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Plants intricately deploy defense systems to counter diverse biotic and abiotic

stresses. Omics technologies, spanning genomics, transcriptomics, proteomics,

and metabolomics, have revolutionized the exploration of plant defense

mechanisms, unraveling molecular intricacies in response to various stressors.

However, the complexity and scale of omics data necessitate sophisticated

analytical tools for meaningful insights. This review delves into the application

of artificial intelligence algorithms, particularly machine learning and deep

learning, as promising approaches for deciphering complex omics data in plant

defense research. The overview encompasses key omics techniques and

addresses the challenges and limitations inherent in current AI-assisted omics

approaches. Moreover, it contemplates potential future directions in this

dynamic field. In summary, AI-assisted omics techniques present a robust

toolkit, enabling a profound understanding of the molecular foundations of

plant defense and paving the way for more effective crop protection strategies

amidst climate change and emerging diseases.
KEYWORDS

artificial intelligence, abiotic stress, biotic stress, machine learning, deep learning, plants
1 Introduction

Plant defense against both biotic (living organisms like pathogens and pests) and abiotic

(environmental factors such as drought, salinity, and extreme temperatures) stress is of

paramount importance in ensuring global food security. With the world’s population steadily

growing, the demand for crops is increasing, making efficient plant protection strategies a
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critical need. The ability to safeguard crops from the ravages of

diseases, pests, and adverse environmental conditions is essential to

maintain agricultural productivity and secure the global food supply.

The substantial impact of these stressors is underscored by the

extensive economic losses, as evidenced by the multi-billion-dollar

reductions in crop yields (FAO 2017 report).

Biotic stressors, such as pathogens and pests, pose a constant

threat to crop health. Pathogens, including fungi, bacteria, and

viruses, can devastate entire plant populations, leading to

substantial economic losses and food shortages. Likewise, pests,

ranging from insects to nematodes, have the potential to decimate

crops, leading to decreased yields and quality.

Food crops around the world face substantial yield reductions

due to microbial diseases and pest infestations. These losses are

significant, with rice experiencing an average loss of 30.3%, maize at

22.6%, wheat at 21.5%, soybeans at 21.4%, and potatoes at 17.2%

(Savary et al., 2019). Plant diseases can be especially devastating,

leading to yield reductions of up to 50% in specific regions,

particularly impacting small-scale farmers and posing substantial

economic challenges. Additionally, plant diseases negatively

influence species diversity, increase the costs associated with

disease control measures, and even have repercussions on human

health (Ristaino et al., 2021). The emergence of new plant diseases

and pest outbreaks carries substantial economic implications for

agriculture, posing threats to food security, national stability, and

public health (Anderson et al., 2004). In the coming years, it is

expected that the changing distribution of pathogens due to climate

variations and increased global trade will result in a higher

prevalence and greater severity of emerging plant diseases (Bebber

et al., 2013). A notable recent example is the outbreak of coffee rust,

caused by Hemileia vastatrix, in Central America, which led to

significant crop losses and economic crises (Avelino et al., 2015).

On the other hand, abiotic stress factors are non-living elements

that challenge plant growth and survival. These include prolonged

droughts, extreme temperatures, soil salinity, and heavy metal

contamination. The impacts of abiotic stressors are often subtle

and insidious, affecting crop yields, nutritional content, and overall

plant health. Efforts to combat both biotic and abiotic stressors have

traditionally relied on a combination of methods, including

conventional breeding, chemical treatments, and agronomic

practices. However, these approaches are often reactive and may

not provide effective protection, especially in the face of emerging

pathogens or rapidly changing environmental conditions.

Recently, advanced omics techniques, have revolutionized the

exploration of molecular-level stress mechanisms in plants (Shen

et al., 2022). These methods provide extensive information, revealing

intricate networks involving genes, proteins, and metabolites during

plant defense against biotic stress. However, the substantial data

generated by these omics technologies poses a significant challenge in

terms of analysis and interpretation, necessitating the development of

highly effective computational tools.

Artificial Intelligence (AI) has emerged as a potent instrument for

unraveling vast omics datasets and understanding intricate

mechanisms underlying plant responses to stress. These techniques

offer a deeper understanding of the genetic, molecular, physiological,

and phenotypic aspects of plant defense, enabling the development of
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novel strategies to bolster crop resilience and mitigate stress-induced

damage. In traditional plant defense research, the complex networks

of genes, proteins, and metabolites involved in stress responses posed

challenges due to the high volume and complexity of biological data.

However, the advent of AI-assisted omics techniques has ushered in

innovative solutions to tackle and interpret this vast data landscape.

These techniques encompass diverse AI methodologies, efficiently

unraveling and modeling the intricate relationships between

molecular components and stress responses.

In this review, we intend to provide an overview of different

omics studies involving various stress factors in plants. As we

navigate through the intersection of AI and plant omics, we

explore cutting-edge developments in the realm of plant defense

against both biotic and abiotic stressors and confront its challenges.

This review critically explores the advantages of AI over traditional

methods, delves into the challenges of AI in plant omics, and future

directions in plant defense research, highlighting the potential for

sustainable agricultural practices that enhance crop protection,

stress tolerance, and global food security.
2 Different omics in plant
defense research

Plant defense research encompasses various “omics”

technologies, each offering unique insights into the molecular

mechanisms underlying plant responses to pathogens and

environmental stresses. In the following sections, we’ll provide a

brief overview of the primary types of data each omics approach can

provide when applied to research on plant stress.
2.1 Genomics

Plants, as stationary organisms, have evolved sophisticated

defense mechanisms against various stressors, including biotic and

abiotic factors. The combination of genomics and AI has become a

potent tool for unraveling the genetic foundations of plant defense.

This review explores the current and future applications of AI-

assisted genomics in understanding both biotic and abiotic stress

responses in plants. It covers the identification of resistance genes,

characterization of defense pathways, and improvement of stress

tolerance. The challenges, ethical considerations, and potential

breakthroughs in this evolving field are also discussed.

Genome-wide association studies (GWAS) play a crucial role in

genomic strategies to enhance crop resilience against abiotic stress.

Mangin et al. (2017) illustrate the significance of GWAS in

evaluating abiotic stress impacts on sunflower oil content.

Previous studies identified Quantitative Trait Loci (QTLs)

associated with maize yield under heat and water stress (Millet

et al., 2016). Environmental variables in GWAS investigations

revealed Single Nucleotide Polymorphisms (SNPs) linked to

sorghum drought stress, with 213 genomic regions associated

with drought tolerance (Lasky et al., 2015; Spindel et al., 2018).

Epigenetics, involving heritable modifications beyond DNA

sequences, combines with genomics in the emerging field of
frontiersin.org

https://doi.org/10.3389/fpls.2024.1292054
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Murmu et al. 10.3389/fpls.2024.1292054
epigenomics. This integration unveils genetic regulation in cellular

responses to stress, with epigenomic processes responding to

environmental conditions and stressors. Genome-level

investigations are necessary to scrutinize these phenomena across

developmental stages or assess deviations due to plant diseases

(Callinan and Feinberg, 2006; Muthamilarasan et al., 2019). The

revolutionary CRISPR-Cas9 technology, originating from bacteria

as a defense mechanism against viruses, has transformed genome

editing. CRISPR-Cas systems extensively edit eukaryotic genomes,

providing opportunities to engineer crop plants for enhanced

resilience against both abiotic and biotic stresses (Kumar and

Jain, 2015).
2.2 Transcriptomics

Transcriptomics, the study of an organism’s complete set of

RNA transcripts within specific cells or tissues (transcriptome), is a

dynamic field with potential for analyzing gene expression

responses to various stimuli over defined timeframes (Raza et al.,

2021). Transcriptome profiling, the approach used in this field,

allows the investigation of gene expression differences, providing

insights into the functions of specific genes.

In various crops like sorghum and rice, transcriptome studies

have identified gene sets with altered expression in response to

stressors such as drought, heat, osmotic stress, and hormonal

treatments (Dugas et al., 2011; Jin et al., 2013; Johnson et al.,

2014). These analyses are crucial for understanding gene expression

changes during growth and stress responses, offering valuable

insights for functional studies. Transcriptomics has proven

significant in unraveling stress responses and developmental

processes in crops, as demonstrated in RNA-seq studies in foxtail

millet and sweet potato, revealing tissue-specific gene expression

responses to abiotic and biotic stress (Li et al., 2017). The

application of RNA-seq in rice, maize, and rapeseed oil research

has aided in identifying genes responsive to drought stress

(Bhardwaj et al., 2015). Comparative transcriptomic analysis

enables exploration of distinct gene expression profiles across

diverse crop species facing stress, identifying shared genes and

revealing intricate cross-talk pathways (Li et al., 2013; Zhu et al.,

2013). These findings emphasize the significance of regulatory

networks governing stress tolerance genes, offering potential for

enhancing crop traits through genetic improvement.
2.3 Proteomics

Proteomics, as a comprehensive approach to studying

proteins, plays a crucial role in understanding how plants

respond to both biotic and abiotic stresses. The four main aspects

of proteomics—sequence, structural, functional, and expression

proteomics—offer a holistic view of the complex interactions

within plant cells (Aizat and Hassan, 2018). In sequence

proteomics, scientists identify amino acid sequences using

advanced te chn ique s l i k e h i gh -per fo rmance l i qu id

chromatography, providing insights into the building blocks of
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proteins (Twyman et al., 2013). Structural proteomics focuses on

understanding the three-dimensional structures and functions of

proteins, employing various methods like computer-based

modeling, NMR, crystallization, electron microscopy, and X-ray

diffraction (Woolfson et al., 2018). Functional proteomics delves

into the roles of proteins, employing methodologies such as Y2H

assays and protein microarray profiling to decipher the specific

functions of different proteins within the cellular context.

Quantitative proteomics, exemplified by the iTRAQ method,

allows researchers to measure changes in protein expression levels

in response to stresses, providing valuable information about how

plants react to environmental challenges (Liu et al., 2015; Zhu et al.,

2018; Yang et al., 2020).

In the context of plant responses to biotic stress, proteomics has

proven pivotal. Studies involving Vitis species and other crops

showcase the ability of proteomic analyses to identify stress-

responsive proteins and uncover translational modifications like

phosphorylation and ubiquitination. This information aids in

understanding the intricate molecular dynamics underlying plant

defense mechanisms and pathogen virulence (Mosa et al., 2017).

Similarly, in the realm of abiotic stress, such as drought, proteomics

reveals proteins associated with stress response in crops like wheat.

The integration of proteomics and phosphoproteomics explores

diverse functions in response to various stressors, contributing to

the identification of both resistant and susceptible crop cultivars

against these challenges. Additionally, the combination of proteomics

with other omics disciplines like metabolomics and functional

genomics enhances our understanding of stress biology, facilitating

the identification of molecular markers for breeding programs

(Margaria et al., 2013; Yang et al., 2013; Zhang et al., 2014). The

various proteomic techniques, including LC-MS/MS, MALDI-TOF,

SDS-PAGE, and iTRAQ, are extensively applied in different crops to

investigate their responses to both biotic and abiotic stress conditions

(Mohammadi et al., 2012; Ramalingam et al., 2015). The insights

gained from proteomic studies significantly contribute to unraveling

the molecular mechanisms by which plants adapt to environmental

challenges, ultimately leading to advancements in crop yield

improvement and stress resilience.
2.4 Metabolomics

Metabolomics, a study of metabolites in biological systems, is

crucial for understanding the plant metabolome and revealing

regulatory mechanisms under stress conditions. This field,

integrated with next-generation sequencing, provides insights into

molecular responses in crops, offering a broader perspective on

biochemical processes influencing gene functionality.

In plant defense against stress and pathogens, metabolites play a

vital role, identified through gas chromatography-mass spectrometry

as biomarkers in rice varieties facing the GMB1 pathogen. Similar

strategies reveal metabolite accumulation in response to other

pathogens in rice and barley, showcasing the importance of

metabolomics in understanding plant responses to biotic stress.

Wheat crops also exhibit the presence of phenylpropanoid and

phenolic metabolites in response to biotic stress. Metabolomics is
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particularly vital in plant systems due to the abundant production of

metabolites. Secondary metabolites like polyamines, identified in

rice crops under drought stress, highlight the relevance of

environmental metabolomics in understanding plant responses to

abiotic stresses. Various metabolomics techniques, including LC/

GC-MS, GC/EI-TOF-MS, HPLC, and NMR, have been widely

employed in crops like rice, tomato, maize, and soybean,

providing valuable insights into their responses to both abiotic

and biotic stress conditions.
2.5 Phenomics

Plant phenomics involves systematically acquiring and

analyzing multi-dimensional traits across various crop growth

stages, from cellular to field levels. This process relies on a three-

step approach: trait identification, data conversion into quantifiable

measurements, and computational methodologies for analysis.

High-throughput phenotyping platforms are crucial in the initial

phase, while computational strategies, particularly machine

learning (ML) algorithms, play a pivotal role in subsequent stages.

The performance of crop phenotypes is intricately linked to genetic

factors and environmental conditions. The continuous evolution of

sensors, imaging technologies, and analytical methodologies has led

to the development of numerous dedicated infrastructure platforms

for phenotyping.

Abiotic stresses such as drought, salinity, and nutrient deficiencies

pose significant challenges to crop production, eliciting complex plant

responses. Phenotyping for stress resistance is imperative for breeding

resilient crops. Drought stress, marked by reduced water availability,

can be evaluated using ground-based platforms equipped with

thermometer sensors and RGB cameras. Unmanned Aerial Vehicles

(UAVs) integrated with thermal cameras facilitate quicker scanning of

larger plots for identifying drought-resistant genotypes. Salinity stress,

impacting stomatal conductance, is observed through visible to near-

infrared spectral reflectance images. Scanalyzer3D aids in
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characterizing salinity tolerance mechanisms. Image-based methods,

encompassing RGB and fluorescence imaging, assess tissue ion

concentrations to gauge salinity tolerance. Hyperspectral imaging,

coupled with ML, predicts traits associated with salinity stress. Crop

nutrient deficiencies, especially nitrogen, affect chlorophyll content,

growth, and disease susceptibility, with monitoring conducted through

sensors like RGB, multispectral, and hyperspectral sensors. Mobile

platforms incorporating these sensors estimate nitrogen content

efficiently. Agriculture confronts threats from diseases and pests, and

the integration of resistance genes presents a cost-effective strategy.

Biotic stress induces changes in various plant characteristics, and

advanced phenotyping platforms utilizing optical sensors effectively

detect and manage biotic stress factors in crops.
3 Basics of AI techniques

AI involves creating computer systems to perform tasks

associated with human intelligence, such as learning, problem-

solving, and decision-making. ML, a subset of AI, focuses on

developing algorithms and statistical models that enable computers

to perform tasks without explicit programming. DL, a specialized

field within ML, involves training artificial neural networks to mimic

the human brain’s structure, utilizing deep architectures with

multiple layers for automatic hierarchical feature extraction.

The initial phase of ML includes data collection, especially in

sequencing data like RNA sequencing studies (Figure 1). Denoising

methods enhance expression recovery. Supervised ML uses diverse

features for training data representation, including amino acid

sequence information and physicochemical properties (Sperschneider

et al., 2018). Feature selection is crucial, and methods fall into three

categories: filter, wrapper, and embedding methods (Guyon and

Elisseeff, 2006; Guyon et al., 2008; Khalid et al., 2014).

Algorithm selection is pivotal, and ML algorithms can be

categorized into supervised, semi-supervised, and unsupervised.

Supervised methods establish relationships between input factors
B

C

A

FIGURE 1

(A) Basic steps involved in the development of machine learning models. Types of machine learning: (B) supervised and (C) unsupervised techniques.
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and outcomes based on training examples. Unsupervised methods,

primarily clustering, identify data patterns without relying on

known outcomes. Practical algorithms include SVM, DT, RF,

ANN, and NB for supervised learning, while k-means,

independent component analysis, and hierarchical clustering are

used for unsupervised learning. Semi-supervised learning handles

input data with both labeled and unlabeled information, with

examples like the label propagation algorithm.
3.1 Unsupervised ML

Unsupervised ML methods fulfill two primary functions:

clustering, which groups data based on similarity, and dimension

reduction, generating representative features from numerous

variables. A widely utilized clustering method is k-means, aiming

to create non-overlapping clusters of observations. Principal

Component Analysis (PCA) is a common technique for

dimension reduction, transforming high-dimensional observations

into a smaller set of uncorrelated principal components (PCs) to

simplify subsequent analyses.
3.2 Supervised ML

Support Vector Machine (SVM) is a supervised learning

method created by Vapnik (1999) for binary classification tasks. It

operates in an n-dimensional space, forming a hyperplane to

maximize the margin between distinct data classes. The choice of

kernel functions, such as linear or nonlinear options like

polynomial or radial basis, significantly influences its performance.

The k-nearest-neighbor (KNN) algorithm, introduced by

Altman (1992), is another supervised learning technique that

classifies data points by identifying the ‘k’ nearest neighbors with

known labels. The classification is based on a majority vote among

these neighbors. While user-friendly, traditional KNN methods

may have longer computation times (Borah et al., 2020).

The Decision Tree (DT) classifier, developed by Quinlan (1986),

follows a branch-test approach. It recursively partitions data based

on attributes until a specified stopping condition is met, creating a

tree-like structure. The classification path can be traced from the

root node to each leaf node (Schietgat et al., 2010).

Random Forest (RF), introduced by Breiman in 2001, is an

ensemble algorithm utilizing a group of DTs to achieve a consensus

on accurate classification. Classification trees are constructed by

randomly selecting from training datasets, and the predictions from

each tree are combined to provide an overall prediction for each

observation (Breiman, 2001).
3.3 Major deep learning architectures

ML has gained widespread popularity, and DL methods,

particularly associated with Artificial Neural Network (ANN)
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architectures, are gaining increasing attention. DL autonomously

learns from raw input data, capturing intricate patterns without

extensive domain expertise. Unlike traditional ML, which relies on

discrete or continuous output predictions based on data counts or

measurements, DL excels in direct feature learning from input

datasets, eliminating the need for conventional feature engineering

(Bonetta and Valentino, 2020).

ANNs, dating back to McCulloch and Pitts (1943), mimic

biological neurons and feature a learning process facilitated by

synaptic connections. Deep Neural Networks (DNNs) encompass

multiple hidden layers, effectively forming a complex structure.

Recurrent Neural Networks (RNNs), introduced by Sperduti and

Starita (1997), are suitable for supervised learning with feedback

loops for cyclic data processing. Convolutional Neural Networks

(CNNs), introduced by Lecun et al. (1998), excel in identifying

relevant features without human supervision, while Graph

Convolutional Networks (GCNs), introduced by Schaffer (1989),

handle intricate problems through complex architectures (Zhou

et al., 2022).

Transformers, rooted in a self-attention mechanism, find

application in natural language processing tasks like text

translation, improving task parallelization (Vaswani et al., 2017).

Ensemble classifiers enhance decision-making by combining

outputs from different models, introduced by Dietterich (2000).

Clustering-based methods, like the k-means algorithm, provide an

unsupervised approach for predicting protein functions by

exploiting direct and indirect interactions (Hou, 2017; Yan and

Wang, 2022).

Each algorithm, including ML and DL models, offers unique

capabilities catering to the complexities of omics datasets.

Understanding their distinctive strengths and weaknesses is

crucial before exploring their applications. Table 1 provides a

concise overview summarizing the key attributes defining

their performance.
3.4 Validation strategies

ML predictions in plant genomics research can be validated

through a variety of methods. Xavier (2021) emphasized the

importance of cross-validation in comparing different algorithms

for genomic prediction. K-fold cross-validation, a widely used

method, involves randomly dividing training samples into k

subsets, reserving one for validation, and using the others for

training (Sun et al., 2020). Evaluation metrics, derived from the

confusion matrix, include sensitivity, specificity, accuracy, precision,

F1-score, and Matthews correlation coefficient (MCC). Sensitivity

gauges correctly predicted positives, specificity assesses correctly

predicted negatives, accuracy reflects overall correct predictions,

and precision measures correctly predicted positives among TP and

FP. The F1-score combines precision and recall, while MCC is

valuable for imbalanced datasets (Jiao and Du, 2016). The receiver

operating characteristic (ROC) curve, evaluated with false positive

rate (FPR) and true positive rate (TPR), and the area under the ROC
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curve (AUC) serve as performance measures, with higher AUC

indicating superior predictor performance (Xu-Hui et al., 2009).

Individual-based models demand a context-oriented approach due

to their complex and variable interaction structure (Leye et al., 2009;

Kubicek et al., 2015). This approach involves separately assessing

different model levels and employing various techniques, including

visual inspection, statistical comparison, expert involvement, and

experimental validation. In the realm of engineering and scientific

models, a proposed statistical validation approach links validation

experiments to the target application and considers the importance

of measurements (Hills and Leslie, 2003). When applied context-

dependently, these strategies enhance the support for hypotheses

generated by the model. Maron et al. (2014) underscored the

necessity of experiments exploring the role of abiotic factors in plant-

animal interactions. Wang et al. (2018) introduced pattern-oriented

modeling as an effective means to verify and validate functional-

structural plant models, showcasing its predictive capabilities in plant

growth. Abele et al. (2013) introduced an ontology-based approach to

validate plant models, ensuring their accuracy through Semantic Web

reasoning. Bylesjö et al. (2007) discussed the O2PLS method for

integrating transcript and metabolite data in plant biology, providing

a means to validate and interpret models. Together, these studies

emphasize the significance of experimental and computational

validation strategies in plant omics research.

For ML models applied to plant omic data, context specificity is

crucial, as highlighted by Isewon et al. (2022), especially for

improving agronomic traits and developing resilient crop

varieties. Silva et al. (2019) further emphasizes the necessity of

ML approaches in plant molecular biology, particularly in the

analysis of pathogen-effector genes. Fukushima et al. (2009)

underscores the importance of integrating multiple omics data,

including metabolomics, to reconstruct complex networks in plant

systems. Collectively, these studies support the use of context-

specific ML models and the integration of omics data for a more

comprehensive understanding of plant biology.
TABLE 1 Strengths and weaknesses of different AI-methods.

Method Pros Cons Task

k-
nearest-
neighbor

▪ Simple
implementation for
handling multi-class
problems.
▪ Consistency in
selected
hyperparameters.
▪ Utilizes a non-
parametric algorithm.

▪ Slower processing
speed.
▪ More suitable for
datasets with a
limited number of
input variables.
▪ Inefficiency with
imbalanced data.
▪ Prone to
sensitivity issues
with outliers.

▪ Classification
▪ Regression

Decision
Tree

▪ Easy data pre-
processing without the
need for scaling or
normalization.
▪ Capable of handling
both numerical and
categorical features
effectively.
▪ Facilitates a clear
visual representation
of output.

▪ Longer training
times, contributing
to slower
processing.
▪ Prone to
overfitting issues.
▪ For complex or
large datasets, may
provide inadequate
predictions.
▪ Not ideally suited
for datasets which
are not balanced.

▪ Classification
▪ Regression

Random
Forest

▪ Capable of adapting
to dynamic neural
networks.
▪ Computational
power suitable for
handling non-
linear systems.

▪ Problem of
exploding and
vanishing gradient
for long sequences.
▪ Training process
tends to be slow
and complex.

▪ Classification
▪ Regression

Support
Vector
Machine

▪ Efficient when
dealing with distinctly
separable classes.
▪ Well-suited for two-
class classification
tasks.
▪ Effective for high
dimensional datasets.
▪ Relatively
memory-efficient.

▪ For noisy and
large datasets, it
may not be suitable.
▪ Requires
preprocessing of
data.
▪ Prone to the risk
of overfitting.
▪ Involves
computationally
costly processes.
▪ Output has
low interpretability.

▪ Classification
▪ Regression

Ensemble
Classifier

▪ Achieves higher
predictive accuracy
compared to
individual models.
▪ Capable of handling
both linear and non-
linear data.
▪ Reduces overfitting
and bias.
▪ Produces more
stable and reduced
noisy predictions.

▪ Computationally
expensive.
▪ Interpretability is
limited.
▪ Memory intensive.

▪ Classification
▪ Regression
▪ Clustering

Graphical
Neural
Network

▪ Consistency in
parameter use during
the training iteration.
▪ Cost-effective data
storage.
▪ Adaptive learning of
the importance of

▪ Algorithm’s
processes can be
untraceable.
▪ High
computational costs.

▪ Classification
▪ Regression
▪ Clustering

(Continued)
TABLE 1 Continued

Method Pros Cons Task

neighbours in a
graph-based system.

Clustering
Model

▪ Efficient and
requires fewer
computations.
▪ Intuitive without the
need for pre-set
clusters.
▪ Identifies outliers
without
predetermined
clusters.
▪ Offers more
flexibility compared to
k-means.
▪ Insensitivity to the
choice of distance
metric, allowing for
hierarchy
visualization.

▪ Inconsistency in
dealing with
outliers.
▪ Challenges in
selecting an optimal
number of clusters.
▪ For high
dimension datasets,
there may be
inconsistency in
performance.
▪ Utilizes all data
points that are
available.
▪ Lower efficiency
▪ Increased
time complexity.

▪ Clustering
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The effectiveness of ML prediction in plant stress omics

research finds objective validation through various methods. John

et al. (2022) compare classical and ML-based phenotype prediction

methods, noting the varying performance of different models in

real-world data. Ghosal et al. (2017) enhance the interpretability of

ML models by applying a ML framework to identify and classify

foliar stresses in soybean plants, isolating visual symptoms for each

stress. Singh et al. (2018) emphasize the importance of

standardizing visual assessments, deploying imaging techniques,

and using ML tools for data assimilation and feature identification

in plant stress phenotyping. Together, these studies underscore the

potential of ML in accurately predicting and identifying plant stress,

with a focus on interpretability and standardization.
4 Why choose machine learning for
plant-omics data over
traditional methods?

ML is increasingly preferred over traditional methods in plant-

omics data analysis due to its adept handling of large, complex

datasets. High-throughput sequencing technologies have ushered in

a wealth of information, enabling biologists to explore intricate

associations, decode stress responses in plants, and unravel

complexities in genomic responses (Singh et al., 2016). However,

challenges such as high dimensionality, uncertainty, and non-

independence among variables in plant omics data have emerged.

Traditional statistical models face limitations in handling this

complexity (Altman and Krzywinski, 2018; Niazian and

Niedbała, 2020).

ML, especially DL, has proven efficient in overcoming these

challenges, providing accurate analyses of plant characteristics

affected by genotype and environment interactions (Arsenovic et

al., 2019). Unsupervised and semi-supervised ML algorithms have

been applied to plant systems biology, facilitating big data analysis

without the need for large labeled training sets (Yan and Wang,

2022). ML’s application extends to improving plant agronomic

traits through the integration of large omics data (Isewon et al.,

2022). Studies by Farooq et al. (2022), Isewon et al. (2022), and Silva

et al. (2019) highlight the superiority of ML methods, particularly

decision tree-based ensemble models (Gokalp and Tasci, 2019), in

genomic prediction and integrative analysis of plant omics data.

ML’s potential in deciphering complex interactions in plant

molecular biology, including pathogen effector genes and plant

immunity, is underscored (Silva et al., 2019).

In transcriptomics, ML methods stand out for enhancing the

sensitivity of differential expression gene identification (Wang et al.,

2018). However, the use of non-linear ML models in differential

expression analysis may have limitations, leading to the

recommendation of eXplainable Artificial Intelligence for model

interpretation and gene set identification (Sabbatini and Calegari,

2023). The integration of ML with traditional biological

information is emphasized for learning biological dynamics from
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large datasets, complementing traditional modeling approaches (Xu

and Jackson, 2019; Gilpin et al., 2020). Various ML tools, including

tree-based methods, Bayesian models, network-based fusion

methods, kernel methods, matrix factorization models, and deep

neural networks, play a crucial role in connecting multi-view

biological data (Li et al., 2016).

ML’s proficiency in multivariate analysis is advantageous for

considering numerous variables simultaneously, leading to the

discovery of new biomarkers and predictive model development

(Reel et al., 2021). Its application in improving agronomic traits in

plant omics research is evident, although challenges in fully

realizing the potential of integrating multiomics data remain, with

scaling difficulties being a major obstacle (Noor et al., 2019). The

complexity of high-dimensional omics data necessitates

sophisticated methods for feature selection and information

extraction. ML’s advantage lies in its ability to discern and

prioritize the most relevant features, as demonstrated by Du et al.

(2019) in the analysis of RNA-sequencing data related to salt stress

response in rice. The use of ML-based feature selection methods,

including principal component analysis and LASSO, effectively

revealed submodules associated with observed traits.

ML excels in prediction and classification tasks, allowing

researchers to forecast phenotypic outcomes and identify

potential biomarkers. Its scalability is crucial for large-scale omics

data, setting it apart from traditional methods facing computational

challenges. In conclusion, the shift towards ML in plant omics

research is driven by its unique strengths in addressing data

intricacies, enabling predictive modeling, and facilitating an

exploratory approach to data analysis.

Pattern recognition is another strength of ML, enabling the

discovery of intricate patterns and associations within complex

datasets. In omics research, where uncovering subtle patterns may

provide novel insights into biological mechanisms, this capability is

highly valuable. Moreover, ML is adaptable to the heterogeneity

often observed in omics datasets due to biological variability and

technical differences. Its flexibility and generality, with less reliance

on assumptions about data distribution, make it suitable for various

data types and experimental designs. The exploratory nature of ML,

facilitating the uncovering of hidden patterns and relationships, is

crucial in omics research. This aspect allows researchers to generate

hypotheses and identify novel avenues for further investigation.

In the realm of multi-omics analysis, the primary objective is

constructing Gene Regulatory Networks (GRNs). While ChIP-seq

experiments for profiling Transcription Factors’ (TFs) binding sites

are limited in plants, the inference of GRNs heavily relies on

expression data (Bubb and Deal, 2020). Traditional correlation-

based methods and the Mutual Information (MI) algorithm face

challenges in distinguishing regulatory direction and considering

temporal delays between gene expressions (Banf and Rhee, 2017;

Redekar et al., 2017; Haque et al., 2019). To overcome these

limitations, Probabilistic Graphical Models (PGM), such as

GENIST and JRmGRN, have been introduced, though they

require high spatiotemporal resolution in expression data (de Luis

Balaguer et al., 2017; Deng et al., 2018).
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ML has revolutionized the inference of GRNs, integrating

multi-omics data to enhance accuracy (Walley et al., 2016; Ko

and Brandizzi, 2020). iDREM (interactive dynamic regulatory

events miner), employing a hidden Markov model, reconstructs

temporal GRNs in response to biotic and abiotic stresses using

transcriptomic, proteomic, and epigenomic datasets (Ding et al.,

2018). With the emergence of single-cell RNA sequencing (scRNA-

seq), tools like GRNBoost2, based on the GENIE3 framework,

facilitate cell-specific GRN inference (Moerman et al., 2019). The

SCENIC analytical pipeline, incorporating multiple tools, efficiently

analyzes datasets within 2 hours comprising of 50,000 cells and

10,000 genes (Van de Sande et al., 2020).

In summary, the shift towards ML in plant omics research is

driven by its unique strengths in addressing the intricacies of omics

data, accommodating multiple variables, integrating diverse datasets,

providing predictive modeling and classification capabilities, and

facilitating an exploratory approach to data analysis.
5 Application of AI in plant omics
against stress

AI-assisted omics techniques in plant defense research represent

a cutting-edge approach, combining advanced molecular

technologies with AI for a deeper understanding of how plants

respond to stresses (Figure 2). Traditional research faced challenges

in deciphering complex gene, protein, and metabolite networks, but

AI-supported omics methods provide innovative solutions. These

techniques rapidly identify crucial components in defense pathways,

discover biomarkers, and reveal hidden patterns, enhancing our

comprehension of plant defense processes. Integrating multi-omics

data sources offers a holistic understanding, and as AI techniques

evolve, they hold promise for developing stress-resistant crops,

optimizing agricultural practices, and ensuring sustainable food

production (Arabnia and Tran, 2011; Yan and Wang, 2023).
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5.1 AI-assisted genomics

Machine learning (ML) algorithms play a pivotal role in

identifying stress resistance genes, aiding breeders and researchers

in enhancing crop production. Liang et al. (2011) utilized a variant

of the Support Vector Machine (SVM) algorithm to identify key

genes associated with drought resistance in A. thaliana. Shikha et al.

(2017) demonstrated the superior performance of Bayes algorithms,

identifying critical SNPs for drought resistance in maize. ML

algorithms have been applied beyond drought resistance, with

Wang et al. (2013) using an SVM-based model to predict salt

resistance genes in rice. Ravari et al. (2015) assessed salt tolerance in

Iranian wheat genotypes, identifying effective indices for predicting

salt-tolerant varieties using artificial neural network (ANN)

analysis. Schwarz et al. (2020) employed ML techniques to

explore the cis-regulatory code governing the response to iron

deficiency in Arabidopsis roots.

In the realm of plant disease resistance, SVM and its variants are

widely employed, as demonstrated by Pal et al. (2016), achieving high

accuracy in predicting disease resistance proteins. ML has also been

instrumental in predicting pathogen effector proteins, with

Sperschneider et al. (2016) developing EFFECTORP, the first ML

classifier for fungal effectors. Despite the focus on disease resistance

genes, ML algorithms hold promise in understanding genes

susceptible to plant diseases, contributing significantly to

agricultural practices (Yang and Guo, 2017). The application of ML

in exploring plant single-cell genomic data offers opportunities to

unravel cellular heterogeneity, decode regulatory networks, and

identify novel cell types. Recent studies (Silva et al., 2019;

Raimundo et al., 2021) highlight ML’s potential in tasks such as

generating low-dimensional representations, classifying cell types,

inferring trajectories, deducing gene regulatory networks, and

integrating multimodal data. Challenges related to low sequencing

coverage and amplified artifacts in single-cell RNA (scRNA)

sequencing are addressed by ML approaches, such as the SIMLR
FIGURE 2

Different omics in plant defense research.
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algorithm (Wang et al., 2017) and neural network models (Lin et al.,

2017), providing more reliable insights into the intricate landscape of

single-cell genomics. Despite these advancements, further research is

needed to fully unlock the potential of ML in plant single-cell

genomics. The current application of ML in identifying stress

resistance genes is limited to a few plant species, urging the

extension of ML utilization to other economically significant plants

for a comprehensive understanding of stress resistance mechanisms

and accelerated breeding efforts.
5.2 AI-assisted transcriptomics

In a comprehensive exploration of miRNAs and their roles in plant

stress responses, Asefpour Vakilian (2020) conducted a study focusing

on both biotic and abiotic stresses. The research employed feature

selection algorithms to delve into the contributions of individual

miRNAs in Arabidopsis thaliana responses to various abiotic stresses,

including drought, salinity, cold, and heat. Utilizing information

theory-based feature selection, key miRNAs, such as miRNA-169,

miRNA-159, miRNA-396, and miRNA-393, were identified as

significant contributors to the plant’s reactions to these stressors. The

study harnessed regression models, including DT, SVMs, and NB,

revealing the exceptional predictive capabilities of SVM with a

Gaussian kernel, achieving a high coefficient of determination

(R² = 0.96) for plant stress based on miRNA concentrations.

Contrary to the traditional belief in separate signaling pathways

for abiotic and biotic stresses in plants, a study on rice by Shaik and

Ramakrishna (2014) shed light on the intricate relationship between

these stress responses. Through a meta-analysis of microarray

studies, the researchers identified shared stress-responsive genes

in rice, revealing conserved expression patterns across both types of

stresses for approximately 70% of the common differentially

expressed genes. Advanced data analysis techniques and ML

models, including recursive-support vector machine and random

forests decision tree, effectively distinguished between abiotic and

biotic stress responses based on gene expression profiles. The

recursive-support vector machine achieved a perfect 100%

accuracy in classifying these stress types, identifying 196 genes

that significantly contributed to the accurate classification.

In a study led by Meng et al. (2021), supervised classification

models were employed to identify genes responding transcriptionally

to cold stress. Surprisingly, models trained solely with features

derived from genome assemblies displayed modest reductions in

performance compared to those incorporating a wider range of data.

Notably, models trained with data from one plant species

demonstrated remarkable success in predicting gene responses to

cold stress in related species, even when transferring predictions

between cold-sensitive and cold-tolerant species. Multi-species

models, trained using data from multiple species, outperformed

single-species models when it came to cross-species prediction

accuracy. This approach, driven by ML, shows promise in

accelerating the understanding of gene expression responses to

environmental stresses across diverse plant species.
Frontiers in Plant Science 09
In response to abiotic stress, such as heat or cold, plants undergo

significant changes in gene expression to adapt and survive. In a study

conducted by Zhou et al. (2022), transcriptome profiling of maize

genotypes exposed to heat or cold stress revealed extensive alterations

in transcript abundance. Motifs near the transcription start sites

(TSSs) of genes responsive to thermal stress were found to be

enriched. Predictive models developed using these motifs could

forecast gene expression responses to stress, with enhanced

accuracy focusing on motifs within unmethylated regions near the

TSSs. However, challenges emerged when applying these models

across different maize genotypes, indicating reduced performance

when transferred between genotypes.

In a recent study, Pradhan et al. (2023a) employed artificial

intelligence, specificallyML, to tackle the challenge of identifying long

non-coding RNAs (lncRNAs) associated with abiotic stress responses

in plants. Abiotic stresses significantly impact crop yields,

emphasizing the importance of developing stress-resistant crop

cultivars. The researchers devised a novel computational model

capable of predicting abiotic stress-responsive lncRNAs. They

utilized a dataset comprising stress-responsive and non-stress-

responsive lncRNA sequences for binary classification. Various ML

algorithms, including SVM, were applied, and the representation of

lncRNAs was numeric based on Kmer features. Through effective

feature selection strategies, the SVM model demonstrated impressive

cross-validation accuracy at 68.84%. Further validating its robustness,

the model exhibited an accuracy of 76.23% on an independent test

dataset. To enhance accessibility, the researchers also introduced an

online prediction tool called ASLncR.

In a parallel study, Pradhan et al. (2023a) directed their focus

towards predicting microRNAs (miRNAs) associated with specific

abiotic stresses, such as cold, drought, heat, and salt. Given the vital

role of miRNAs in plant responses to these stresses, their identification

holds significance for breeding stress-resistant crops. Leveraging ML,

specifically SVM, the researchers developed a computational model for

predicting stress-responsive miRNAs. They utilized pseudo-K-tuple

nucleotide compositional features to numerically represent miRNAs.

The SVM model achieved high cross-validation prediction accuracies

ranging from 87.71% to 90.15% across different stress conditions. To

facilitate the utility of this computational tool, an online prediction

server named ASmiR was established.

Similarly, Meher et al. (2022a) contributed to the field by

developing a ML-based method for predicting miRNAs responsive

to abiotic stresses. They worked with three types of datasets: miRNA,

pre-miRNA, and pre-miRNA + miRNA. Using pseudo-K-tuple

nucleotide compositional features, sequence data was transformed

into numeric feature vectors. SVM was employed for prediction, and

the model achieved respectable results. The area under the receiver

operating characteristics curve (auROC) and area under the

precision-recall curve (auPRC) percentages ranged from 65.64% to

77.94%. Overall prediction accuracies for the independent test set

ranged from 62.33% to 69.21%. To facilitate the application of this

approach, the researchers provided an online prediction server

named ASRmiRNA. The method shows promise in advancing the

identification of abiotic stress-responsive pre-miRNAs and miRNAs.
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5.3 AI-assisted proteomics

Meher et al. (2022a) employed computational methods and

machine learning (ML) to streamline the identification of abiotic

stress-responsive genes (SRGs) across various stress conditions,

achieving accuracy levels of 60% to 78% with the SVM model.

They introduced an online prediction application, ASRpro, for

broader accessibility. In the realm of plant-pathogen protein-

protein interactions (PPIs), Yang et al. (2019) utilized Random

Forest to predict known plant-pathogen PPIs, showcasing

enhanced accuracy by incorporating sequence data and

network attributes. The InterSPPI web server was introduced

to support ongoing research. Karan et al. (2023) focused on

plant-microbe interactions, predicting PPIs for rice and blast

fungus interactions with ML models achieving up to 95%

accuracy on experimental datasets. The specificity of the model

to O. sativa and M. grisea was confirmed through assessments

against other pathogen-host datasets. Ahmed et al. (2023)

introduced a novel activation function, Gaussian Error Linear

Unit with Sigmoid (SIELU), in a deep learning model for

classifying unknown abiotic stress protein sequences,

outperforming other models with high accuracies ranging from

80.78% to 95.11%.
5.4 AI-assisted metabolomics

Liu et al. (2017) conducted a study focusing on the classification

of 216 plants based on their incomplete metabolite content. Their

research employed a network clustering algorithm to group

metabolites with similar structures. Plants were represented as

binary vectors, and hierarchical clustering was used for

classification. Despite working with incomplete data, the

approach successfully clustered plants in accordance with known

evolutionary relationships, underscoring the significance of

metabolite content as a taxonomic marker. Furthermore, the

study discussed how metabolite content could serve as a predictor

for nutritional and medicinal properties in plants, revealing

previously unknown species-metabolite relationships.

In Fürtauer et al.’s study (2018), the emphasis was on

understanding how abiotic stress influences the metabolic

regulation of plants. The researchers utilized Arabidopsis wild-

type plants and mutant lines with deficiencies in sucrose or starch

metabolism, subjecting them to cold and high-light stress

conditions. Through quantifying changes in the primary

metabolome and proteome, they trained a machine-learning

algorithm to classify mutant lines under control and stress

conditions. This innovative approach identified a core module

consisting of 23 proteins that reliably predicted combined

temperature and high-light stress conditions. Importantly, 18 of

these proteins were associated with protein-protein interactions,

providing insights into the intricate biochemical regulation

occurring in response to changing environmental conditions.
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5.5 AI-assisted phenomics

DL techniques have proven remarkably effective in the realm of

cropmanagement, spanning various crops like rice, wheat, tomato, and

potato. Li et al. (2020) pioneered a DL-based video detection system

aimed at addressing plant diseases and pests in crops. Their primary

goal was the swift identification of plant diseases and pests through

comprehensive video analysis, utilizing advancedmodels such as Faster

R-CNN and YOLO v3 for real-time video detection systems. The

approach involved transforming videos into individual frames,

analyzed using a Faster R-CNN framework for detection. Video-

based evaluation metrics were introduced to assess detection quality,

demonstrating that their custom backbone system outperformed

existing systems in detecting untrained rice videos. Focusing on

wheat stripe rust, a prevalent disease affecting wheat yields, Mi et al.

(2020) introduced a novel DL network called C-DenseNet. This

network incorporated the Convolutional Block Attention Module

(CBAM) into a densely connected convolutional network

(DenseNet), surpassing classical DenseNet and ResNet models in

wheat stripe rust severity grading with a test accuracy of 97.99%.

Wang and Liu (2021) presented an early recognition method for

tomato leaf spot using the MobileNetv2-YOLOv3 model. They

enhanced recognition accuracy by introducing the GIoU bounding

box regression loss function. This lightweight model demonstrated

significant improvements in recognition performance compared to

other models, achieving an F1 score of 94.13% under specific

conditions. Addressing virus diseases in seed potatoes, Polder et al.

(2019) proposed a hyperspectral imaging approach for field

detection. They designed an imaging setup with a hyperspectral

line-scan camera, training a convolutional neural network (CNN)

on field data. The method achieved high precision and recall,

showcasing its potential for real-world disease detection in potato

crops. Chen and Yuan (2019) developed a deep-learning pipeline for

localizing and counting agricultural pests in images. Their method

integrated a convolutional neural network (CNN) and a region

proposal network (RPN) with Non-Maximum Suppression (NMS)

to remove overlapping detections. The model demonstrated high

precision (0.93) with a low miss rate (0.10), showcasing its

effectiveness in pest detection.

Feng et al. (2020) addressed plant defense against salinity stress

using image processing and DL algorithms. They utilized high-

throughput plant phenotyping technologies for non-destructive

monitoring of plant traits. Employing hyperspectral imaging

(HSI), the researchers assessed the phenotypes of 13 okra

genotypes following salt treatment. Advanced plant and leaf

segmentation techniques, coupled with DL algorithms, achieved

outstanding results in accurately delineating plant and leaf

structures. Salinity stress was found to have deleterious effects on

okra’s physiological and biochemical processes, leading to

significant alterations in spectral information. Leveraging this

data, the study constructed predictive models for various traits,

yielding promising results with correlation coefficients ranging from

0.588 to 0.835.
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An overview of dedicated ML-based tools designed for

addressing both abiotic and biotic stresses in plants are enlisted in

Table 2. These specialized tools cater to specific types of stressors,

offering a comprehensive resource for researchers and practitioners

in the field of plant defense.

Supervised ML and DL have been extensively applied in various

plant biology studies, but there are situations where unsupervised

and semi-supervised approaches are crucial. In the field of plant

systems biology, unsupervised and semi-supervised learning

algorithms play essential roles in diverse areas such as data

clustering, dimensionality reduction (DR), visualization, gene

regulatory network inference, cross-species prediction, and single-

cell omics data analysis (Rai et al., 2019). PCA is widely used for DR

and visualization of genotypic and multi-omics data (Yan et al.,

2020). Hierarchical clustering is extensively employed for clustering

genes with similar expression patterns in transcriptomic and

proteomic research (Xu et al., 2012; Klepikova et al., 2016).

Algorithms like t-sne and optics contribute significantly to the

analysis of genotypic data, enhancing visualization of large-scale

maize hybrid populations’ structures (Yan et al., 2021). Non-

negative matrix factorization (NMF) proves valuable in breaking

down expression matrices with thousands of genes into a small

number of metagenes in Arabidopsis and maize (Wilson et al., 2012;

Ma et al., 2022). The multifactor dimensionality reduction (MDR)

algorithm is employed for identifying multiple pairwise epistatic

effects and gene–environment interactions affecting agronomic and

quality traits in rice and barley (Xu et al., 2015; Xu et al., 2018).

Semi-supervised and transfer learning strategies have emerged

to overcome the scarcity of annotated genes and pathways in plants.

Transfer learning was employed to predict specialized/general

metabolism-related genes in Solanum lycopersicum (tomato) by

leveraging well-annotated Arabidopsis genes (Moore et al., 2020).

Another innovative approach, ‘evolutionarily informed machine

learning,’ used an xgboost model trained on transcriptomic data in

Arabidopsis to predict nitrogen-use efficiency (NUE) and related

genes in maize (Cheng et al., 2021). With the advent of single-cell

sequencing technology, challenges arise due to higher

dimensionality and complexity (Bobrovskikh et al., 2021).

Advanced algorithms like t-sne, umap, magic, phate, Saucie, and

Beeline have been proposed to address these challenges and are

prevalent in both human and plant studies (Van Dijk et al., 2018;

Amodio et al., 2019; Becht et al., 2019; Pratapa et al., 2020; Wu and

Zhang, 2020; Marand et al., 2021).
6 Challenges

The rapid advancements in biological data generation and ML

development have opened up significant possibilities for unraveling

complex biological information. However, integrating ML into

plant molecular studies poses notable challenges. ML approaches,

similar to traditional plant molecular methods, are highly context-

specific, underscoring the importance of meticulous experimental

design. It’s essential to recognize that while ML aims to create

predictive models, each ML algorithm comes with distinct strengths

and weaknesses, influencing predictive efficiency under specific
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conditions. Consequently, an ML model crafted for one dataset

may struggle to generalize well to others due to inherent biological

and technical variations.

The abundance of omics datasets provides a treasure trove of

information. However, a notable portion of these datasets is marked

by characteristics such as noise and sparsity. This poses a substantial

challenge when it comes to accurately identifying biological

features, especially during the integration of various omics data

sources (Joyce and Palsson, 2006). The challenge of imbalanced

datasets, where sample sizes vary across categories, is pervasive in

ML. Researchers address this through resampling strategies such as

oversampling and undersampling (Maimon and Rokach, 2005). For

instance, Li et al. (2021) employed the synthetic minority

oversampling technique (SMOTE) to bolster the representation of

minority cases, a crucial step in the identification of effector

proteins. The presence of noise and sparsity in these datasets

introduces uncertainty and complexity, potentially hindering the

identification of meaningful patterns or features within the

biological data. Researchers must grapple with the task of

distinguishing genuine biological signals from the background

noise, emphasizing the need for robust analytical approaches to

ensure the reliability of findings. Additionally, the issue of

overfitting looms prominently, particularly in the domain of DL.

Overfitting occurs when a model becomes overly tailored to the

intricacies of a specific dataset to the extent that it struggles to

generalize well to new, unseen data. This phenomenon can

compromise the model’s predictive capabilities and hinder its

applicability to real-world scenarios. In addressing this concern,

techniques like dropout have been employed (Scholz et al., 2004).

Dropout is a regularization technique that involves randomly

“dropping out” or deactivating a subset of neurons during the

training of a neural network. By doing so, dropout helps prevent the

neural network from becoming overly reliant on specific features or

relationships present in the training data, thereby enhancing its

ability to generalize to new and unseen data. This technique acts as a

safeguard against overfitting, promoting a more robust and

adaptable model. Various factors, including data preprocessing,

user-defined parameters, and domain knowledge, significantly

influence the effectiveness of ML models. ML practitioners play a

pivotal role in decision-making throughout the process,

underscoring the importance of incorporating prior knowledge

and domain expertise to unveil meaningful patterns.

Dealing with big data characteristics in plant system biology

studies, encompassing volume, variety, veracity, value, and velocity,

presents its own set of challenges. ML methods must adapt to

handle multi-omics data, considering the unique insights each

omics layer provides. Challenges include addressing high-

dimensional data issues such as sparsity, multicollinearity, and

overfitting, necessitating tailored methods and collaborative

efforts in data integration.

Interpreting complex models, particularly in advanced ML

approaches like DL, remains challenging due to their ‘black

box’ nature. Researchers often prioritize understanding the

biological significance of a predictive model over its accuracy,

requiring careful processing and correlation with existing

biological knowledge.
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Despite these challenges, the studies discussed in this context

represent success stories in the application of AI in plant omics. To

fully harness the potential of AI, robust and scalable algorithms that
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uncover meaningful biological insights are crucial. Ensuring accuracy

and reliability through experimental validation is essential for

translating computational findings into practical applications.
TABLE 2 AI-based tools for plant defense against abiotic and biotic stress.

Tool Stressors Features Algorithm Description Website (Accessed
on November
27, 2023)

ASRpro
(Meher
et al., 2022b)

Cold, drought,
heat, light,
oxidative and salt

autocross covariance & and K-
mer composition

SVM Identification of proteins associated
with multiple abiotic stress in plants

https://iasri-
sg.icar.gov.in/asrpro/

AsmiR
(Pradhan
et al., 2023b)

Drought, cold,
salt and heat

pseudo-K-tuple
nucleotide composition

SVM Prediction of abiotic stress–specific
miRNAs in plants

https://iasri-
sg.icar.gov.in/asmir/

PLncPRO (Singh
et al., 2017)

Abiotic 71 features were extracted using
Framefinder (Slater, 2000) and
BlastX (Altschul et al., 1997)

RF Prediction of long abiotic stress-
responsive long non-coding RNAs

http://
ccbb.jnu.ac.in/plncpro/

ASRmiRNA
(Meher
et al., 2022a)

Abiotic pseudo K-tuple
nucleotide composition

SVM Prediction of abiotic Stress-
Responsive miRNA

http://
cabgrid.res.in:8080/
asrmirna

ASLncR (Pradhan
et al., 2023a)

Abiotic Kmer SVM Prediction of abiotic stress-
responsive long non-coding RNAs

https://iasri-
sg.icar.gov.in/aslncr/

DeepAProt
(Ahmed
et al., 2023)

Drought, cold,
salinity and heat

46 features were extracted using bio-
python package (Cock et al., 2009)

Long-short
term memory

Identification and classification of
abiotic stress protein sequences
in cereals

http://
login1.cabgrid.res.in:5500/

PredHSP
(Kumar
et al., 2016)

Heat Dipeptide composition SVM Sequence-based prediction and
classification of heat shock protein

http://14.139.227.92/
mkumar/
predhsp/index.html

iHSP-PseRAAC
(Feng et al., 2013)

Heat Spaced dipeptide composition SVM Identification of the heat shock
protein families

http://lin.uestc.edu.cn/
server/iHSP-PseRAAAC

ir-HSP
(Meher
et al., 2018)

Heat pseudo amino acid composition SVM Classification of heat shock proteins
sequences into one of the six heat
shock proteins families

http://cabgrid.res.in:8080/
ir-hsp

DeeperHSP
(Min et al., 2021)

Heat CNN CNN Identification of heat shock proteins https://github.com/
mswzeus/DeeperHSP

afpCOOL
(Eslami
et al., 2018)

Cold Amino acid composition;
evolutionary features

SVM Prediction of anti-freeze proteins –

AFP-Pred
(Kandaswamy
et al., 2011)

Cold Overall composition of helix, stand
and coil; Physicochemical
properties, etc.

RF Predicts antifreeze proteins from
sequence-derived properties

https://www3.ntu.edu.sg/
home/EPNSugan/
index_files/AFP-Pred.htm

DRPPP (Pal
et al., 2016)

Biotic Protein sequence SVM Prediction of disease resistance
proteins in plants

http://14.139.240.55/
NGS/download.php

prPred
(Wang
et al., 2022)

Biotic bidirectional long short-
term memory

light
gradient
boosting

Prediction of plant
resistance proteins

http://lab.malab.cn/soft/
prPred-DRLF/

StackRPred
(Chen et al., 2022)

Biotic pairwise energy content of residues Ensemble
learning

Prediction of plant
resistance proteins

–

ResCap
(Kushwaha
et al., 2021)

Biotic Sequence compositional properties SVM Prediction of plant resistance gene http://
rescap.ltj.slu.se/ResCap/

EffectorP 3.0
(Sperschneider
and Dodds, 2022)

Pathogen Protein sequence features Ensemble
learning

Prediction of fungal and oomycetes
effector proteins

https://effectorp.csiro.au/

InterSPPI
(Yang et al., 2019)

Pathogens Protein sequence features;
network encoding

RF Prediction of PPI between
Arabidopsis and pathogens

http://systbio.cau.edu.cn/
intersppi/index.php
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Bridging collaboration gaps between omics researchers, data

scientists, and agricultural experts is vital for realizing the full

potential of AI in plant defense and practical applications.
7 Future directions

Integration of AI and Omics Data in Early Disease Detection:

One promising future direction is the seamless integration of AI

with various omics data (genomics, transcriptomics, proteomics,

and metabolomics) to enable the early detection of plant diseases.

Advanced AI algorithms can analyze multi-dimensional omics

datasets to identify subtle changes in plant molecular profiles

associated with disease onset, even before visible symptoms emerge.

High-Throughput Phenotyping with AI-Omics Fusion:

Combining AI-assisted omics techniques with high-throughput

phenotyping methods offers an exciting avenue. This fusion can

enable real-time monitoring of plant health by linking molecular

responses to observable phenotypic traits. The integration of

phenomics data into AI-driven analysis pipelines enhances our

understanding of plant defense mechanisms.

Predictive Modeling of Disease Dynamics: Leveraging AI and

omics data, predictive modeling can be developed to forecast disease

dynamics in plant populations. ML and DL models can factor in

genetic, molecular, and environmental variables to predict disease

outbreaks and assess the impact of preventive measures.

Customized Crop Breeding: Future research may focus on using

AI-assisted omics techniques to tailor crop breeding programs for

enhanced disease resistance. By pinpointing specific genetic

markers and pathways associated with resistance, breeders can

design crops with improved defense mechanisms.

AI-Guided Sustainable Disease Management: AI can assist in

optimizing disease management strategies. Integrating AI-powered

recommendations with omics data allows for precision application

of pesticides, reducing environmental impact and lowering costs

while effectively controlling plant pathogens.

Addressing Combined Stressors: With climate change and

evolving agricultural practices, plants often face the challenge of

multiple stressors simultaneously. Future research should focus on

understanding how plants respond to combined biotic and abiotic

stress, as this represents a significant real-world scenario. AI-assisted

omics techniques can play a pivotal role in unraveling the intricate

interactions between different stress factors and their cumulative

effects on plant defense mechanisms. This knowledge is essential for

developing holistic and resilient strategies to protect crops in complex

stress environments, ensuring sustainable food production.

Integration of Remote Sensing Data with AI-Omics Fusion: The

integration of remote sensing technology with AI-assisted omics

techniques offers a powerful approach to monitor and mitigate

plant stress. Remote sensing provides valuable spatial and temporal

data on plant health, stress factors, and environmental conditions.

By merging remote sensing data with omics information,

researchers can gain a comprehensive understanding of the

interplay between genetic responses and environmental stressors.

This integrated approach enables more precise and timely

interventions to enhance plant defense and reduce crop losses.
Frontiers in Plant Science 13
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In conclusion, this comprehensive review explores the landscape of

omics studies in plant defense against biotic and abiotic stress, and the

transformative role of ML techniques in various omics domains. From

genomics to metabolomics, AI-assisted techniques showcase their

prowess in extracting meaningful insights from expansive datasets,

surpassing traditional methods. While emphasizing the advantages of

ML, the review also addresses the challenges associated with its

implementation in plant omics, paving the way for future

developments. Progress in computational frameworks facilitates the

seamless application of modern methods. With the increasing volume

of plant sequencing data, ML emerges as a catalyst in accelerating

various facets of plant genomic research. This includes pinpointing

genes associated with resistance against biotic and abiotic stress, as well

as enhancing our comprehension of gene regulationmechanisms. These

strides are poised to aid agricultural researchers in enhancing crop yield

and quality, fostering improved resilience to biotic and abiotic stressors.
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