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Utilizing genomic prediction to
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Sweet corn breeding programs, like field corn, focus on the development of elite

inbred lines to produce commercial hybrids. For this reason, genomic selection

models can help the in silico prediction of hybrid crosses from the elite lines,

which is hypothesized to improve the test cross scheme, leading to higher

genetic gain in a breeding program. This study aimed to explore the potential of

implementing genomic selection in a sweet corn breeding program through

hybrid prediction in a within-site across-year and across-site framework. A total

of 506 hybrids were evaluated in six environments (California, Florida, and

Wisconsin, in the years 2020 and 2021). A total of 20 traits from three different

groups were measured (plant-, ear-, and flavor-related traits) across the six

environments. Eight statistical models were considered for prediction, as the

combination of two genomic prediction models (GBLUP and RKHS) with two

different kernels (additive and additive + dominance), and in a single- and multi-

trait framework. Also, three different cross-validation schemes were tested (CV1,

CV0, and CV00). The different models were then compared based on the

correlation between the estimated breeding values/total genetic values and

phenotypic measurements. Overall, heritabilities and correlations varied among

the traits. The models implemented showed good accuracies for trait prediction.

The GBLUP implementation outperformed RKHS in all cross-validation schemes

and models. Models with additive plus dominance kernels presented a slight

improvement over the models with only additive kernels for some of the models

examined. In addition, models for within-site across-year and across-site

performed better in the CV0 than the CV00 scheme, on average. Hence,

GBLUP should be considered as a standard model for sweet corn hybrid

prediction. In addition, we found that the implementation of genomic

prediction in a sweet corn breeding program presented reliable results, which

can improve the testcross stage by identifying the top candidates that will reach

advanced field-testing stages.
KEYWORDS

G×E interaction, hybrid prediction, non-additive effects, RKHS model, cross-
validation schemes
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1 Introduction

Hybrid breeding programs are the standard approach for the

development of commercial products for multiple crops. Hybrid

plants can be generated through a simple cross between individuals

that may or may not belong to different genetic groups, such as

heterotic groups (Labroo et al., 2021). A definition of heterotic

groups here assumed is a group of individuals/genotypes from a

population (or different populations) that presents similar

performance in terms of combining ability in addition to

heterotic response when they are crossed with individuals/

genotypes from other genetically distinct groups (Melchinger and

Gumber, 1998; Labroo et al., 2021). In hybrid crop production,

parents are typically evaluated based on hybrid performance

resulting from a cross with known elite inbred testers. Hybrids

that perform well are then evaluated in an increasing number of

representative environments or target populations of environments

and against additional testers. Selection of the best inbreds,

depending on the stage of product development, can be

performed using the general combining ability (GCA), which

represents how good is a parent, based on the hybrid

performance for all crosses that it was part of, or a combination

of GCA and the specific combining ability, indicating how superior

the hybrid is compared to the mean of its parents.

One of the challenges in hybrid breeding programs is the testing

of all the possible crosses among elite inbreds as this is generally not

practical. For example, in a program with 100 potential parents (N),

the number of possible crosses is 4,950 (C = N ∗ (N−1)
2 ), assuming no

reciprocal crosses. Similarly, during the testing stage, the number of

putative crosses that can be generated among a set of lines and the

elite testers can become quite large (Zystro et al., 2021b). A modern

hybrid breeding program can be divided into two phases: line

development followed by product development, where hybrids are

created and tested (Cowling et al., 2020; Powell et al., 2020).

Genomic selection can aid in both phases, but particularly for

product development. In this approach, parental genotypes are

utilized to predict hybrid performance, which is expected to

increase the probability of superior hybrids in field-testing stages

(Marinho et al., 2022).

Sweet corn is a vegetable crop and hybrids are developed to

address producer and consumer needs. While hybrid vigor is

present, the presence of heterotic groups is not as well defined as

in field corn. This imposes challenges in the implementation of

reciprocal recurrent selection in the breeding program (Peixoto

et al., 2023). A second challenge in sweet corn breeding compared to

field corn is a demand for consumer-oriented traits, in addition to

yield. In response, the breeder must account for all these demands

before releasing a hybrid.

Genomic hybrid prediction is applied broadly in maize breeding

(Fritsche-Neto et al., 2021). Similarly, statistical methods have been

evolving and developed for genomic predictions. Generally, the

genomic models used for hybrid prediction are genomic BLUP

(GBLUP) or reproducing kernel Hilbert space (RKHS) (Alves et al.,

2019; Cuevas et al., 2019; Krause et al., 2020; Marinho et al., 2022).

Even though similar in implementation, the differences between
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GBLUP and RKHS are related to the mathematical equations that

are used to build the genetic relationship matrix (or kernels) which

are then used in the models for prediction (VanRaden, 2008; de los

Campos et al., 2010; Vitezica et al., 2013). In addition, methods that

consider both additive and non-additive effects have demonstrated

increases in trait predictability (Ferrão et al., 2020; Oliveira

et al., 2020).

When genomic selection is applied to a situation where several

traits are important for selection, models can leverage the

correlation between traits (Covarrubias-Pazaran et al., 2018)

increasing the prediction accuracy for traits with lower

heritabilities. This happens by borrowing information from traits

with higher heritability (Mrode, 2014). Lastly, the deployment of

genomic prediction needs to accommodate a plan to deal with

genotype-by-environment interaction (G×E). As demonstrated by

Jarquıń et al. (2014) the G×E interaction impacts the genotype

ranking making it difficult to calibrate the model across multiple

environments. In this study, we explore the use of genomic selection

in sweet corn breeding and evaluate different statistical models to

account for multiple traits and multiple environments.
2 Materials and methods

2.1 Plant material

A total of 506 hybrids were created from 62 lines that came

from a collaboration between the University of Florida and the

University of Wisconsin’s sweet corn breeding programs. The

hybrids were evaluated in three sites: Florida (FL), California

(CA), and Wisconsin (WI) across two years, 2020 and 2021.

Here, we deemed an environment to be the combination of sites

and years (six environments in total) (Supplementary material –

Supplementary Figure S1). In the CA location, 246 of the hybrids

were measured in the 2020 season (CA20) and 39 hybrids in the

2021 season (CA21). In the FL location, we evaluated 418 and 203

hybrids in the 2020 (FL20) and 2021 (FL21) seasons, respectively.

For the WI site, 236 and 39 hybrids were assessed, in the 2020 and

2021 seasons (WI20 and WI21), respectively.
2.2 Phenotyping

Hybrids in FL20, FL21, and CA20 were planted following an

augmented randomized incomplete block design, with two

replications and 10 blocks (FL20, CA20) and six blocks (FL21).

The experiments in CA21, WI20, and WI21, were planted in a

randomized complete block design with three replications (CA21

and WI21) and two replications (WI20). A total of 20 traits were

measured over the six environments. The traits can be grouped into

three different categories: Plant-related traits (STC: stand count;

DTP: days to pollination; DTS: days to silking; PH: plant height;

EH: ear height), ear traits (EL: ear length. EW: ear width; TPF: tip

fill; HP: husk protection; KRN: kernel row number; SOL: solidity;

TP: taper; CUR: ear curvature; HAP: husk appearance; RAP: row
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appearance; ES: ear shape; CR: color rate; RT: over-all ear rating),

and flavor-related traits (FLA: flavor; TXT: texture). Not all traits

were measured in all localities, being only the traits EL, EW, and

TPF being measured in all six environments. A thorough list of all

the traits and localities where they were or were not measured is

presented in the Supplementary material – Supplementary Table S1.

In addition, a scheme of the crossing block used to generate the

hybrids is represented (Supplementary material – Supplementary

Figure S1), showing the contribution of each line (parent) for the

hybrid production. Elite lines from the University of Florida were

crossed against the elite lines from the University of Wisconsin. The

ear traits measured in the FL site were measured with the auxiliary

of EarCV (Gonzalez et al., 2022), whilst flavor, texture, rating, tip

fill, husk protection, row appearance, color rate, and ear shape at the

WI site were rated at the fresh eating stage on 1 to 5 scale, with 5 as

the best for all traits.
2.3 Phenotypic analyses

In the first step of the analysis, the estimation of variance

components and prediction of genotypic values for the traits

assessed was made via the residual maximum likelihood/best

linear unbiased prediction (REML/BLUP) procedure. The

statistical model used for the analyses of the data from CA21,

WI20, and WI21, evaluation of hybrids in a randomized complete

block design with one observation per plot, was given by the

following equation:

y = Xr + Zg + e,

where y is the vector of phenotypes; r is the vector of replication

effects (assumed as fixed), added to the overall mean; g is the vector

genotypic effects [(assumed as random) g ∼ N(0,s 2
g ), where s 2

g is

the genotypic variance]; and e is the vector of residuals [(random)

e ∼ N(0,s 2
e ), where s2

e is the residual variance]. Uppercase letters

(X and Z) represent the incidence matrices for r and g, respectively.

For FL20, FL21, and CA20 environments, the experimental

design used for the evaluation of hybrids was an augmented

randomized incomplete block design with one observation per

plot. The statistical model is given by the following equation:

y = Xr + Zg +Wp + e,

where r is the vector of checks inside blocks and replication

effects (both assumed as fixed), added to the overall mean; p is the

vector block effects [(assumed as random) p ∼ N(0,s 2
p ), where s2

p

is the block variance] and W represents the incidence matrix to p.

For the random effects, significance was tested by the likelihood

ratio test (LRT) using a chi-square statistic with 1 degree of freedom

and a 5% probability of type I error (Rao, 1952). To access the linear

relationship between pairs of traits, correlations were determined

between paired vectors of trait BLUPs, in each environment. We

used BLUPs to estimate these correlations due to the unbalanced

experimental design implemented in some environments. Best

linear unbiased estimation (BLUE) values were generated using

the same equation above, assuming genotypes as a fixed effect. The
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BLUEs were promptly used in the second stage (see topic 2.5.1

below), which avoids double penalization in the genetic effects that

may be caused by shrinking the effects twice (phenotypic BLUPs

followed by GBLUP).
2.4 Genotyping

For each line considered as a parent, DNA was extracted and

sequenced with NovaSeq 2x150bp reads. The average depth was

8.45x (4.2x to 14.5x). Whole genome sequences were aligned to that

Ia453-sh2 genome (Hu et al., 2021) using BWA-MEM. From the

total of variants called (Colantonio, 2023), a subset of 200,000 SNP

markers was randomly sampled using vcftools (Danecek et al.,

2011). The SNPs with a minor allele frequency of less than 1% and

missing data of greater than 30% were removed from the SNP data

set. After filtering, a final set of 37,229 SNPs was used for

the analyses.
2.5 Genomic selection models

The GBLUP (VanRaden, 2008) and RKHS (de los Campos

et al., 2009) models were evaluated within a framework including

both single- and multi-traits. The models considered additive effects

(A) or additive plus dominance effects (AD), totalizing eight

models, as follows: single trait GBLUP with additive effect (AG)

and additive plus dominance effect (ADG), multi trait GBLUP with

additive effect (MAG) and additive plus dominance effect (MADG),

single trait RKHS with additive effect (AR) and additive plus

dominance effect (ADR), multi trait RKHS with additive (MAR)

and additive plus dominance effect (MADR).

For the dominance matrices, the SNPs matrix was coded as 0 for

both homozygous classes (AA and aa) and as 1 for the heterozygous

class, whereas the intermediated values (0.5 and 1.5) that came from

one homozygous locus and one heterozygous locus from a pair of

inbreds were coded as missing data (Figure 1). We describe the

model’s structure below.

2.5.1 Genomic best linear unbiased prediction
The GBLUP model for single- and multi-trait GBLUP model

with additive effects and additive plus dominance effects are given

by:

y = m + Za + e,

y = m + Z1a + Z2d + e,

where y is the vector with BLUE values of all traits predicted

from the hybrids in the first stage of the analyses, m is the overall

mean, a represents a vector of additive genetic effects for all traits,

where a ∼ N(0,oa ⊗Ga), Ga is the additive genomic relationship

matrix and Sa is the additive genetic variance-covariance matrix

across traits, d represents the vector of dominance effects, where

d ∼ N(0,od ⊗Gd), where Gd is the dominance genomic

relationship matrix and Sd is the dominance variance-covariance
frontiersin.org
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matrix across traits and e is the residual error variance, where e ∼
N(0,ores ⊗ I), where Sres is the residual variance-covariance matrix

for all traits and I represents an incidence matrix. Z1 and Z2
represent the incidence matrices to a and d effects, respectively. It

should be noted that for the single trait analyses, the covariance

matrices used in the multi-trait model (Sa, Sd, Sres) become scalar

values, representing the variance for the trait. In this case, a ∼
N(0,Gas 2

a ), where s 2
a is the additive genetic variance, d ∼ N(0,Gd

s 2
d ), where is the dominance variance, and e ∼ N(0, Is2

e ), where s2
e

is the residual variance.

The additive and dominance relationship matrices for the

GBLUP-based model were constructed using AGHmatrix

(Amadeu et al., 2016, 2023), following the parametrization of

VanRaden (2008) and Vitezica et al. (2013). The missing markers’

values were replaced by the markers’ mean, default in the

package AGHmatrix.
2.5.2 Reproducing Kernel Hilbert space
A model, consisting of the semi-parametric kernel RKHS, was

used for single- and multi-trait prediction, using additive and

additive + dominance effects models. The RKHS model includes

both, additive and non-additive gene effects implicitly, such as

epistatic effects (Gianola and Van Kaam, 2008; Jiang and Reif,

2015; Almeida-Filho et al., 2019). The following models were used:

y = m + Za + e,

y = m + Z1a + Z2d + e,

where y is the vector of BLUE values from the hybrids predicted

in the first stage of the analyses, m is the overall mean, a represents the

vector of additive and additive-additive epistatic genetic effects, where
Frontiers in Plant Science
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∼ N(0,oa ⊗Ka), where Ka is the additive symmetric semipositive

definite matrices representing the covariance of the genetic values and

Sa is the additive variance-covariance matrix across traits, d

represents a vector of dominance and dominance-dominance

epistatic effects, where a ∼ N(0,od ⊗Kd), where Kd is the

dominance symmetric semipositive definite matrices representing

the covariance of the genetic values and Sd is the dominance

variance-covariance matrix across traits, and e is the residual error

variance, where e ∼ N(0,ores ⊗ I), where Sres is the residual

variance-covariance matrix for all traits. Z1 and Z2 represent the

incidence matrices to a and d effects, respectively. The previously

multi-trait model notation above described holds for the single-trait

model. Here, for the additive component a ∼ N(0,Kas 2
a ), for the

dominance component d ∼ N(0,Gds2
d ), where s

2
d is the dominance

variance, and the residuals follows e ∼ N(0, Is 2
e ).

In the RKHS, Ka and Kd are represented by: Ka = exp( − jarD
2
a),

and Kd = exp( − jdrD
2
d), where jar and jdr represents the

bandwidth parameters for additive and dominance models

(Pérez-Rodrıǵuez and de los Campos, 2014) and D2
a and D2

d

represents the Euclidian distance matrix using the SNP matrix for

additive effects, and the dominance matrix for the additive effects,

respectively. Here, we followed Morota and Gianola (2014) and

applied the kernel averaging model, where Ka and Kd were

represented for three kernels that came from the three different

values of the bandwidth parameters ( jar and jdr ), represented by 5/

h, 1/h and 0.2/h, where h is the 5th percentile of theD2
a orD

2
d leading

to local, intermediate and global kernels, respectively (Morota and

Gianola, 2014).

The additive and dominance RKHS kernels were built based on

a custom function available together with the main code. Following

the parametrization mentioned for the GBLUP model, the missing

values were replaced by the markers’ mean.
FIGURE 1

Pipeline for the prediction in the sweet corn dataset. The SNP panel for lines (1) was combined based on the formula in (2) and coded to the additive
(Z1a) and dominance (Z1d) kernels. One additional step is needed to implement Z1d for the RKHS model (3). All information generated is then used in
step (4) for the prediction of genomic estimated breeding values (GEBV) using GBLUP and RKHS models. The schemes tested in this study are CV00:
untested hybrids in untested environments. CV0: tested hybrids in untested environments. CV1: untested hybrids in tested environments. SNP: single
nucleotide polymorphism. GBLUP: genomic best linear unbiased prediction. RKHS: reproducing kernel Hilbert space.
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2.5.3 Models under genotype-by-
environment interaction

We expand the models before mentioned by including an

interaction term between genotypes and environments (Jarquıń

et al., 2014). The models are as follows:

y = m + ZEb + Z1a + uAE + e,

y = m + ZEb + Z1a + Z2d + uAE + uDE + e,

where ZE represents the incidence matrix for the effects of

environments (i.e., a matrix that connects the phenotypes with

environments), b is the fixed effect of environment, and for the

RKHSmodel: uAE  
e

 N(0,SAE ⊗KAE) and uDE  
e

 N(0,SDE ⊗KDE),

being KAE =  ZEZ
0
E⊙  Z1KaZ

0
1   and KDE =  ZEZ

0
E ⊙  Z1KdZ

0
1, SAE

and SDE is the variance-covariance matrix for AE and DE interaction

effects across traits, and for the GBLUP model: uAE  
e

 N(0,SAE ⊗
GAE) and uDE  

e

 N(0,SDE ⊗GDE), GAE =  ZEZ
0
E ⊙  Z1GaZ

0
1   and

GAD =  ZEZ
0
E ⊙  Z1GdZ

0
E , being ȯ the Hadamard product (Jarquıń

et al., 2014). This model accounts for the main effects of genotypes, the

main effects of environments, and the interactions between genotypes

and environments (Jarquıń et al., 2014; Costa-Neto et al., 2021; Persa

et al., 2023).
2.6 Cross-validation schemes

Three different cross-validation schemes were implemented in

the analyses aiming to infer the models’ predictability. The first

validation examined was within-environment cross-validation

(untested hybrids in tested environments or CV1) for the three

individual environments (CA20, FL20, and WI20, Figure 1). Five-

fold cross-validation was used (20% of the hybrids as a testing set

and 80% for training), and permutations in between those groups

were implemented. In addition, the process was repeated 20 times.

The models used were the ones described in sections 2.5.1-2.5.2,

totaling eight model structures. A total of eight traits were used in

the prediction for the California site (CA20) and for the Florida site

(FL20) and 16 traits were used in the prediction for the Wisconsin

site (WI20) (Supplementary material, Supplementary Table S1).

The second cross-validation scheme included tested hybrids in

untested environments or CV0 (using the models described in

section 2.5.1-2.5.2). We used hybrid data for each site in 2020 to

train the model and then predict hybrids at each site in 2021,

separately (i.e., CA20, FL20, and WI20 as a training set for the

prediction of CA21, FL21, and WI21, respectively). As not all traits

overlapped from 2020 with 2021, a total of eight, seven, and 14 traits

were used in the model for the prediction of CA, FL, and WI sites,

respectively (Supplementary material, Supplementary Table S1).

The third cross-validation was the untested hybrids in the

untested environment or CV00 (using the models described in

section 2.5.1-2.5.2), where we removed hybrid information that

overlapped between years (Figure 1). Additionally, we used the
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same principles as before (CV0) to predict the information of

hybrids in each site in 2020 as a training population to predict

the performance of the hybrids in the subsequent year (2021). For

the same reason, the same number of traits from CV0 were used

here for the hybrid genomic prediction (eight, seven, and 14 traits

for CA, FL, and WI, respectively).

In addition, we used the information of more than one site from

2020 (CA20, FL20, WI20) to predict the year 2021 (CA21, FL21, or

WI21) (e.g., we calibrated the model using CA20, FL20, and WI20

data and predict CA21. We did all possible combinations in this

case). The models implemented for this prediction were the ones

described in the section 2.5.3. They account for the main effects of

genotypes, environments, and the interactions between them. In

this specific case, we only used the information of the traits EL, EW,

and TPF (the only traits that were measured in all environments) to

build the CV0 and CV00 schemes.

Themodel accuracy was calculated between the estimated breeding

value and the BLUE values estimated in the first stage for each trait.
2.7 Computational implementation

The first analytic stage (phenotypic analyses) was carried out in

the R package ASREML (Gilmour et al., 2015), with the genomic

models being implemented in the BGLR package (Pérez-Rodrıǵuez

and de los Campos, 2014, 2022). The Bayesian models used 30,000

iterations, with a burn-in of 3000, and a sampling interval

(thinning) of 10, totaling 2700 iterations. The models from the

second stage were implemented in the Bayesian framework. For

such, flat priors were considered for the intercept. In addition, the

covariance matrices (for multi-trait models) and variance

components (for single-trait models) were assumed to be

unknown with distributions and hyperparameters defined using

the default values in BGLR (for more details, please see Pérez-

Rodrıǵuez and de los Campos, 2014, 2022). In addition, all codes

and data used for the analyses are available at: https://github.com/

Resende-Lab/Peixoto_Sweet_corn_hybrid_prediction).
3 Results

Here, we implemented genomic prediction models for the

prediction of hybrid performance accounting for several traits in

a sweet corn breeding program. The results demonstrated that

implementation is feasible, even though a large amount of variation

was found in the phenotypic datasets. This contributed to

dissimilarity patterns being observed for trait heritabilities and

correlations between traits leading to variation in prediction

accuracy for the traits. Overall, the GBLUP models outperformed

the RKHS models in all cross-validation schemes. In addition,

models accounting for additive plus dominance kernels presented

a slight improvement for some traits and models.
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3.1 Trait heritability, significance,
and correlations

The LRT indicated that the genotypic effect was significant for

all traits, except for CUR and SOL (FL21), and FLA (WI20)

(Supplementary material – Supplementary Table S2). In addition,

the block effect was not significant for most traits, except EW, TP,

and TPF (FL20), EH, EW, and PH (CA20) (Supplementary material

– Supplementary Table S3). Trait heritabilities varied across

environments. For plant-related traits, the heritabilities varied

from 0.28 (EH in CA21) to 0.82 (DTP in WI20). The ear-related

traits presented heritabilities that varied from 0.12 (CUR in FL21) to

0.80 (EL in CA20). Whereas, FLA and TXT had heritabilities of 0.05

and 0.31, respectively. A summary of trait information for all six

environments can be found in Supplementary material –

Supplementary Tables S1–S6.

The correlations between paired vectors of trait BLUPs also

demonstrated a wide range of variation (Supplementary material –

Supplementary Figures S2–S7). From the total number of paired

correlations for all traits in the six environments, 151 out of 316

(47.8%) were significant at 10%, representing the presence of a

significant linear association with each other. Large correlation

values were found between traits from the same group. For
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instance, days to pollination and days to silking were highly

correlated (0.93 for WI20 and 0.94 for WI21), whereas plant

height and ear height had correlations of 0.72 (WI20) and 0.86

(CA21). In addition, texture, and flavor (flavor-related traits)

presented moderated values of correlation (0.25 in CA20 and 0.31

in CA21). Some negative correlation values were also observed, such

as tip fill and ear length in CA20 (-0.53) and days to pollination and

stand count (-0.6 in CA21).
3.2 Within-year hybrid prediction
accuracy (CV1)

We compared the prediction of all models using the CV1

approach (Figure 2 and Table 1). In the CV1 approach, the

model calibration and model validation take place in the same

environment and within each given year. The models were then

tested within each site, for all traits for the year of 2020 (CA20,

FL20, and WI20), which had larger population sizes. Results show

that RKHS was slightly overperformed by GBLUP. For the trait days

to pollination, it improved from 0.449 to 0.465 (AR and AGmodels,

respectively) and from 0.569 to 0.573 (MAR and MAG,

respectively) for the trait ear width in the California site. In the
FIGURE 2

Accuracy for prediction of untested hybrids in tested environments (CV1). AG, GBLUP single-trait with additive effect; ADG, GBLUP single-trait with
additive effect and dominance effect; MAG, GBLUP multi-trait with additive effect; MADG, GBLUP multi-trait with additive effect and dominance
effect; AR, RKHS single-trait with additive effect; ADR, RKHS single-trait with additive effect and dominance effect; MAR, RKHS multi-trait with
additive effect; MADR, RKHS multi-trait with additive effect and dominance effect. (A) California site. (B) Florida site. (C) Wisconsin site. EL = ear
length. EW, ear width; TPF, tip fill.
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TABLE 1 Prediction accuracy of within-site across-year hybrids prediction for California, Florida, and Wisconsin.

Trait
Model Mean

AG ADG MAG MADG AR ADR MAR MADR

California 0.662

DTP 0.465 0.440 0.465 0.460 0.449 0.451 0.465 0.471 0.458

EH 0.832 0.828 0.830 0.825 0.827 0.830 0.826 0.823 0.828

EL 0.839 0.839 0.837 0.835 0.841 0.840 0.839 0.837 0.838

EW 0.571 0.569 0.573 0.566 0.567 0.563 0.569 0.572 0.569

HP 0.730 0.731 0.729 0.734 0.740 0.736 0.738 0.739 0.735

PH 0.830 0.830 0.828 0.828 0.830 0.836 0.831 0.826 0.830

STC 0.393 0.360 0.390 0.372 0.357 0.337 0.379 0.378 0.371

TPF 0.668 0.658 0.672 0.675 0.653 0.651 0.675 0.664 0.664

Florida 0.546

CUR 0.357 0.345 0.360 0.321 0.343 0.340 0.347 0.352 0.346

EL 0.666 0.667 0.658 0.659 0.664 0.664 0.665 0.661 0.663

EW 0.722 0.716 0.708 0.700 0.713 0.707 0.700 0.697 0.708

KRN 0.765 0.764 0.757 0.761 0.762 0.767 0.762 0.761 0.762

SOL 0.444 0.445 0.440 0.426 0.450 0.449 0.447 0.457 0.444

STC 0.311 0.308 0.310 0.294 0.294 0.285 0.293 0.285 0.298

TP 0.550 0.558 0.556 0.565 0.552 0.552 0.559 0.563 0.557

TPF 0.591 0.600 0.592 0.589 0.593 0.590 0.598 0.595 0.594

Wisconsin 0.621

CR 0.490 0.481 0.477 0.469 0.483 0.475 0.499 0.489 0.483

DTP 0.830 0.837 0.833 0.837 0.835 0.832 0.834 0.832 0.834

DTS 0.832 0.837 0.832 0.834 0.834 0.832 0.833 0.827 0.833

EH 0.711 0.711 0.722 0.724 0.703 0.705 0.716 0.715 0.713

EL 0.745 0.756 0.754 0.760 0.753 0.750 0.758 0.750 0.753

ES 0.541 0.521 0.541 0.523 0.544 0.541 0.552 0.544 0.539

EW 0.542 0.507 0.554 0.514 0.519 0.511 0.542 0.537 0.528

FLA 0.271 0.223 0.297 0.269 0.279 0.269 0.297 0.286 0.274

HAP 0.465 0.457 0.463 0.460 0.479 0.466 0.475 0.461 0.466

HP 0.722 0.715 0.713 0.709 0.719 0.715 0.717 0.711 0.715

KRN 0.790 0.789 0.790 0.778 0.786 0.789 0.792 0.780 0.787

PH 0.817 0.816 0.819 0.810 0.816 0.821 0.814 0.810 0.815

RAP 0.446 0.448 0.456 0.450 0.472 0.470 0.480 0.473 0.462

RT 0.537 0.518 0.547 0.501 0.510 0.523 0.539 0.535 0.526

TPF 0.761 0.745 0.759 0.757 0.751 0.751 0.765 0.760 0.756

TXT 0.463 0.427 0.487 0.433 0.453 0.446 0.479 0.464 0.456
F
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CR, color rate; CUR, curvature; DTP, days to pollination; DTS, days to silking; EL, ear length; EH, ear height; ES, ear shape; EW, ear width; FLA, flavor; HAP, husk appearance; HP, husk
protection; KRN, kernel row number; PH, plant height; RAP, Row appearance; RT, rating; SOL, solidity; STC, stand count; TP, taper; TPF, tip fill; TXT, texture; AG, GBLUP single-trait with
additive effect; ADG, GBLUP single-trait with additive effect and dominance effect; MAG, GBLUP multi-trait with additive effect; MADG, GBLUP multi-trait with additive effect and dominance
effect; AR, RKHS single-trait with additive effect; ADR, RKHS single-trait with additive effect and dominance effect; MAR, RKHS multi-trait with additive effect; MADR, RKHS multi-trait with
additive effect and dominance effect.
CV1= Prediction of untested hybrids in tested environments. Bolded numbers represent the model with the highest performance for each trait.
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Florida site, ear width prediction accuracy improved from 0.70 to

0.72 (AR and AG models, respectively) and the trait tip fill

improved from 0.59 (ADR model) to 0.60 (ADG model). The

model accuracies in the Wisconsin site for the GBLUP-based

models were higher for traits as days to pollination and days to

silking, improving from 0.835 and 0.834, respectively (AR model) to

0.837 (both traits under AG model) (Supplementary material -

Supplementary Figure S8–S10).

On the other hand, models accounting for multi-traits

improved trait predictability by 0.76% for CA20 and 0.89% for

WI20, whereas models with single traits were better in FL20 (0.55%

higher). The inclusion of dominance in the model (AD models) was

outperformed by models with only additive effects (0.63% at CA20,

0.47% at FL21, 1.40% at WI20). In addition, prediction accuracy

was higher than 0.8 for some traits, such as EL, EH, and PH in CA20

and DTP, DTS, and PH in WI20. Additionally, the STC trait had

lower predictability in both CA20 and FL20, with values of 0.371

and 0.298, respectively, and the flavor trait presented a lower value

in WI20 (0.274).
3.3 Within-site across-year hybrid
prediction accuracy (CV0)

Single-trait models were better than multi-trait models for the

CV0 scheme, e.g., 2.84% and 2.3% for CA and WI, respectively

(Table 2). Additive models had higher prediction accuracies than

AD models alone (3.79%, 4.45%, and 3.28% improvement at CA,

FL, andWI, respectively). The average prediction across models was

weaker in FL (0.146 for CUR to 0.49 for EL) (Figure 3). In addition,

higher accuracies were found inWI for the traits KRN (0.83) and EL

(0.82). On average, the predictions were 0.479 (CA), 0.253 (FL), and

0.579 (WI).
3.4 Within-site across-year: new
environments and new hybrid
predictions (CV00)

The results from CV00 were consistent with the previous

insights for CV0. However, with a slightly lower prediction

accuracy compared with CV0 (CA: 0.457, FL: 0.234, and WI:

0.520) (Table 3). Furthermore, multi-trait models were better in

CA (3.19%), FL (2.46%), and WI (0.70), whereas the A model

overperformed the AD model in CA (1.73%), FL (3.66%) and WI

(2.52%). The best mean predictability across models was for the

DTP trait in the WI site (0.82), whereas the lower value was found

for CUR (0.124) (Figure 4).
3.5 Hybrid prediction accuracy for new
environments (CV0) with information from
all sites

In this cross-validation scheme, we used trait information for

EL, EW, and TPF across all locations in 2020 to train the model. We
Frontiers in Plant Science 08
aimed to predict traits in the 2021 locations. Models ADR (0.828),

AG (0.648), and MAG (0.786) were best at predicting the traits EL,

EW, and TPF, respectively (Table 4 and Supplementary material –

Supplementary Table S7). In addition, higher accuracies were found

for EL as compared to EW and TPR. The mean prediction accuracy

for all traits for FL21 presented a lower average value of 0.409,

compared to 0.492 (CA21) and 0.72 (WI21). It is worth mentioning

that this last site (WI21) excels in prediction accuracy for TPF traits

compared with the other two environments (0.75 against 0.42 and

0.16 of CA21 and FL21).
3.6 New hybrids for new environments
(CV00) with information from all sites

The prediction of new hybrid performance in new

environments varied for each trait and model used for the across-

site CV00 scheme (Table 5 and Supplementary material –

Supplementary Table S8). The prediction accuracies for WI21

were better for all three traits when compared to FL21 and CA21.

When we considered the prediction of FL21, the accuracies were

lower, with the model MADR performing better for EL. When

evaluating EW and TPF, we found the model ADG performed

better. On the other hand, the best predictions came from WI21,

where the AG model achieved higher accuracy for all three traits

(0.641, 0.698, and 0.614, for EL, EW, and TPF traits).
4 Discussion

As the field of quantitative genomics evolves, tools for genomic

selection have gained popularity. Genomic selection allows breeders

to test new genotypes and predict their performance in untested

environments. Genomic selection is proposed to boost different

stages of a breeding program (Allier et al., 2019; Oliveira et al., 2020;

Powell et al., 2020). For hybrid crops, the prediction of a potential

cross from genotyped parents represents an important tool that

ensures the best candidates will reach advanced field stages (Kadam

et al., 2021; Oliveira et al., 2022). Routinely, sweet corn breeders

assess hybrid performance by examining a set of target traits in

several environments. Model selection and implementation of

cross-validation schemes to optimize advanced field stages is still

a challenge for the implementation of genomic selection for in silico

hybrid prediction.
4.1 Model optimization for
hybrid prediction

Historically, sweet corn breeders select for several breeding

targets at once requiring complex decisions in the breeding

program. For instance, the traits studied are related in complex

ways, with correlations varying from highly positive to very negative

values. In addition, trait heritabilities can vary greatly. This level of

complexity directly affects model accuracy (Montesinos-López

et al., 2016). It is common knowledge that in multi-trait models,
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TABLE 2 Prediction accuracy of within-site across-year hybrids prediction for California, Florida, and Wisconsin.

Trait
Model Mean

AG ADG MAG MADG AR ADR MAR MADR

California 0.479

DTP 0.648 0.622 0.559 0.502 0.583 0.527 0.521 0.484 0.556

EH 0.640 0.621 0.646 0.626 0.622 0.611 0.619 0.613 0.625

EL 0.547 0.565 0.555 0.575 0.567 0.570 0.578 0.581 0.567

EW 0.393 0.373 0.403 0.379 0.385 0.381 0.394 0.378 0.386

HP 0.573 0.532 0.592 0.552 0.521 0.511 0.555 0.518 0.544

PH 0.707 0.709 0.681 0.674 0.702 0.702 0.666 0.670 0.689

STC 0.214 0.163 0.172 0.110 0.156 0.144 0.128 0.112 0.150

TPF 0.323 0.306 0.322 0.310 0.329 0.310 0.326 0.326 0.319

Florida 0.253

CUR 0.030 0.022 0.146 0.031 0.005 0.008 0.050 -0.017 0.034

EL 0.487 0.491 0.485 0.475 0.495 0.486 0.473 0.463 0.482

EW 0.329 0.291 0.307 0.238 0.321 0.304 0.297 0.291 0.297

SOL 0.081 0.157 0.235 0.134 0.118 0.132 0.139 0.115 0.139

STC 0.272 0.283 0.318 0.304 0.283 0.288 0.299 0.316 0.295

TP 0.268 0.253 0.220 0.253 0.235 0.231 0.218 0.233 0.239

TPF 0.314 0.306 0.247 0.295 0.280 0.280 0.292 0.273 0.286

Wisconsin 0.579

CR 0.508 0.429 0.494 0.401 0.436 0.409 0.415 0.389 0.435

DTP 0.792 0.764 0.778 0.744 0.766 0.754 0.747 0.722 0.758

DTS 0.826 0.810 0.788 0.766 0.812 0.804 0.770 0.753 0.791

EL 0.799 0.800 0.800 0.807 0.816 0.813 0.821 0.817 0.809

ES 0.505 0.558 0.496 0.506 0.560 0.553 0.511 0.509 0.525

EW 0.654 0.588 0.667 0.568 0.568 0.528 0.589 0.529 0.586

FLA 0.462 0.372 0.437 0.335 0.337 0.309 0.349 0.316 0.365

HAP 0.692 0.647 0.685 0.645 0.649 0.634 0.662 0.626 0.655

HP 0.619 0.609 0.609 0.593 0.603 0.598 0.594 0.582 0.601

KRN 0.837 0.830 0.818 0.811 0.832 0.826 0.814 0.805 0.822

RAP 0.390 0.450 0.327 0.404 0.433 0.431 0.406 0.411 0.407

RT 0.254 0.187 0.288 0.210 0.170 0.133 0.202 0.190 0.204

TPF 0.718 0.726 0.727 0.725 0.741 0.733 0.735 0.725 0.729

TXT 0.381 0.443 0.407 0.406 0.443 0.441 0.397 0.417 0.417
F
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CR, color rate; CUR, curvature; DTP, days to pollination; DTS, days to silking; EL, ear length; EH, ear height; ES, ear shape; EW, ear width; FLA, flavor; HAP, husk appearance; HP, husk
protection; KRN, kernel row number; PH, plant height; RAP, Row appearance; RT, rating; SOL, solidity; STC, stand count; TP, taper; TPF, tip fill; TXT, texture; AG, GBLUP single-trait with
additive effect; ADG, GBLUP single-trait with additive effect and dominance effect; MAG, GBLUP multi-trait with additive effect; MADG, GBLUP multi-trait with additive effect and dominance
effect; AR, RKHS single-trait with additive effect; ADR, RKHS single-trait with additive effect and dominance effect; MAR, RKHS multi-trait with additive effect; MADR, RKHS multi-trait with
additive effect and dominance effect.
CV0 = Prediction of tested hybrids in untested environments. Bolded numbers represent the model with the highest performance for each trait.
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B CA

FIGURE 3

Accuracy for prediction across methods for tested hybrids in new environments (CV0). (A) California, (B) Florida, and (C) Wisconsin sites. CR, color
rate; CUR, curvature; DTP, days to pollination; DTS, days to silking; EL, ear length; EH, ear height; ES, ear shape; EW, ear width; FLA, flavor; HAP,
husk appearance; HP, husk protection; KRN, kernel row number; PH, plant height; RAP, row appearance; RT, rating; SOL, solidity; STC, stand count;
TP, taper; TPF, tip fill; TXT, texture.
TABLE 3 Prediction accuracy of within-site across-year hybrid prediction for California, Florida, and Wisconsin.

Trait
Model Mean

AG ADG MAG MADG AR ADR MAR MADR

California 0.457

DTP 0.583 0.611 0.526 0.495 0.578 0.557 0.521 0.534 0.551

EH 0.586 0.591 0.602 0.601 0.594 0.595 0.611 0.612 0.599

EL 0.437 0.446 0.404 0.434 0.455 0.454 0.437 0.442 0.439

EW 0.403 0.370 0.392 0.358 0.388 0.378 0.380 0.367 0.380

HP 0.559 0.578 0.590 0.629 0.539 0.547 0.558 0.568 0.571

PH 0.626 0.616 0.633 0.621 0.623 0.623 0.630 0.622 0.624

STC 0.338 0.309 0.288 0.212 0.288 0.278 0.247 0.229 0.274

TPF 0.247 0.199 0.223 0.194 0.231 0.217 0.223 0.202 0.217

Florida 0.234

CUR 0.036 0.051 0.124 0.085 0.034 0.034 0.044 0.038 0.056

EL 0.455 0.436 0.470 0.427 0.451 0.444 0.453 0.442 0.447

EW 0.314 0.294 0.311 0.266 0.311 0.309 0.289 0.287 0.298

SOL 0.092 0.127 0.160 0.128 0.100 0.099 0.096 0.098 0.113

STC 0.208 0.192 0.235 0.196 0.220 0.207 0.227 0.233 0.215

TP 0.221 0.190 0.168 0.205 0.191 0.175 0.181 0.172 0.188

TPF 0.318 0.324 0.319 0.327 0.321 0.319 0.322 0.330 0.323

Wisconsin 0.520

CR 0.505 0.503 0.461 0.478 0.533 0.534 0.501 0.503 0.502

DTP 0.789 0.794 0.797 0.806 0.783 0.781 0.787 0.778 0.789

DTS 0.821 0.826 0.807 0.816 0.811 0.808 0.800 0.791 0.810

(Continued)
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traits with lower heritabilities can borrow information from traits

with high heritabilities, once correlations are established, leading to

an improvement in accuracy (Jia and Jannink, 2012; Mrode, 2014).

However, our results indicated that little benefit is gained from

multi-trait over single-trait models. In some cases, the use of a

single-trait model can result in better performance overall,

supporting findings from other crop species (Covarrubias-Pazaran

et al., 2018; Oliveira et al., 2020; Sandhu et al., 2022). Two reasons

are hypothesized for this result. First, the small sample size of our

data could represent a weakness for the multi-trait model, since

sample size can impact the multi-trait model performance
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(Schönbrodt and Perugini, 2013). The second factor is that lower

or absence of significative correlations between traits with large

differences in heritability, when combined in the same model, do

not improve the prediction of traits with low heritability. An

antagonistic example of this pattern can be found in the flavor

and texture traits, with increasing for multi-trait models (CV1).

Both traits have low heritability, and the prediction accuracy was

also lower compared to other traits. However, the prediction

accuracy values improved in models with multi-trait structure.

This further illustrates that lower heritability traits can be the

result of a trait that is difficult to measure, making it clearer that
TABLE 3 Continued

Trait
Model Mean

AG ADG MAG MADG AR ADR MAR MADR

EL 0.695 0.681 0.687 0.658 0.698 0.697 0.681 0.668 0.683

ES 0.215 0.216 0.242 0.231 0.218 0.199 0.250 0.234 0.226

EW 0.706 0.690 0.695 0.680 0.696 0.695 0.691 0.687 0.693

FLA 0.447 0.442 0.444 0.397 0.396 0.384 0.426 0.388 0.416

HAP 0.668 0.590 0.685 0.619 0.627 0.602 0.658 0.639 0.636

HP 0.626 0.640 0.653 0.646 0.620 0.619 0.634 0.647 0.636

KRN 0.712 0.720 0.695 0.689 0.719 0.724 0.694 0.706 0.707

RAP 0.397 0.469 0.255 0.360 0.412 0.410 0.313 0.348 0.371

RT 0.137 0.042 0.259 0.116 0.031 -0.029 0.129 0.095 0.098

TPF 0.610 0.597 0.615 0.605 0.595 0.582 0.609 0.587 0.600

TXT 0.134 0.097 0.230 0.129 0.076 0.051 0.130 0.114 0.120
front
CR, color rate; CUR, curvature; DTP, days to pollination; DTS, days to silking; EL, ear length; EH, ear height; ES, ear shape; EW, ear width; FL, flavor; HAP, husk appearance; HP, husk protection;
KRN, kernel row number; PH, plant height; RAP, Row appearance; RT, rating; SOL, solidity; STC, stand count; TP, taper; TPF, tip fill; TXT, texture; Bolded numbers represent the model with the
highest performance for each trait; AG, GBLUP single-trait with additive effect; ADG, GBLUP single-trait with additive effect and dominance effect; MAG, GBLUPmulti-trait with additive effect;
MADG, GBLUP multi-trait with additive effect and dominance effect; AR, RKHS single-trait with additive effect; ADR, RKHS single-trait with additive effect and dominance effect; MAR, RKHS
multi-trait with additive effect; MADR, RKHS multi-trait with additive effect and dominance effect.
CV00 is the prediction of new hybrids in new environments.
B CA

FIGURE 4

Accuracy for prediction across models of new hybrids in new environments (CV00). (A) California, (B) Florida, and (C) Wisconsin sites. CR, color rate;
CUR, curvature; DTP, days to pollination; DTS, days to silking; EL, ear length; EH, ear height; ES, ear shape; EW, ear width; FLA, flavor; HAP, husk
appearance; HP, husk protection; KRN, kernel row number; PH, plant height; RAP, row appearance; RT, rating; SOL, solidity; STC, stand count; TP,
taper; TPF, tip fill; TXT, texture.
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multi-trait models can improve the prediction of hard-to-

measure traits.

Our results indicate that the addition of non-additive effects in

the model did not improve the average prediction accuracy.

However, including dominance in the models for tip fill, a target

trait for sweet corn seems to have a positive impact. For hybrid
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prediction in field corn, it is known that non-additive effects play an

important role. But the impact varies from trait to trait (Alves et al.,

2019; Ferrão et al., 2020; Rogers et al., 2021). For instance, Coelho

et al. (2020) estimate, in field corn, a coefficient of determination for

the dominance effects of 0.32 (grain yield), 0.02 (ear length), 0.13

(ear height), and 0.05 (plant height). Whereas Nardino et al. (2020)
TABLE 5 Prediction accuracy of across-site hybrid prediction.

Sites AG ADG MAG MADG AR ADR MAR MADR

EL

CA21 0.487 0.466 0.470 0.486 0.496 0.484 0.497 0.493

FL21 0.398 0.414 0.381 0.418 0.405 0.413 0.402 0.417

WI21 0.641 0.620 0.611 0.605 0.638 0.615 0.619 0.579

EW

CA21 0.411 0.412 0.399 0.408 0.408 0.409 0.402 0.412

FL21 0.368 0.397 0.360 0.365 0.379 0.370 0.376 0.372

WI21 0.698 0.688 0.697 0.694 0.690 0.691 0.695 0.686

TPF

CA21 0.360 0.325 0.415 0.364 0.324 0.329 0.383 0.389

FL21 0.224 0.414 0.241 0.242 0.236 0.207 0.246 0.275

WI21 0.614 0.597 0.497 0.323 0.581 0.540 0.438 0.384
fron
CA21, California site; year of 2021; FL21, Florida site; year of 2021; WI21, Wisconsin site; year of 2021; EL, ear length; EW, ear width; TPF, tip fill; AG, GBLUP single-trait with additive effect;
ADG, GBLUP single-trait with additive effect and dominance effect; MAG, GBLUP multi-trait with additive effect; MADG, GBLUP multi-trait with additive effect and dominance effect; AR,
RKHS single-trait with additive effect; ADR, RKHS single-trait with additive effect and dominance effect; MAR, RKHS multi-trait with additive effect; MADR, RKHS multi-trait with additive
effect and dominance effect. MADR, RKHS multi-trait with additive effect and dominance effect.
Only the genotypes that were not assessed at the testing site were included in the training set from 2020 sites (CA20, FL20, and WI20). The cross-validation scheme was the CV00 (untested
hybrids in untested environments). Bolded numbers represent the model with the highest performance for each trait. The complete list with all site combinations is presented in the
Supplementary material – Supplementary Table S7.
TABLE 4 Prediction accuracy for across-site hybrid prediction.

Sites AG ADG MAG MADG AR ADR MAR MADR

EL

CA21 0.657 0.675 0.675 0.701 0.676 0.678 0.707 0.699

FL21 0.417 0.433 0.421 0.428 0.407 0.412 0.418 0.425

WI21 0.783 0.823 0.790 0.807 0.819 0.828 0.821 0.813

EW

CA21 0.371 0.375 0.365 0.364 0.367 0.365 0.355 0.363

FL21 0.392 0.396 0.393 0.382 0.402 0.404 0.398 0.396

WI21 0.648 0.605 0.644 0.617 0.621 0.603 0.625 0.601

TPF

CA21 0.396 0.411 0.450 0.433 0.404 0.413 0.453 0.465

FL21 0.154 0.148 0.167 0.179 0.151 0.159 0.169 0.180

WI21 0.765 0.777 0.786 0.734 0.755 0.743 0.761 0.680
CA21, California site; year of 2021; FL21, Florida site; year of 2021; WI21, Wisconsin site; year of 2021; EL, ear length; EW, ear width; TPF, tip fill; AG, GBLUP single-trait with additive effect;
ADG, GBLUP single-trait with additive effect and dominance effect; MAG, GBLUP multi-trait with additive effect; MADG, GBLUP multi-trait with additive effect and dominance effect; AR,
RKHS single-trait with additive effect; ADR, RKHS single-trait with additive effect and dominance effect; MAR, RKHS multi-trait with additive effect. MADR, RKHS multi-trait with additive
effect and dominance effect.
All the information from 2020 (CA20, FL20, and WI20) was used to train the model. The cross-validation scheme was the CV0 (tested hybrids in untested environments). Bolded numbers
represent the model with the highest performance for each trait. The complete list with all site combinations is presented in the Supplementary material – Supplementary Table S7.
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demonstrate that the proportion between the general combining

ability (GCA) and specific combing ability (SCA) varies from 0.92

to 7.26 among sites for yield-related traits. Together, the complexity

and importance of dominance may vary between traits and will

ultimately impact the implementation of a model with non-additive

effects in hybrid prediction. On the other hand, the role dominance

plays in sweet corn genomic selection is still emerging. Early

evidence suggests that non-additive effects represent an important

factor in the model, but these effects can also vary from one trait to

another (Zystro et al., 2021a, b). For instance, Neto et al. (2022)

indicate a significant impact of dominance on the SCA estimates in

the performance of an F1 population, with a GCA/SCA ratio

smaller than one unit for plant height, ear height, ear length, and

kernel row number.

In Zystro et al. (2021a) the application of five-fold cross-

validation (equivalent to our CV1 scheme) returns an average

increase of 50% in trait prediction for the GBLUP model when

comparing the A and AD models. However, on average, the results

of our CV1 scheme with the inclusion of dominance slightly

reduced the prediction accuracy.

The results demonstrated that conventional GBLUP models can

be more advantageous over RKHS for hybrid performance in all

schemes presented here (CV1, CV0, and CV00). The GBLUP

kernels here explored in the model (A and D, for additive and

dominance information) were constructed based on the realized

relationship matrix, as proposed by VanRaden (2008), for the

additive kernel, and on the proposal made by Vitezica et al.

(2013) for the dominance kernel. Nonetheless, the enhancement

of predictive performance is achievable through the construction of

non-parametric matrices. It is advantageous to carefully select a

kernel matrix that effectively encapsulates the inherent

characteristics of the data, thereby leveraging and optimizing

prediction accuracy.

In the case of RKHS, the kernel implicitly included non-additive

effects (Gianola and Van Kaam, 2008) such as epistasis (E). Then,

the markers matrix coding (for A and D kernels) makes it possible

to capture epistatic effects, such as additive-by-additive and

dominance-by-dominance epistatic effects. Therefore, the

performance of RKHS and GBLUP models has been shown to

vary among crops (Kadam and Lorenz, 2019; Lopez-Cruz et al.,

2021), and similar performance and/or minimal advantage is

reported by AD-RKHS models over AD- or ADE-GBLUP (Lyra

et al., 2018; Alves et al., 2021). For sweet corn hybrid prediction, the

conventional GBLUP seems to represent the optimum model and is

robust enough for several traits with a complex trait architecture,

even under the simplest assumptions.
4.2 Implementation of cross-validation
schemes in sweet corn hybrid prediction

We compared the implementation of different cross-validation

(CV) schemes as outlined in Burgueño et al. (2012) and Jarquin

et al. (2018). It is worth mentioning that genomic selection can

contribute to a breeding program by predicting unobserved

genotypes and/or environments. By that, the application of this
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tool may reduce the number of field trials and ensure potential

candidates (hybrids in our study) advance through the trialing

stages. The CV1 scheme hypothesizes that the information of

untested hybrids in a tested environment is used to predict non-

yet-observed hybrids. The results of CV1 had higher prediction

accuracy compared with the other schemes, once all the

information from genotypes was made available, but the

prediction set, in the target environment. The prediction

performance of CV1 exploits the genetic correlation between the

training set and the prediction set (Jarquin et al., 2018), by using the

information of genetic materials observed in the same environment

to predict unobserved materials. As the set of hybrids here studied

came from 62 individual lines (hybrid parents), the relatedness

among individuals that compose the CV partition (training and

prediction set of individuals) boosted the prediction accuracy of the

CV1 scheme. In addition, the FL site had the lowest average

performance for CV1, being outperformed by CA and WI sites.

In this case, the number of hybrids assessed in 2020 in FL was

significantly higher than those in CA and WI (418, 246, and 236,

respectively), which should have built a stronger correlation

between training and prediction sets, leading to higher accuracy.

However, we hypothesize that, as the crosses include material with a

temperate background (Wisconsin lines), the high pressure of the

FL site (tropical climate, with high impact of diseases and pests),

may have affected the hybrid performance, and ultimately, the

model prediction accuracy for FL site. This pattern of germplasm

by environment interaction can be seen in the other CV schemes.

In a sweet corn breeding program, selected hybrid

combinations are sequentially tested across different years and

environments, before release (Peixoto et al., 2023). First, new

hybrids are generated from the crossing of many advanced lines

against a few testers and assessed in a few environments. The

parents/lines of the best-performing hybrids are selected based on

the general and specific combining abilities. These parents/lines

then proceed to the next stage where they are crossed to a larger

number of testers and assessed across more environments. Again,

selection is made based on both (general and specific combining

abilities) to identify the best two parents/lines. These two parents/

lines are crossed by even more testers and planted in large

environment trials to evaluate their performance.

The CV0 scheme can predict how genetic material will perform

in an unknown environment or a targeted number of unknown

environments based on known performance in a tested location.

For a sweet corn breeding program, this can help predict how a

hybrid will perform in the second and third field hybrid stages. The

CV00 scheme prediction can aid the in silico prediction of the best

hybrid combinations for the first stage of testcrossing. Ultimately, it

can guarantee that the best hybrid combinations are included in the

first advanced trials. However, CV00 can be the hardest hybrid set

to predict with its lack of information for both new hybrids and

environments (Burgueño et al., 2012; Jarquin et al., 2018).

Furthermore, it had the lowest accuracy compared with other

schemes, as reported in other studies (Jarquin et al., 2018; Vieira

et al., 2022). Then, CV00 prediction for sweet corn hybrids

reinforces those hypotheses, given that the average accuracy was

lower than the other schemes. However, for several traits, the
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predictability achieved good levels of accuracy (i.e., PH in the CA

site: 0.62, EL in the FL site: 0.44, DTS in the WI site: 0.81). These

findings increase our understanding of sweet corn performance

over a CV00 and increase our confidence in its implementation in

the breeding program. Compared to CV0 and CV00, the CV0

returned higher prediction accuracy, this was expected given that

the genetic material in the CV0 (hybrids) was already assessed in the

site in the previous year.

The three stages of hybrid prediction deal with the disturbance

factors caused by the presence of the G×E interaction. Dealing with

the G×E interaction is a challenge in hybrid prediction (Schrag et al.,

2019; Rogers et al., 2021). This was observed in our results as the

prediction of across-sites was lower compared to the within-site

across-year prediction, for the CV0 and CV00 schemes. In advanced

field stages, the presence of the G×E interaction can cause differences

in field evaluation and, ultimately in the ranking of genotypes. This

will impact the composition of the selected set of parents.

Considering only the across-site prediction, when the information

of all sites was used in the training set, the accuracy of the prediction

increased. The inclusion of this type of data represents a way to

circumvent the G×E interaction in hybrid prediction in sweet corn.
4.3 Future directions

This was the first effort to increase the knowledge of hybrid

performance through genomic prediction in a multi-trait

framework and using different kernel structures in sweet corn.

Some traits, such as flavor, color rating, and texture, are related to

consumer preferences. Such traits demand more systematic

approaches for enhancement based on genetic performance

aligned with consumer preferences. For these traits, we should

use available tools to guide breeding targets. Future directions to

enhance consumer-related traits can be done with the application of

algorithms to predict consumer preferences based on genomics and

metabolite data (Colantonio et al., 2022), which can bring a new

understanding of consumer inclinations, such as flavor perception.

Alternatively, the use of near-infrared technology can add to the

inference of the relationship between lines. This adds to the

relationship matrices that can capture patterns that SNP-based

matrices cannot, allowing for phenomic selection (Krause et al.,

2019). Another strategy that adds up for a breeding program that

accounts for several traits at a time is the prediction with sparse

phenotyping (Bhatta et al., 2020; Isidro y Sánchez and Akdemir,

2021). For instance, those authors found that we can improve the

prediction ability of predictions of non-measured traits using the

genomic model for borrowing information among traits. Sweet

corn, which would be an alternative, especially for consumer-related

traits, seemed as hardest to measure.

Furthermore, aiming to optimize the testcross phases, sparse

testing designs should be considered (Jarquin et al., 2020; Crespo-

Herrera et al., 2021; Persa et al., 2023). These authors showed that

this methodology has the potential to substantially save resources by

optimizing the genotypes and environments explored in trials, by

accounting for the G×E interaction. Thus, we can enhance a sweet

corn breeding program by considering a sparse design in
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combination with hybrid prediction models. Combining these

techniques can also make the program more feasible.

Several tools can be used to increase model prediction. We can

leverage the quality of the phenotypic data collected in the testcross

stages with high-throughput phenotyping tools, which have already

been demonstrated to boost genetic gains in sweet corn breeding

programs (Peixoto et al., 2023). Also, a program can take advantage

of environmental covariables to build a covariance relationship

matrix among trials (Bandeira e Sousa et al., 2017; Gevartosky et al.,

2023). However, these environmental kernels seem to be dependent

on germplasm, environment, and traits (Costa-Neto et al., 2021;

Rogers and Holland, 2022). Another good alternative is the

application of crop growth models (Cooper and Messina, 2021),

which deal with the G×E interaction, largely identified in the testing

phase of the sweet corn program.
5 Conclusion

For the first time, our study presents a comprehensive and

detailed application of genomic selection exploring several traits of

interest as a tool for hybrid prediction in a sweet corn breeding

program. In addition, we investigated several statistical and genetic

aspects, and we improved the knowledge of several traits in a sweet

corn breeding program. Multi-trait models did not perform well in

comparison with the single-trait counterparts, and, even though a

small sample size could have impacted the models’ performance, it

improved the prediction for only a few traits with small heritability.

We also found that models including additive and dominance aspects

presented an improved performance, however slightly, for many

traits. The most prominent inference was for GBLUP models,

which outperformed RKHS in all scenarios and is recommended as

a standard model for sweet corn prediction. Hybrid prediction

through genomic selection has the potential to improve sweet corn

breeding and different prediction scheme outcomes can highlight the

best strategy to be used in different stages of the breeding program.
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