (B), and both CNJ02 and CNJ04 (C), based on results from
this study.
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cM); linkage group 3 has a year-stable meta-QTL for Tacy (position

55.8 cM); linkage group 10 has a compound QTL for {UBM, UTBM,

UBW, MFM and UMFM} (position 29.4 cM); linkage group 11 has

three meta-QTL at two positions for {MFM, UMFM, UTBM,MFM,
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BW} and {UBL, ULvW, UKEC, UKLvW} (position 29.4 cM) and

{UBM, UTBM, UMFM, MFM, UBW} (position 38.4cM); and, last,

linkage group 12 has a co-located QTL for {SFY, TY} (position 40.4

cM). Set CNJ04 (Table 1A, Figure 5B), linkage group 11 has a co-
FIGURE 6

Cross study co-located meta-QTL found comparing QTL from this study with QTL from Diaz-Garcia et al. (2018b) (A), Diaz-Garcia et al. (2018a) (B),
Schlautman et al. (2015) (C), and a combined synthesis of Diaz-Garcia et al. (2018a) and Schlautman et al. (2015) (D) in cranberry populations CNJ02,
CNJ04, and GRYG.
FIGURE 7

Mean heritability between cranberry populations CNJ02 and CNJ04 of all-year model (A) and across within-year models (B). Only the top 50% of
traits based on mean within-year model heritability are displayed.
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located QTL for {UBL, ULvW} (position 10.3 cM). For set CNJ0x

(Table 1A, Figure 5C), linkage group 3 has a meta-QTL for Tacy

(position 55.8 cM); linkage 11 has compound QTL for upright traits

{UBL, ULvW, UKEC, UKLvW} (position 18.7 cM); and linkage 12

has a composite QTL for {SFY, TY} (position 40.4 cM).

Figure 6 shows meta-QTL found through comparison of this

study’s QTL to QTL previously found in Diaz-Garcia et al. (2018a);

Diaz-Garcia et al. (2018b), and Schlautman et al. (2015), collectively

containing meta-QTL from populations CNJ02, CNJ04, and the

additional linkage mapping population GRYG. Cross-study meta-

QTL co-located with populations CNJ02 or CNJ04 include those

associated with sets CNJ0x & Diaz-Garcia, 2018b (Table 1B;

Figure 6A); CNJ0x & Diaz-Garcia, 2018a (Table 1B; Figure 6B);

CNJ0x & Schlautman 2015 (Table 1B; Figure 6C), and CNJ0x &

Schlautman, 2015 & Diaz-Garcia, 2018a (Table 1B; Figure 6D;

Supplementary Table S2). The shared set CNJ0x & Diaz-Garcia,

2018b (Figure 6A) contains meta-QTL associated with chemistry

traits, yield traits, and color traits derived from digital images of

berries. Color traits are tightly associated with Tacy content (Diaz-

Garcia, 2018b). Set CNJ0x & Diaz-Garcia, 2018b has two composite

QTL on linkage group 3 that are stable across this study and the

Diaz-Garcia et al. (2018b) QTL study for composite traits

{BCOLOR, Tacy, BCOLORVAR} (34.0 cM) and {Tacy, BCOLOR,

TACY_SEP, BCOLORVAR, TACY_OCT} (56.1 cM). Set CNJ0x &

Diaz-Garcia, 2018a (Figure 6B) contains meta-QTL for traits

affiliated with yield and berry quality, including digital traits

measuring berry shape and size parameters (Diaz-Garcia et al.,

2018a). For set CNJ0x & Diaz-Garcia, 2018a, linkage group 1 has a
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composite QTL for {BA, BL, UBW, BW} (102 cM); linkage group 2

has a meta-QTL for {upright berry length (UBL), BL, UMFM}

(position 23.3 cM); linkage group 9 has a composite QTL for

{UTBM, UBM, BW} (82.7 cM); linkage group 11 has three meta-

QTL for {BA, BL, BW, UBL, UMFM}, {LvW, ULvW, UKEC}, and

{LvW, ULvW, EC} clustered at positions 13.8, 21.1, and 77.8 cM,

respectively; and linkage group 12 has two separate but close

clusters of meta-QTL for {LvW, UKEC, EC} at positions 44.9 and

50.3cM, respectively. Set CNJ0x & Schlautman (Figure 6C), linkage

group 6 has a compound QTL for {UTBM, MFM} (position ~77.0

cM); linkage group 10 has two meta-QTL for {UBM, MFM, UMFM}

(positions 33.3 and 42.0 cM), linkage group 11 has four composite

QTL for {UBL, MFM, UMFM)} (12.6 cM), {PACs, SFY, TY} (18.7

cM), multi-year {BBITY} (19.6 cM), and for {UBM, UTBM, MFM,

UMFM, UBW} (38.4 cM). For set CNJ0x & Schlautman, 2015 &

Diaz-Garcia, 2018a (Figure 6D), linkage group 1 has a compound

QTL for {berry area (BA), BW, UBW, BL} (position 101.6 cM);

linkage group 2 has a meta-QTL for {BL, UBL, UMFM} (position

23.2 cM); linkage groups 9 and 10 each have a single meta-QTL—

linkage group 9 for {UBM, UTBM, BW} (position 82.7 cM) and

linkage group 10 for {UBM, MFM, UMFM} (position 33.3 cM);

linkage group 11 has the highest number and density of meta-QTL

—a cluster of three composite QTL (13–21 cM), one meta-QTL

(38.4 cM), and two co-located QTL (77.8 cM to 81.2 cM). The first

cluster has meta-QTL at 13.1 cM and 16.0 cM for {UBL, MFM,

UMFM, BW, BL} and {EC, ULvW} respectively, and meta-QTL at

18.7 cM and 21.1 cM for {PAC, SFY, TY} and {UKEC, LvW, ULvW}.

Linkage group 11 also has compound QTL for {UBM, UTBM,
FIGURE 8

Heritabilities and Spearman’s rank correlation coefficients (r) for cranberry traits in populations (A) CNJ02 and (B) CNJ04. Correlation coefficients
represent the associations between genotype BLUPs and their associated phenotypes for the all-year mixed model.
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MFM, UMFM, UBW} (38.4 cM), {EC, LvW, ULvW} (77.8 cM), and

{BA, BL,MFM} (81.2 cM); and linkage group 12 has two meta-QTL

for {LvW, EC, UKEC}—one at 45.0cM and one at 50.3 cM.
4 Discussion

A recent acceleration of the quantity and quality of cranberry

molecular resources has propelled advances in cranberry breeding

(Vorsa and Zalapa, 2019; Diaz-Garcia et al., 2020). Advances in the

genetic capital of this important fruit crop include development of

high-density linkage maps, construction of mitochondrial, and

nuclear genome assemblies, a plethora of QTL mapping studies in

a variety of important traits (Vorsa and Zalapa, 2019), and a

feasibility study in genomic prediction and genomic selection

(Covarrubias-Pazaran et al., 2018).

Shifts and innovations in cranberry phenotyping methods have

paralleled advances in genetic resource development. Up until 60

years ago, breeders would select cranberry breeding material based

on traits measured from the fundamental unit of cranberry

productivity : the “reproductive upright .” Since then,

modernization of farming technology and management methods,

improved understanding of cranberry physiology, emerging

cranberry products and markets, expansion of high-yielding

cultivars, and climate change have transformed how breeders
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prioritize and assess traits (Vorsa and Zalapa, 2019). The focus

has thus shifted from assessing cranberry uprights to assessing plot-

level measurements, increasingly combined with high-throughput

digital imaging (Diaz-Garcia et al., 2018a, 2018b).

Despite a widespread acceptance and application of these

modern trait collection methods in cranberry breeding, a

translation gap exists in how upright traits relate to these newer

phenotype scoring methods. With dense marker maps and parallel

collection of both reproductive upright attributes and plot-level

traits, the current study offers a unique opportunity to use both

phenotypic paradigms for genetic mapping. This paper is the first to

comprehensively report correlations, heritabilities, and QTL based

on both traditional and modern phenotyping methods.
4.1 Trait correlations

In the CNJ02 population, Tacy and PAC are negatively

correlated with SFY but positively correlated with PFR. These

correlations indicate that, as pigments and other flavonoids

develop, cranberry fruit develop more decay, which is likely a

consequence of biochemical patterns that coordinate with the

timing of cranberry ripening, over-ripening, and subsequent rot

(Supplementary Table S8) (Georgi et al., 2013; Daverdin et al.,

2017). We also found that, in both studied populations, MFM—a
TABLE 2 Cranberry population CNJ02 trait and BLUP summary for all-year model with heritability above 0.47. Only models with significant (p < 0.05)
genotypic effects are displayed.

Trait h2
*

F1 progeny Parents

Minr
† Minb‡ mr ± SE§ mb ± SE# Maxr

⚭ Maxb
⚔ P1r

♠ P1b
♥ P2r

♦ P2b
♣

ULvW 0.97 1.10 1.10 1.30 ± 0.10 1.30 ± 0.09 1.50 1.50 1.20 1.30 1.30 1.30

UBL 0.91 17.0 15.0 22.0 ± 1.90 20.0 ± 1.40 26.0 23.0 22.0 20.0 23.0 19.0

UNS 0.88 8.70 9.60 20.0 ± 3.60 16.0 ± 2.50 30.0 22.0 20.0 17.0 18.0 16.0

Tacy 0.88 16.0 23.0 30.0 ± 7.20 34.0 ± 5.30 48.0 46.0 - 32.0 - 35.0

UBM 0.77 1.40 1.50 2.40 ± 0.37 2.0 ± 0.18 3.30 2.50 2.20 1.90 2.80 2.0

UMFM 0.74 1.20 1.40 2.20 ± 0.36 1.80 ± 0.18 3.00 2.30 2.00 1.80 2.50 1.80

TY 0.74 79.0 −110 310 ± 100 41.0 ± 44.0 570 160.0 - 21.0 - 63.0

UCLP 0.78 0.23 1.00 1.20 ± 0.36 1.60 ± 0.23 1.80 2.10 0.45 1.40 1.40 1.90

UCLS 0.65 0.40 0.73 1.10 ± 0.25 1.10 ± 0.15 1.90 1.60 1.60 1.20 1.20 1.00

SFY 0.77 24.0 −140 230 ± 91.0 34.0 ± 46.0 460.0 150 - 8.10 - 60.0

UKLvW 0.69 1.10 1.20 1.50 ± 0.09 1.40 ± 0.05 1.70 1.50 1.40 1.40 1.50 1.40

PFR 0.73 9.70 17.0 30.0 ± 13.0 30 ± 7.40 84.0 60.0 - 32.0 - 29.0

UKEC 0.65 0.35 0.60 0.73 ± 0.06 0.70 ± 0.03 0.81 0.78 0.71 0.71 0.73 0.69

UNPs 0.51 2.80 2.80 4.10 ± 0.57 3.40 ± 0.22 5.60 3.90 5.20 3.20 4.40 3.60

UBW 0.60 14.0 14.0 17 ± 0.93 15.0 ± 0.32 21.0 16.0 17.0 15.0 18.0 15.0

UTBM 0.49 1.90 2.40 4.60 ± 0.96 3.30 ± 0.32 7.70 4.20 4.40 3.0 5.70 3.60

UKTO 0.55 84.0 85.0 100 ± 9.40 92.0 ± 3.50 130 100.0 95.0 87.0 100.0 98.0
frontie
*Narrow-sense genomic heritability for trait/model. †Minimum raw trait value. ‡Minimum BLUP trait value. §Mean raw trait value ± standard error. #Mean BLUP trait value ± standard error.
⚭Minimum raw trait value. ⚔Minimum BLUP trait value. ♠Maternal raw trait value. ♥Maternal BLUP trait value. ♦Paternal raw trait value. ♣Paternal BLUP trait value
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plot yield trait—was strongly correlated with many of the per

upright yield-related traits (e.g., UBL, UBM, and UBW). These

correlations are the first reported link between a plot-level yield trait

and per-upright yield traits in both CNJ02 (Figures 3A, B;

Supplementary Table S8) and CNJ04 (Figures 3C, D;

Supplementary Table S9). In the CNJ02 population, modest but

significant positive correlations between plot trait TY and upright

traits {UTBM, UBW, UBM, UMFM, UNPs, and UNBs} further links

plot traits with upright traits. These plot yield × upright trait

correlations (TY × {UNPs, UNB, UTBM}) were also observed in

the CNJ04 population, though to a lesser degree (Figures 3C, D;

Supplementary Table S9). These correlations not only establish

important relationships between plot level and upright trait types

but also may indicate the existence of co-located trait blocks within

the genome (Diaz-Garcia et al., 2018a, 2018b). For both the CNJ02

and CNJ04 populations, we found that UKLvW, a trait derived from

berry shape categorical data, had a moderate positive correlation

with quantitative traits such ULvW. This result validates that berry

chimeras composited from the berry shape scores track well with

numerically precise, accurately measured traits such as ULvW,

despite being a subjective trait prone to imprecision.
4.2 Heritabilities

Estimating heritabilities offers breeders a chance to find confidence

that their selections will be fruitful in subsequent generations. Although

this study calculates heritabilities from mixed model estimates of
Frontiers in Plant Science 15
environmental, additive genetic, and residual variances, the

heritabilities derived offer breeding insights when selecting upon

model derived BLUPs. Many of the calculated heritabilities in this

study are comparable to the results of other studies. For example, the

high mean heritability of the ULvW (ULvW ratio, h2 ≈ 0:97) parallels

plot data findings found in GRYG, a population genetically distinct

from CNJ02 and CNJ04 (Diaz-Garcia et al., 2018a). Consistently high

heritability across these three populations suggests a strong genetic

persistence of ULvW ratio. High heritabilities in both ULvW ratio and

in related plot traits indicates that selecting rounder berries (lowULvW

ratio) with either method is effective. Moderate heritability estimates of

TY (h2 ≈ 0:74 for CNJ02, h2 ≈ 0:62 for CNJ04) are lower relative to

other berry size and weight parameters – these estimates are consistent

with the highly polygenic nature of this trait in other crops. Schlautman

et al. (2015) estimated CNJ02 heritabilities of h2 ≈ 0:70 and h2 ≈ 0:64

for mean fruit weight (MFM) and TY, respectively. Trait heritabilities

for Tacy, Brix, and titratable acidity (TA) were consistent with the

present study, while their lower heritability estimates for TY

(0:29 <   h2 < 0:47) are likely due to the use of small populations

(Vorsa and Johnson-Cicalese, 2012). Furthermore, a study by Johnson-

Cicalese et al. (2015) using midparent-progeny mean regression

estimates of heritability for fruit rot resistance (h2 ≈ 0:81) found

consistently higher heritability with fruit rot (%) (PFR) in the CNJ02

population of this study (h2 ≈ 0:73). Lower heritability estimates found

in CNJ04 (h2 ≈ 0:46) could be due to reduced statistical power from

lower population size. Moderate heritability of traits like SFY and PFR

demonstrate limited but possible potential for selecting rot-resistant

varieties in regions where berry rot is a problem. The traits TA and Brix
TABLE 3 Cranberry population CNJ04 trait and BLUP summary for all-year model with heritability above 0.47. Only models with significant (p < 0.05)
genotypic effects are displayed.

Trait h2*

F1 progeny Parents

Minr† Minb
‡ mr ± SE§ mb ± SE# Maxr

⚭ Maxb
⚔ P1r

♠ P1b
♥ P2r

♦ P2b
♣

ULvW 0.96 1.10 1.10 1.2 ± 0.09 1.2 ± 0.07 1.5 1.40 1.40 1.20 - -

UBL 0.90 19.0 18.0 22 ± 1.40 20 ± 1.10 27 24.0 24.0 20.0 - -

UNS 0.88 8.70 9.40 19 ± 3.40 17 ± 2.40 26 22.0 17.0 17.0 - -

Tacy 0.86 10.0 25.0 23 ± 5.80 34 ± 4.60 35 42.0 - 29.0 - -

UBM 0.81 2.10 2.00 2.7 ± 0.27 2.3 ± 0.17 3.3 2.80 2.80 2.30 - -

UMFM 0.83 1.80 1.70 2.4 ± 0.28 2.0 ± 0.17 3.3 2.50 2.30 1.90 - -

PAC 0.73 1.00 1.20 1.4 ± 0.16 1.4 ± 0.10 1.8 1.70 - 1.40 - -

TY 0.62 63.0 48.0 370 ± 89 180 ± 41.0 540 260 - 160 - -

UCLP 0.56 0.29 1.10 1.2 ± 0.35 1.5 ± 0.14 1.9 1.70 1.50 1.40 - -

UCLS 0.65 0.47 1.10 1.3 ± 0.32 1.5 ± 0.18 1.9 1.80 1.30 1.60 - -

SFY 0.50 58.0 52.0 320 ± 82.0 140 ± 30.0 500 210 - 130 - -

UKLvW 0.55 1.20 1.20 1.4 ± 0.07 1.3 ± 0.03 1.6 1.40 1.40 1.30 - -

UKEC 0.51 0.59 0.64 0.72 ± 0.03 0.68 ± 0.01 0.79 0.70 0.72 0.68 - -

UNPs 0.57 3.10 3.80 4.2 ± 0.48 4.3 ± 0.23 5.2 4.70 3.60 4.20 - -

UTBM 0.55 3.10 3.90 5.1 ± 0.81 4.6 ± 0.38 7.6 5.60 4.80 4.30 - -
front
*Narrow-sense genomic heritability for trait/model. †Minimum raw trait value. ‡Minimum BLUP trait value. §Mean raw trait value ± standard error. #Mean BLUP trait value ± standard error.
⚭Minimum raw trait value. ⚔Minimum BLUP trait value. ♠Maternal raw trait value. ♥Maternal BLUP trait value. ♦Paternal raw trait value. ♣Paternal BLUP trait value.
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TABLE 4 Co-located, stable QTL in cranberry population CNJ02 found in at least three of four BLUP models. Only QTL with R2 ≥ 10% are shown.
Table is arranged in descending order by mean marker variance.

Trait Models LG Position (cM)* R2† -1.5 LOD (cM)§ +1.5 LOD (cM)# Methods‡ AvB⚭ CvD⚔ Int♠

Tacy

2011+
2012+
2013+
all years

3 55.8 27.9 52.9 58.6
scanone+
stepwiseqtl

−1.70 −11.0 0.48

UBM
2012+
2013+
all years

11 30.8 20.9 30.3 31.2 stepwiseqtl −0.06 −0.34 0.06

PFR
2011+
2012+
all years

11 30.8 20.4 30.3 31.2
scanone+
stepwiseqtl

−10.0 −9.90 2.50

UTBM
2011+
2012+
2013

11 29.8 18.0 28.4 31.2
scanone+
stepwiseqtl

0.08 −0.29 0.05

UMFM
2012+
2013+
all years

11 38.1 17.2 37.5 38.7
scanone+
stepwiseqtl

−0.11 −0.30 0.08

SFY

2011+
2012+
2013+
all years

12 40.4 16.0 38.1 42.6
scanone+
stepwiseqtl

10.0 46.0 −1.10

UKLvW
2011+
2012+
all years

3 30.7 15.2 28.6 32.8
scanone+
stepwiseqtl

0.04 0.06 0.02

UKLvW
2011+
2013+
all years

9 82.7 13.5 81.2 84.2 scanone 3e-02 0.07 4.2e-03

UBL
2012+
2013+
all years

10 53.0 12.9 51.8 54.2
scanone+
stepwiseqtl

−1.80 1.10 −0.74
F
rontiers in
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*Mean position of combined QTL. †Mean of variance explained by combined QTL. ‡QTL mapping method applied. §1.5 LOD left interval. #1.5 LOD right interval. ⚭Mean maternal effect size:
(AC+AD)-(BC+BD). ⚔Mean paternal effect size: (AC+BC)–(AD+BD). ♠Mean interaction effect size: (AC+BD)-(AD+BC).
TABLE 5 Co-located, stable QTL in cranberry population CNJ04 found in at least three of four BLUP models. Only QTL with R2 ≥ 10% are shown.
Table is arranged in descending order by mean marker variance. All QTL were reported below were identified with both scanone and

stepwiseqtl methods
‡
.

Trait Models LG Position (cM)* R2† -1.5 LOD (cM)§ +1.5 LOD (cM)# AvB⚭ CvD⚔ Int.♠

PAC
2012+
2014+
all years

7 28.7 26.6 24.3 33.2 0.14 0.19 −0.03

ULvW
2011+
2014+
all years

11 10.3 25.6 9.6 11.1 0.10 0.11 0.020

UBL
2011+
2012+
2014

11 16.0 20.9 11.7 20.2 1.10 1.30 −2.8e-03

UTBM
2011+
2014+
all years

9 82.6 14.0 80.9 84.2 0.44 −0.19 0.04
*Mean position of combined QTL. †Mean of variance explained by combined QTL. ‡QTL mapping method applied. §1.5 LOD left interval. #1.5 LOD right interval. ⚭Mean maternal effect size:
(AC+AD)-(BC+BD). ⚔Mean paternal effect size: (AC+BC)–(AD+BD). ♠Mean interaction effect size: (AC+BD)-(AD+BC).
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exhibited notable differences in heritability between CNJ02 and CNJ04.

In CNJ04, the heritabilities of TA (h2 ≈ 0:77) and Brix (h2 ≈ 0:66)

were rather high, while in CNJ02, these two traits exhibited low

heritability (TA, h2 ≈ 0:17 and Brix, h2 ≈ 0). This likely has to do

with differences in the standing genetic variation between the parents

for each population. For CNJ02, the parents (cv. Mullica Queen® and

cv. Crimson Queen®) are highly elite third-generation hybrids with

little distinct genetic variation for Brix and TA, thus exhibiting low

heritability in their progeny. In contrast, CNJ04 has one highly elite

parent (cv. Mullica Queen®), while the other parent (cv. Stevens) is a

first-generation hybrid. Since CNJ04’s two parents are genetically and

phenotypically distinct and consequently have more standing genetic

variation between the parents, these traits manifest higher heritability

for Brix and TA.

The heritabilities presented here may have been affected by

population sizes, reduced recombination history in F1 mapping

populations, and higher degrees of freedom when working with

heterozygous, four-way crosses, and there is lower statistical power

to segregate genetic from phenotypic variances in mixed models in

traits such as TY. However, the heritability estimates were overall

consistent in rank relative to other traits measured in recent

cranberry studies.
4.3 QTL summary

This analysis is one of the most comprehensive QTL mapping

studies in cranberry, given the number of traits assessed, the

number of factors modeled, and cross-study comparisons.

Figure 5 highlights salient, multi-trait co-located QTL in

population sets CNJ02, CNJ04, and CNJ0x (panels A, B, and C,

respectively) of the current study. Multi-trait clusters among non-

synonymous traits likely represent tight linkage or pleiotropy.

Multiple linkage associations found on chromosomes 2, 3, 10, 11,

and 12 together constitute traits important to both berry quality and

yield. A lower fruit length versus width ratio and a higher MFM

translates to larger, spherical berries—quality traits important in

SDC production. Quality traits relevant to SDC production—

ULvW, UKLvW, UKEC, and UMFM and MFM)—have stable and

co-located QTL on linkage groups 2, 11, and 12. CNJ02 also displays

a modest composite QTL {SFY, TY} on linkage group 12, where SFY

is an important measure of rot. Two co-located meta-QTL on

linkage group 11 ({UBM and UTBM), MFM, UMFM, UBW} and

{UBL, ULvW, UKLvW, UKEC} are likely identical QTL or the result

of pleiotropy (position 29.4 cM). CNJ04 only displays one robust

meta-QTL on linkage group 11 for {UBL, ULvW} at position 10.32

cM. Despite a lack of a multi-year stable QTL for Tacy in CNJ04, the

stable meta-QTL on linkage group 3@55.8 cM in CNJ02 is also

shared with a CNJ04 QTL found in the all-year model. This shared

cross-population Tacy QTL on linkage group 3 indicates the

importance of this region to Tacy production, likely from the

shared parent Crimson Queen® common to both CNJ02 and

CNJ04. The meta-QTL {UBL, ULvW, UKEC, UKLvW} common

to both CNJ02 and CNJ04 (Figure 5C) on linkage group 11@18.7 cM

lacks the position stability relative to the same multi-trait meta-QTL

found in population CNJ02 on linkage group 11@29.4 cM
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(Figure 5A). This position shift from 11@29.4 cM to 11@18.7 cM

is consistent with the larger LOD 1.5 interval for the elemental trait

QTL, but the relative cross-population stability still highlights the

importance of this region to the composite {UBL, ULvW, UKEC,

UKLvW}, with most of the region’s genetic variation likely driven by

UBL. As with Tacy on linkage group 3, a meta-QTL for {SFY, TY}

on linkage group 12@40.4cM is found both in CNJ02 (Figure 5A)

alone and in the combined analysis of CNJ02 and CNJ04

(Figure 5C), indicating the cross-population stability of this QTL.

Figure 6A features prominent, multi-study, multi-year, and

multi-trait QTL from the set CNJ0x & Diaz-Garcia et al., 2018b.

Tacy and other color-relevant meta-QTL on linkage group 3@

56.1cM in populations CNJ02 and CNJ04 is consistent with the

results found in Figure 5C. This meta-QTL also demonstrates

consistency across two separate studies, underpinning the

importance of this genomic region to Tacy and color

development in CNJ02 and CNJ04. Evidence of an additional

meta-QTL on linkage group 3@34.0 cM in population GRYG and

CNJ04 indicates an alternative genomic region responsible for

regulating fruit color in a distinct population set. This is

consistent with previously observed genomic regions that

encompass QTL for many related fruit quality traits in cranberry

for fruit quality traits

Comparing the QTL found in the current study against Diaz-

Garcia et al. (2018a) offers a unique perspective to compare berry

size parameter QTL found using newer digital imaging techniques

against parameters assayed using the manually measured traits

pertinent to this study (Figure 6B). The composite meta-QTL on

linkage group 1@101.7cM establishes a correspondence of UBW

(current study) with BW and berry length (BL) (digital traits; Diaz-

Garcia et al., 2018a). UBL (current study) coincides with BL (digital

trait; Diaz-Garcia et al., 2018a) at meta-QTL found in linkage

groups 2@23.2 cM and 11@13.8 cM for populations CNJ04 and

GRYG. Meta-QTL associated with round, spherical berries that also

demonstrate coincidence between manual and digital traits are

found on linkage groups 11 and 12. A meta-QTL in linkage

group 11@21.1cM connects the current study traits UKEC and

ULvW with the image-derived digital trait berry length:width ratio

(LvW; Diaz-Garcia et al., 2018a). The composite QTL at 11@

77.8cM links the digital traits LvW and berry shape eccentricity

(EC; Diaz-Garcia et al., 2018a) to ULvW (current study) across

populations GRYG and CNJ02. Two meta-QTL for composite trait

{LvW, UKEC, EC} on linkage group 12, positions 45.0 cM and 50.3

cM, relate upright trait (UKEC) with digitally measured traits {LvW,

EC} (Diaz-Garcia et al., 2018a) across populations GRYG and

CNJ04. These QTL complexes on linkage groups 11 and 12

together highlight the interchangeability of two distinct

phenotyping (upright vs. plot) methods across distinct populations.

QTL reported by Schlautman et al. (2015) are associated with

plot yield traits and meta-QTL shown in Figure 6C demonstrate the

coincidence of these QTL with QTL found in the current study. The

meta-QTL on linkage group 6@77.0cM ties UTBM (current study)

to MFM (Schlautman et al., 2015), consistent with the high

correlation (p = 0.71) between these two traits (Supplementary

Table S8). Linkage group 10 has two meta-QTL that demonstrate a

correspondence of MFM (Schlautman et al., 2015) with {UBM,
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UMFM} (current study; position 33.3 cM) and {UTBM, UBL}

(current study; position 42.0). Linkage group 11 contains several

meta-QTL that associate the yield related plot traits biennial-

bearing index - total yield (BBITY), TY, and MFM (Schlautman

et al., 2015) with upright traits UBL, UMFM, UTBM, UBM, and

UBW, further establishing the congruity between plot traits and

upright traits.

A comprehensive comparison of cross-study meta-QTL is

shown in Figure 4D. The meta-QTL displayed include compound,

stable QTL found across up to three independent studies (current

study; Schlautman et al., 2015; Diaz-Garcia et al., 2018a). QTL

found in Figure 5D are duplicated in Figure 5B, apart from a three-

study meta-QTL on linkage group 11@13.1 cM for the compound

trait {UBL, MFM, UMFM, BW, berry length (BL)}, which differs

inappreciably from the meta-QTL found for composite trait {berry

area (BA), UBL, UMFM, BW, BL} on linkage group 11@13.8cM

(Figure 4B). This meta-QTL for linkage group 11, position 13.1cM

includes a MFM QTL discovered using a different dataset and

different methodology by Schlautman et al. (2015). Consequently,

this genomic region shows evidence of a multi-study, multi-trait,

multi-year QTL for mean berry size. Other multi-study meta-QTL

that include QTL from Schlautman et al. (2015) include upright

traits {UBM, UMFM} and plot trait MFM on 10@33.3cM,

additional evidence of an association of PAC with SFY and TY on

11@18.7cm, upright traits {UBM, UTBM, UMFM, UBW} (current

study) with plot trait MFM (Schlautman et al., 2015) on 11@

38.4cM, and digital traits {BA, BL} (Diaz-Garcia et al., 2018a)

with plot trait MFM (Schlautman et al., 2015) on 11@81.2cM.
4.4 Conclusion

Traditionally, marker-trait associations derived from QTL or

GWAS studies are validated using advanced molecular techniques

such as genetic engineering approaches to compare knockout and

knockdown mutant phenotypes. However, without efficient

transformation methods, lack of protocols to re-differentiate

callus tissue in culture, and an absence of research on genetically

malleable genotypes, these traditional marker-trait validation

methods are currently impossible to implement in cranberry. As

such, the results of additional cranberry trait-mapping studies in

new environments (locations and years), and their comparison to

other studies’ discoveries, can serve as a viable method to fortify

consistent findings and validate distinct phenotyping methods

measuring analogous traits. We report here coherent results that

have emerged across multiple studies to provide important targets

for marker assisted selection (MAS).

This study set out to characterize and assess for the first time the

genetic basis of numerous cranberry reproductive upright traits in

conjunction with many plot-level and other modern phenotyping traits.

The existence of strong correlations between reproductive upright traits

(classical) for berry parameters and plot-level traits (modern) for yield

demonstrate that more efficient, modern phenotyping methods can act as

relevant proxies in QTL mapping studies. Roughly comparable

heritabilities between analogous traits and consistent meta-QTL found

in advanced phenotyping studies such as Diaz-Garcia et al. (2018b;
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2018a), Figures 6–8, further demonstrate the near parity of older

scoring techniques vis-à-vis modernized phenotyping methods.

As the time needed to measure and score classical upright traits is

monumental, requiring hundreds of person hours, the use of

combinations of relevant classical and modern phenotyping methods

can serve to save time and increase throughput. Moreover, although

some of the upright traits collected may provide a unique picture of the

genetics and physiology of complex traits, they can still fail to capture

certain dimensions of traits, such as TY. This is evident in how a

modestly positive correlation between yield and berry size parameters

loses most of its association when mapping the genetic basis of these

traits. Altogether, classical upright traits when used along with plot-

sampled and other modern traits (e.g., digital imaging processing)

provide a more detailed picture of genotypic performance for traits

important to growers, breeders, and the application of genetic studies

such as QTL mapping.
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