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Rodents are essential to the balance of the grassland ecosystem, but their

population outbreak can cause major economic and ecological damage.

Rodent monitoring is crucial for its scientific management, but traditional

methods heavily depend on manual labor and are difficult to be carried out on

a large scale. In this study, we used UAS to collect high–resolution RGB images of

steppes in Inner Mongolia, China in the spring, and used various object detection

algorithms to identify the holes of Brandt’s vole (Lasiopodomys brandtii).

Optimizing the model by adjusting evaluation metrics, specifically, replacing

classification strategy metrics such as precision, recall, and F1 score with

regression strategy-related metrics FPPI, MR, and MAPE to determine the

optimal threshold parameters for IOU and confidence. Then, we mapped the

distribution of vole holes in the study area using position data derived from

the optimized model. Results showed that the best resolution of UAS acquisition

was 0.4 cm pixel–1, and the improved labeling method improved the detection

accuracy of the model. The FCOS model had the highest comprehensive

evaluation, and an R2 of 0.9106, RMSE of 5.5909, and MAPE of 8.27%. The final

accuracy of vole hole counting in the stitched orthophoto was 90.20%. Our work

has demonstrated that UAS was able to accurately estimate the population of

grassland rodents at an appropriate resolution. Given that the population

distribution we focus on is important for a wide variety of species, our work

illustrates a general remote sensing approach for mapping and monitoring

rodent damage across broad landscapes for studies of grassland ecological

balance, vegetation conservation, and land management.
KEYWORDS

pest rodent monitoring, vole hole detection, unmanned aerial vehicles, deep learning,
threshold optimization
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1 Introduction

Small mammals, particularly burrowing rodents, are known as

“ecosystem engineers” due to their positive impacts on grassland

ecosystems, such as increasing plant diversity, providing shelter to

other small creatures from insects to birds, and serving as the food

of predators (Li et al., 2023). Nevertheless, because of their rapid

reproductive capacity, the population of some species of small

rodents can quickly grow and become a biohazard (Singleton

et al., 1999). In Inner Mongolia, grasslands cover an area of 54.4

million hectares, the largest ecological function area with the

highest biodiversity in northern China. Rodent damage is one of

the most significant biohazards in grasslands, resulting in losses of

over 200 million tons per year (Liu, 2022).

Brandt’s vole (Lasiopodomys brandtii) is a small herbivore

rodent species inhabiting Inner Mongolia’s steppes. Its population

density experiences dynamic fluctuations annually, with the

maximum density reported to be 1,384 voles per hectare and the

burrow area damaging approximately 5,616 hectares of grassland

(Liu and Sun, 1993). The soil produced by the burrow digging of

these voles forms a lot of heterogeneous vegetation patches,

resulting in a 65.7% decrease in the yield of high–quality forage

(Su et al., 2013). As such, Brandt’s vole is considered to be one of the

main pest rodent species, and is thus controlled every year.

Monitoring the population size of this species is essential for its

scientific management. However, traditional methods are labor–

intensive, such as using visual observation or traps to count voles, or

using plugging and opening to count active holes, all of which are

time–consuming due to the limitation of quadrat to small scales

with 0.25 ~ 1 hectare (Du et al., 2022). Therefore, an efficient and

accurate technology for pest rodent monitoring is urgent.

By combining rodent density data with satellite remote sensing,

it is possible to predict the potential area damaged by rodent pests

on a large scale. Spectral indices, such as normalized difference

vegetation index (NDVI) and enhanced vegetation index (EVI),

extracted from satellite images are strongly correlated with the

abundance of rodents in farmland (Andreo et al., 2019; Chidodo

et al., 2020; Dong et al., 2023). However, the low resolution of

satellite images makes it difficult to accurately monitor rodent

damage. Unmanned aircraft system (UAS) near–ground remote

sensing technology can be used to take images with a flexible

resolution on a relatively large scale, which can improve the

evaluation of pest occurrence or damage. Michez et al. (2016)

used UAS to assess cornfield damage by wild pigs (Sus scrofa),

showing that the UAS is more comprehensive than traditional

ground assessment. Yi (2017) used UAS to study the broken

landscape of the Qinghai–Tibet Plateau, including the platuea

pika (Ochotona curzoniae) and the platuea zokor (Eospalax

fontanierii). Tang et al. (2019) used UAS images to study the

pikas ’ hole landscape pattern and its influence on the

surrounding vegetation coverage. They found that the pikas’ holes

have a concentrated distribution pattern, and the pikas’ holes can

affect the surrounding vegetation influence within 20 cm.

Additionally, it was suggested that the pika outbreak may be

caused by grassland degradation, providing an ecological basis for

pika management. Zhang et al. (2021) investigated the relationship
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between pika’s holes and alpine meadow bare patches using UAS.

They found a variety of short–term relationships between bare

patch change and pika interference and suggested that long–term

monitoring research with unmanned aerial vehicle technology is

necessary. These studies demonstrate that unmanned aerial vehicles

are becoming an essential technology tool in grassland

ecological monitoring.

For a large number of images generated by UAS, manual visual

interpretation remains labor-intensive and time-consuming.

Traditional remote sensing-based object detection approaches

combine manual features and shallow machine learning models,

generally divided into three main steps: (i) selecting regions of

interest (ROI); (ii) extracting local features; (iii) applying supervised

classifiers to these features. Common methods include maximum

likelihood classification (Wen et al., 2018), object-oriented

classification (Sun et al., 2019), and support vector machine

(SVM) (Heydari et al., 2020). These methods are limited by

various backgrounds in the given dataset and are prone to

overfitting with limited robustness (Gu et al., 2016). The

emerging development of deep neural networks, especially

convolutional neural networks (CNNs), has brought significant

paradigm shifts and significantly improved the generalization and

robustness of automatic learning and feature extraction using

annotated training data (Al-Najjar et al., 2019). It more

comprehensively describes the differences between various types

of objects. The CNN-based object detection algorithm includes

anchor-free and anchor-based models. Anchor-based models

include Faster R-CNN (Ren et al., 2015), RetinaNet (Lin et al.,

2017), SSD (Liu et al., 2016), YOLO (Redmon and Farhadi, 2018),

etc. These models need to adjust the hyperparameter settings of the

anchor during the training procedure better to match the size of the

objects in the dataset. The anchor-free model is more convenient

without such a process, and the representative models include

CenterNet (Zhou et al., 2019), FCOS (Tian et al., 2019; Tian

et al., 2022), etc.

In recent years, the combination of deep learning algorithms

and UAS has been widely used for field monitoring, especially for

grassland ecological monitoring. This combination has been used to

detect wildlife (Kellenberger et al., 2018; Peng et al., 2020) and

livestock population surveys (Soares et al., 2021; Wang et al.,

2023b). Additionally, it can be used to survey rodents in

grassland such as yellow stepped vole (Eolagurus luteus; Sun

et al., 2019), great gerbil (Rhombomys opimus; Cui et al., 2020),

plateau pika (Ochotona curzoniae; Zhou et al., 2021), the Levant

vole (Microtus guentheri; Ezzy et al., 2021), Brandt’s vole (Du et al.,

2022). By identifying the rodent holes, researchers can estimate the

density of rodents. Furthermore, an overall assessment of rodent

infestation can be conducted by taking into account above–ground

biomass, grass coverage, and other indicators (Hua et al., 2022).

Previous studies have examined a variety of algorithms for

recognizing rodent holes in various settings, yet there has been no

emphasis on techniques for practical application, such as methods

for determining resolution, manual annotation instructions, means

of optimizing model parameters, and the design of survey

outcomes. In this study, we examined the use of UAS and DL to

detect Brandt’s vole holes in the steppe of Inner Mongolia. We
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explored the effects of different flight heights, manual labeling

manners, eight deep learning models, parameter optimization,

and model inference methods on the accuracy of vole hole

identification. Our finding provides a technological basis for

further developing grassland rodent monitoring methods based

on UAS and DL.
2 Materials and methods

2.1 Overview of the study area

The study area is located in the steppe region of Xilingol

grassland (118°118’ E, 45°38’ N). It is a high plain terrain with a

northern temperate continental climate, an average altitude of

850 m, an average annual temperature of 1.6°C, and an average

annual precipitation of 300 mm. The four seasons are distinct in this

region. The semi–degraded grassland is dominated by Stipa krylovii,

Leymus chinensis, and Artemisia frigida, and the main rodent

species is Brandt’s vole (Figure 1).
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2.2 Image acquisition

This study was performed in an area concentrated on Brandt’s vole.

Image acquisition was conducted using the DJI M300 RTK (SZ DJI

Technology Co., Ltd., Shenzhen, China) equipped with a P1 camera

(effective pixel 45 million, 35mm, f2.8), resulting in 8192*5460 pixel

images. Prior to commencing formal image acquisition, a 20*30 = 600

m2 area (named SA0) was chosen and white lime markers were placed

at the four corner points, in order to determine the optimal image

resolution for manual visual interpretation. The number of vole holes in

the area was manually counted and was recorded as Ground Truth

(GT). UAS images of SA0were obtained from six different flight heights:

10 m, 20 m, 30 m, 50 m, 80 m, and 100 m, resulting in a total of 21

images that constituted aDatabase. The SA0 area in the images acquired

at different flight heights was first segmented in the image processing.

The number of vole holes was visually counted, and the result was

recorded as Image Truth (IT). Finally, the optimal flight height and

corresponding image resolution were calculated by analyzing the

relationship between GT and IT. Subsequently, formal image

acquisition of the vole holes was conducted based on these findings.
FIGURE 1

Study area and monitoring sites. (A) the position of Inner Mongalia (grey region) and East Ujimqin Banner (red region) in China, respectively; (B) the
study site in East Ujimqin Banner (red point); (C) the burrow area of Brandt’s vole; (D) Brandt’s vole; (E) vole hole; (F) the study area SA1; (G) the
study area SA2.
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Two different study areas, SA1 and SA2 (Figures 1F, G), were

selected for image acquisition. The flight route was designed in an S–

shape pattern, with a flight height of 30 m, an equidistant photography

mode, and a speed of 2 m/s. The overlap rates of waypoints and routes

were set to 80% and 70%, respectively. The data gathered from SA1

were named as Data–SA1, consisting of 343 original images, and were

used to build and validate a deep learning model. Data–SA2, made up

of 234 original images, was acquired from SA2 for testing the

application method. An orthophoto image of SA2, measuring

37202*36924 pixels, was created using Agisoft Metashape software

(Agisoft LCC., St. Petersburg, Russia). A summary of the data is

provided in Table 1.
2.3 Dataset construction

Due to the large size of the original images in Data–SA1, manual

labeling and model training were not feasible. To address this, we

divided each original image into 25 sub–images of 1708*1160 in size,

resulting in a total of 8575 sub–images. To ensure the accuracy of the

truth labels, a rodent pest specialist manually identified the location of

vole holes in each sub–image and labeled them using Labelme 4.5.10

(https://github.com/wkentaro/labelme) software. After removing

images without vole holes, 6894 valid images were left with 24564

vole holes marked. The training, validation, and test sets were divided

in a 5:2:3 ratio, resulting in 3447, 1379, and 2068 images, respectively.

Supplementary Figure 1 illustrates the image segmentation andmanual

visual interpretation labeling process.
2.4 Deep learning algorithm

Traditional anchor-based detection models often perform poorly

with small targets due to lowmatch rates between the small targets and

anchor boxes. The FCOS (Tian et al., 2019; Tian et al., 2022) model

adopts an anchor-free design, allowing direct object localization and

classification on feature maps, effectively solving the problem of small

object detection. Additionally, FCOS excels in reducing false positives,
Frontiers in Plant Science 04
thanks to its unique center-ness scoring mechanism. This mechanism

evaluates the closeness of each predicted box’s center to the actual

target center, effectively distinguishing real targets from background

noise. This is crucial in distinguishing positive and negative samples,

especially in small target detection tasks. The detection of vole holes in

our dataset is a standard small target detection task, making this

anchor-free algorithm more suitable. To determine the most effective

approach for investigating vole holes, we compared several deep

learning algorithms, including Faster–rcnn (Ren et al., 2015), SSD

(Liu et al., 2016), and five YOLO series algorithms (Redmon and

Farhadi, 2018; Bochkovskiy et al., 2020; Ge et al., 2021; Zhu et al., 2021;

Wang et al., 2023a). Figure 2 shows the structure of the FCOS network.

The Backbone module generates P3, P4, and P5 from the C3, C4, and

C5 outputs. P6 is produced from a 3×3 kernel convolutional layer with

a stride of 2. Based on P6, P7 is created using a 3×3 kernel

convolutional layer with a stride of 2. Finally, the network utilizes a

shared Head detector for P3 to P7, containing Classification,

Regression, and Center–ness.

For the Classification, n score parameters are predicted at each

position of the predicted feature map, with the number of categories

being 1. For the Regression, four distance parameters are predicted at

each position in the predicted feature map, which are the distances to

the left, top, right, and bottom of the object (1, t, r, and b, respectively).

For the Center–ness, one parameter is predicted at each position of the

predicted feature map, which reflects the distance of the point from the

object center, with its value domain being between 0 and 1. The closer

to the object center, the higher the center–ness value. The loss function

is composed of classification loss, location loss, and center–ness loss.

The equation (Equation 1) is as follows:

L px,y
� �

, tx,y
� �

, sx,y
� �� �

= 1
Npos ox,yLcls(px,y , c

∗
x,y)

+ 1
Npos ox,y1 c∗x,y>0f gLreg(tx,y , t∗x,y)

+ 1
Npos ox,y1 c∗x,y>0f gLctrnes(sx,y , s∗x,y)

(1)

where Lcls is focal loss as in (Lin et al., 2017) and Lreg is the

GIOU loss (Tian et al., 2020). Npos denotes the number of positive

samples and l being 1 in this paper is the balance weight for Lreg .

px,y represents the predicted scores of each (x, y) at the feature

map;C∗
x,y represents the true label of each (x, y) at the feature map;

1 c∗x,y>0f g is equal to 1 when the point (x, y) is matched to a positive

sample and 0 otherwise; tx,y indicates the information of predicted

bounding box of (x, y) at the feature map, while the t∗x,y indicates the

true information; sx,y indicates the predicted center–ness of (x, y) at

the feature map, and the s∗x,y indicates the true center–ness.

All models were trained on Ubuntu 20.04.1 LTS with Python

3.7, PyTorch 1.7.1, and CUDA 11.0. The server was equipped with a

GPU–A100, a CPU–AMD EPYC 7742, and 512 GB of RAM. The

hyperparameters for all models are listed in Supplementary Table 1.

Additionally, Mosaic data augmentation (Bochkovskiy et al., 2020)

was used during model training.
2.5 Evaluation indicators

To understand the practical application of UAS and deep

learning algorithms in the survey of vole holes, we evaluated four
TABLE 1 Image acquisition data information.

Data type Database Data–SA1 Data–SA2

Date
of acquisition

2022–04–07 2022–04–10 2022–04–13

Weather Cloudy Cloudy Sunny

Flight
height (m)

10–20–30–50–
80–100

30 30

Flight mode
Single
point sampling

Route planning Route planning

Number
of images

21 343 234

Validation
data

IT&GT IT GT

Task Flight height test Model building
Application
method test
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perspectives: unmanned aerial vehicle flight heights, model

accuracy, model optimization, and the verification of regional

vole hole numbers. The evaluation methods used were as follows.
2.5.1 Resolution evaluation
The goal of resolution evaluation is to identify the ideal image

resolution for regional surveys of Brandt’s vole holes. Based on the

GT and IT in the same area, using True Positive (TP), False Positive

(FP), False Negative (FN), Precision, Recall, and F1 score to evaluate

the performance of manual visual interpretation. The Precision,

Recall, and F1 score are calculated based on TP, FP, and FN. The

equations are as follows:

Precision =
TP

FP + TP
(2)

Recall =
TP

FN + TP
(3)

F1   score =
2Precision*Recall
Precision + Recall

(4)
2.5.2 Model accuracy evaluation
In the model evaluation, we use Precision, Recall, and F1 score

to measure the performance of each model. However, in contrast to

the previous approach, the definitions of TP, FP, and FN are based

on the concept of intersection over union (IoU). This is the ratio

between the overlapping area of the detection bounding box and

labeling bounding box and the formed area of two bounding boxes.

The selection of the threshold can determine these three indexes,
Frontiers in Plant Science 05
and the threshold is usually set to 0.5. The equations are given in

Equations 2–4.

The mean Average Precision (mAP) is utilized to evaluate the

model, which is equal to the area under the Precision–Recall Curve

(PRC). PRC is formed by plotting the precision versus the recall for

various confidence levels of the network prediction. It shows the

influence of the confidence level on the correlation between recall

and precision. The AP calculation is as follows (Equation 5):

AP@a =o
Z 1

0
Precision(Recall)dRecall (5)

where a is the IoU threshold for which precision and recall are

determined, and dRecall is the differential of the recall. To calculate

the mAP, the average of the APs for each class of the object

detection task is taken. Science there was only one class in this

study, the AP and mAP were the same.

2.5.3 Model optimization evaluation
Evaluating model accuracy can help choose the best model, but

it may not necessarily provide the optimal performance due to

certain limitations such as the IoU threshold and confidence

threshold. The task of counting vole holes falls under counting

regression, whereas the aforementioned indexes are geared towards

classification. To further transform the task of counting vole holes

towards a counting regression task, we conducted a thorough

analysis to identify the optimal IoU threshold and confidence

threshold, as well as utilizing more effective evaluation indexes.

Specifically, we adopted miss rate (MR) and false positives per

image (FPPI) to calculate the average false detection rate of each

image. The equations are as follows (Equations 6, 7):
FIGURE 2

The structure of the FCOS network.
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FPPI =
FP
N

(6)

MR =
FN
GT

= 1 − Recall (7)

where N is the number of pictures, the FP is the number of false

vole holes detected.

To evaluate detectors, we plot the MR against the FPPI (using

log–log plots) by varying the threshold on detection confidence.

This is more suitable than PRC for our tasks, as there is typically an

upper limit on the allowable FPPI rate regardless of object density

(Dollar et al., 2012). To summarize detector performance, the log–

average miss rate (LAMR) is computed by averaging the MR at nine

FPPI rates that are evenly spaced in log space in the range 10–2 to

100 (for curves that end before reaching a given FPPI rate, the

minimum MR achieved is used).

When selecting a confidence threshold, it is typical to use the F1

score as an evaluation metric. However, the F1 score does not

provide a clear indication of how many errors are present in the

task. False and missed detections are both negative outcomes that

often occur together at a certain confidence level. To ensure the

accuracy of the final count, the sum of false and missed detections

must be minimized. Thus, the mean absolute percentage error

(MAPE) is therefore chosen as the final evaluation metric, and

the optimal confidence threshold can be calculated by minimizing

the MAPE. The equation is as follows:

MAPE =
1
noi

ESi − GTij j
GTi

� 100% (8)

where ESi is the number of model estimate results, GTi is the

number of ground truth result; and n is the total number of images.

2.5.4 Verification of the number of regional
vole holes

Data–SA2 was selected to validate the regional survey of

optimal model for vole holes. To measure the accuracy of the

optimized model estimation, the determination coefficient (R2),

root mean square error (RMSE), and MAPE (Equation 8) were

utilized. The equations are as follows (Equations 9–11):

R2 = 1 −o
n
i (xi − yi)

2

on
i (xi − �x)2

(9)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oi(xi − yi)

2

n

s
(10)

Accuracy = 1 −
Nɡt − Nest

�� ��
Nɡt

� 100% (11)

where xi is the model measurement results, �x is the mean of the

model measurement, yi is the manual measurement results (IT);

and n is the total number of measurements; Nest is the result of

model estimation, and Nɡt is the manual survey result.
3 Results

3.1 Flight height

A suitable flight height was identified by contrasting the

differences between GT and IT at distinctive flight heights.

Supplementary Figure 2 shows a clear comparison between vole

holes and distractors in high resolution and low resolution. As the

flight height increases, Table 2 reveals a decrease in the number of

manual visual interpretations, a reduction in TP, an increase in FP,

and a higher probability of missing detection. Even though accuracy

values remain the same, recall values are significantly lower.

According to the F1 score results, manual visual interpretation

performs best when the flight height is not higher than 30 m. To

maximize the survey area, a flight height of 30 m is recommended

for achieving an F1 score of 0.98 and an image resolution of 0.4

cm/pixel.
3.2 Model performance

To select the best model, eight object detection algorithms were

evaluated. The model was constructed using a simultaneous

training and validation model, and a pre–trained mode was used

for faster convergence. The backbone network weights, which

extract generic basis features, were kept the same for the first 50

steps, and the optimization weights were adjusted globally

afterwards. The training and validation results are illustrated in

Supplementary Figure 3 and Figure 3. After 60 epochs, most models
TABLE 2 Manual visual interpretation results at different flight heights.

Flight
Height (m)

GT IT TP FP FN Accuracy Recall F1 score
Resolution
ratio (cm/pixel)

10 55 55 54 1 0 0.98 0.98 0.98 0.1

20 55 55 54 1 0 0.98 0.98 0.98 0.3

30 55 53 53 2 0 1.00 0.96 0.98 0.4

50 55 54 51 4 3 0.94 0.93 0.94 0.6

80 55 49 46 9 3 0.94 0.84 0.88 1.0

100 55 36 36 19 0 1.00 0.65 0.79 1.3
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reached their peak mAP values and had stabilized, showing

successful model training.

The performance of each model in recognition of vole holes was

good (Supplementary Figure 4), but the confidence level and position

of the detection box varied, which could affect the subsequent vole

hole counting results. According to the comprehensive evaluation

indexes of the different models (Table 3), FCOS had the highest mAP

of 95.19%. Faster–rcnn model had the highest Recall value of 95.91%,

but its Precision value was only 69.07%, resulting in a higher Recall at

the expense of precision compared to other models. The F1 score was

used to evaluate model performance by combining both Precision

and Recall. FCOS and YOLOX performed the best, and their F1 score

values were both above 0.89. Additionally, the model’s size and speed

were evaluated. SSD had the highest Frame Per Second (FPS) at

161.08, while Faster–rcnn had the slowest speed with an FPS of 25.71.
3.3 Model optimization

In the model training stage, the objective factors affecting the FP

and FN are complex environment (e.g., light, occlusion), similars

(e.g., feces) and the model structure. Data augmentation and
Frontiers in Plant Science 07
improved model algorithms are often used to reduce the impact

of these factors. In the model inference stage, parameters such as

IoU threshold and confidence threshold have a certain impact on

the prediction accuracy (Figure 4), and these parameters can be

artificially adjusted to optimize the prediction results. The aims of

this study are to examine the regression performance of the number

of vole holes by transforming the object detection task into an

estimate regression task performance. To do so, two issues must be

addressed: setting the threshold (i.e. the IoU) for determining when

the object box and prediction box overlap enough to be considered a

positive sample, and selecting the confidence threshold for

considering a sample as positive.
3.3.1 IoU threshold
The MR–FPPI curve is a useful tool for the performance of a

detector based on the IoU threshold. Figure 5A shows the MR–FPPI

curves for IoU values below 0.5, with FCOS having the best

performance and a LAMR value of 19.11%. Figure 5B illustrates

the LAMR performance of all models at 7 IoU thresholds, including

0.05, 0.20, 0.35, 0.50, 0.65, 0.80, and 0.90. Each model has an

inflection point above which the LAMR value increases rapidly,

while the value tends to level off otherwise. As the LAMR value

decreases, the detector performance improves, and as the IoU

threshold increases, the detection box becomes more accurate.

Therefore, the inflection point indicates the optimal IoU

threshold for each model. Consequently, the best IoU threshold

for Faster–rcnn and YOLOv4 was 0.50, while for the other models,

it was 0.65.

3.3.2 Confidence threshold
As shown in Figure 6, using the FCOS model as an example, the

gray dashed line and the red solid line represent its confidence

performance at the 0.5 standard level and when the highest F1 score

or the lowest MAPE value. These two indicators do not correspond

to the same confidence level. However, MAPE is more consistent

with counting regression, so it is used instead of F1 score. Table 4

reveals that all models have better values of F1 score and MAPE at

their best confidence level than the 0.5 level. The best confidence

levels obtained for both F1 and MAPE metrics were also different
FIGURE 3

Validation mAP curves for the different models.
TABLE 3 Comprehensive performance of the different models.

Models mAP Precision Recall F1 score Latency/s FPS Parameters

Faster–rcnn 92.29 69.07 95.91 0.80 0.0389 25.71 28.28 M

SSD 89.67 85.85 82.37 0.84 0.0062 161.08 23.75 M

FCOS 95.19 84.70 93.28 0.89 0.0200 50.12 32.12 M

YOLOv3 89.05 87.25 77.07 0.82 0.0175 57.27 61.52 M

YOLOv4 80.81 86.33 60.09 0.71 0.0261 38.38 63.94 M

YOLOv5 92.98 86.24 85.70 0.86 0.0161 62.29 7.06 M

YOLOX 94.56 88.19 89.79 0.89 0.0173 57.94 8.94 M

YOLOv7 93.52 85.91 89.16 0.88 0.0199 50.36 37.19 M
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for all models. In particular, FCOS achieves the best result with a

confidence threshold of 0.62 and an MAPE of 0.1777.
3.4 Model inference

We chose the FCOS model as the best model for further

exploring the quantity of vole holes. The validation data was the

original images from Data–SA2 and the model was evaluated using

an IoU threshold of 0.5 and a confidence threshold of 0.5 before

optimization, and an IoU threshold of 0.65 and a confidence

threshold of 0.62 after optimization. The model was compared to

GT and the results are shown in Figure 7. Before optimization, the

R2 was 0.6552, the RMSE was 12.6173, and the MAPE was 21.42%.

The high false detection rate led to an unsatisfactory result. After

optimization, the performance of the model was greatly improved

with an R2 of 0.9106, RMSE of 5.5909, and MAPE of 8.27%. The

threshold parameters were adjusted using the new assessment

indexes to balance the number of false detections and the number

of missed detections. Thus, the optimized model can be used as an

effective method to detect the number of Brand’s vole holes. The

accuracy of vole hole counting of the stitched orthophoto was

90.20% (Figure 8).
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4 Discussion

4.1 Comparison of different
labeling methods

During object labeling, it is typical to draw a rectangular box to

mark the object boundary (Label–1, Supplementary Figure 5A).

However, the cow dung (Supplementary Figure 5B) in UAS images

is similar to the vole holes, making it difficult to simply label the vole

hole boundary due to the presence of distractors. We found the vole

trails always exist around the holes, which isa distinct feature of

vole–damaged vegetation. Hence, we enlarged the box range for

labeling (Label–2, Supplementary Figure 5C).

To assess the effectiveness of the proposed labeling technique,

1125 sub–images were randomly chosen from Data–SA1 and

labeled using both Label–1 and Label–2 methods. These images

were then divided into training, validation, and test set in a 5:2:3

ratio. The results (Figure 9A) demonstrate that the mAP values of

all models trained with Label–2 are higher than those of Label–1.

However, this pattern is not obvious when the confidence threshold

is set to 0.5 (Figure 9B). Nevertheless, when the confidence

threshold is optimized, the F1 score and LAMR values of the

models follow the aforementioned pattern (Figures 9C, D).
FIGURE 4

The detection results of different IoU threshold and confidence threshold.
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The MR–FPPI curves for the different models (A) and LAMR values change at different IoU thresholds (B).
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FIGURE 6

Performance of the FCOS model at different confidence thresholds. (A) the F1 score indicator, and (B) the MAPE indicator.
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Therefore, the improved Label–2 labeling method offers clear

advantages over the traditional Label–1 method.
4.2 The challenge of repeat counting

When a hole is located at the edge of a sub–image segmentation

(Figure 10A) during model inference, it may be misidentified as two

separate holes, resulting in a decrease in the confidence of both

holes. This can lead to an inaccurate counting result, regardless of

whether the confidence is higher or lower than the threshold we set.

To address this issue, we designed an overlapping area between

adjacent sub–images (Figure 10B) to form a situation of multiple

detections for one hole. We then used a redundancy removal

algorithm, Non–Maximum Suppression (NMS), to eliminate

redundant detection boxes. NMS is commonly used to eliminate

redundant data by setting an IoU threshold. However, the IoU

threshold in overlapping areas can be either small or large, making

it difficult to select the right threshold, especially for two vole holes

that are close together. To address this challenge, we improved the

NMS by introducing the intersection over a smaller (IoS) metric,
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which is the ratio of the intersection to the smaller bounding box

(Supplementary Figure 6, Equation 12). This approach ensures that

the IoS values of the repeated bounding boxes are close to 1, while

the IoS values of the two close vole holes’ bounding boxes remain

small. The IoS threshold can also be easily chosen (the IoS threshold

in this study was 0.5). This method with overlapping area

processing decreased the error rate by 1.03% (Table 5). The width

(or height) of the overlapping area was usually 2–3 times the size of

the vole hole bounding box. Too much overlapping would increase

the calculation amount and reduce efficiency, while too little

overlapping would not work.

IoS =
A ∩ B
B

(12)
4.3 Image resolution and
model optimization

Despite the varying required image resolution among different

rodent species (Cui et al., 2020; Ezzy et al., 2021; Zhou et al., 2021;
TABLE 4 Performance of the different models at different confidence thresholds.

Threshold = 0.5 Optimized Confidence Threshold

Models F1 score MAPE F1 score Threshold MAPE Threshold

Faster–rcnn 0.8031 0.5518 0.8666 0.91 0.2181 0.96

SSD 0.8407 0.2532 0.8477 0.38 0.2422 0.55

FCOS 0.8879 0.2427 0.8942 0.57 0.1777 0.62

YOLOv3 0.8185 0.2653 0.8312 0.34 0.2604 0.47

YOLOv4 0.7086 0.366 0.7635 0.32 0.3124 0.38

YOLOv5 0.8597 0.2386 0.8604 0.47 0.2268 0.58

YOLOX 0.8898 0.2111 0.8900 0.51 0.2010 0.62

YOLOv7 0.8751 0.2313 0.8759 0.52 0.2147 0.59
A B

FIGURE 7

Validation of the model counting results. (A) is the model detection result before optimization, and (B) is after optimization.
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Du et al., 2022), there has been no research on the method of

determining the UAV flight altitude or image resolution. This study

uses manual visual interpretation as a benchmark and conventional

classification evaluation indexes for resolution evaluation. This

approach can determine the best image resolution which balances

the accuracy and efficiency. Previous studies have mainly

concentrated on refining model structure, while disregarding
Frontiers in Plant Science 11
model application techniques. Even though model accuracy can

be improved, incorrect application can lead to more accuracy loss.

Therefore, this study transforms the object detection results into

regression count results to optimize the application stage of model

through more suitable evaluation metrics, thus allowing the full

utilization of the capabilities of a mature model.
5 Conclusion

In this study, Brand’s vole hole counting was used as an example

to explore the complete technical route of rodent hole counting,

which promoted the application of UAS and DL in grassland rodent

damage monitoring. We determined the optimal image resolution

suitable for UAS monitoring, improved the conventional vole hole

labeling method, selected the FCOS algorithm with anchor-free

design as the rodent hole detection model, and adopted the

regression strategy for the first time to optimize the model

inference process. The results showed that the image resolution is

most suitable when the flight altitude is 30 m and the mAP of FCOS

model reached 95.19%. Compared with the GT, the accuracy of the

optimized model could reach 90.20%. The above results indicate

that our method is an effective and efficient method for detecting

rodent holes in grassland. However, due to the constant seasonal

and inter-species changes in the morphology of vole holes and their

surrounding vegetation, it is currently difficult to develop a

universal extraction algorithm. The development of large-scale

grassland ecological monitoring model will be an important

research topic in the future. Nonetheless, the ever–changing

morphology of rodent holes and the surrounding vegetation
FIGURE 8

Results of region vole holes counting.
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Comparison of the results of different models using two labeling methods. (A) mAP, (B) F1 score–0.5, (C) F1 score–best, and (D) LAMR.
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across seasonal and inter–species, make it difficult to develop a

universal extraction algorithm at present. It is expected that the

development of large models for grassland ecological monitoring

will be a key research topic in the near future.
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Soares, V. H. A., Ponti, M. A., Gonçalves, R. A., and Campello, R. J. (2021). Cattle
counting in the wild with geolocated aerial images in large pasture areas. Comput.
Electron. Agric. 189, 106354. doi: 10.1016/j.compag.2021.106354

Su, Y., Wan, X., Wang, M., Chen, W., Du, S., Wang, J., et al. (2013). Economical
thresholds of brandt’s vole in the typical steppe in inner Mongolia grassland. Chin. J.
Zoology 48, 521–525. doi: 10.13859/j.cjz.2013.04.006

Sun, D., Ni, Y., Chen, J., Abuduwali.,, and Zheng, J. (2019). Application of UAV
low–altitude image on rathole monitoring of Eolagurus luteus. China Plant Prot. 39,
35–43.

Tang, Z., Zhang, Y., Cong, N., Wimberly, M., Wang, L., Huang, K., et al. (2019).
Spatial pattern of pika holes and their effects on vegetation coverage on the Tibetan
Plateau: An analysis using unmanned aerial vehicle imagery. Ecol. Indic. 107, 105551.
doi: 10.1016/j.ecolind.2019.105551

Tian, Z., Shen, C., and Chen, H. (2020). “Conditional convolutions for instance
segmentation,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Vol. 16. 282–298 (Springer International Publishing),
Proceedings, Part I. doi: 10.1007/978–3–030–58452–8_17

Tian, Z., Shen, C., Chen, H., and He, T. (2019). “FCOS: fully convolutional one–stage
object detection,” in Presented at the Proceedings of the IEEE/CVF International
Conference on Computer Vision. 9627–9636.

Tian, Z., Shen, C., Chen, H., and He, T. (2022). FCOS: A simple and strong anchor–
free object detector. IEEE Trans. Pattern Anal. Mach. Intell. 44, 1922–1933.
doi: 10.1109/TPAMI.2020.3032166

Wang, C. Y., Bochkovskiy, A., and Liao, H. Y. M. (2023a). “YOLOv7: Trainable bag–
of–freebies sets new state–of–the–art for real–time object detectors,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 7464–7475.
doi: 10.48550/arXiv.2207.02696

Wang, Y., Ma, L., Wang, Q., Wang, N., Wang, D., Wang, X., et al. (2023b). A
lightweight and high–accuracy deep learning method for grassland grazing livestock
detection using UAV imagery. Remote Sens. 15, 1593. doi: 10.3390/rs15061593

Wen, A., Zheng, J., Chen, M., Mu, C., and Ma, T. (2018). Monitoring mouse-
hole density by rhombomys opimus in desert forests with UAV remote sensing
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2024.1290845/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2024.1290845/full#supplementary-material
https://doi.org/10.3390/rs11121461
https://doi.org/10.1016/j.ecoinf.2019.03.001
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1515/mammalia&ndash;2018&ndash;0175
https://doi.org/10.1515/mammalia&ndash;2018&ndash;0175
https://doi.org/10.11707/j.1001-7488.20201022
https://doi.org/10.11707/j.1001-7488.20201022
https://doi.org/10.1109/TPAMI.2011.155
https://doi.org/10.3390/rs15051404
https://doi.org/10.3389/fpls.2022.992789
https://doi.org/10.3390/rs13163191
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.3390/rs8110943
https://doi.org/10.11686/cyxb2021057
https://doi.org/10.1016/j.rse.2018.06.028
https://doi.org/10.1111/1365&ndash;2656.13938
https://doi.org/10.1007/978&ndash;3&ndash;319&ndash;46448&ndash;0_2
https://doi.org/10.13802/j.cnki.zwbhxb.2022.2022836
https://doi.org/10.13802/j.cnki.zwbhxb.2022.2022836
https://doi.org/10.1139/juvs&ndash;2016&ndash;0014
https://doi.org/10.1016/j.isprsjprs.2020.08.026
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1016/j.compag.2021.106354
https://doi.org/10.13859/j.cjz.2013.04.006
https://doi.org/10.1016/j.ecolind.2019.105551
https://doi.org/10.1007/978&ndash;3&ndash;030&ndash;58452&ndash;8_17
https://doi.org/10.1109/TPAMI.2020.3032166
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.3390/rs15061593
https://doi.org/10.3389/fpls.2024.1290845
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2024.1290845
technology. Scientia Silvae Sinicae 54, 186–192. doi: 10.11707/j.1001-
7488.20180421

Yi, S. (2017). FragMAP: a tool for long–term and cooperative monitoring and
analysis of small–scale habitat fragmentation using an unmanned aerial vehicle. Int. J.
Remote Sens. 38, 2686–2697. doi: 10.1080/01431161.2016.1253898

Zhang, J., Liu, D., Meng, B., Chen, J., Wang, X., Jiang, H., et al. (2021). Using UAVs
to assess the relationship between alpine meadow bare patches and disturbance by
pikas in the source region of Yellow River on the Qinghai–Tibetan Plateau. Global Ecol.
Conserv. 26, e01517. doi: 10.1016/j.gecco.2021.e01517
Frontiers in Plant Science 14
Zhou, S., Han, L., Yang, S., Wang, Y., GenXia, Y., Niu, P., et al. (2021). A study of
rodent monitoring in Ruoergai grassland based on convolutional neural network. J.
Grassland Forage Sci. 02, 15–25. doi: 10.3669/j.issn-2096-3971.2021.02.003

Zhou, X., Wang, D., and Krähenbühl, P. (2019). Objects as points. arXiv preprint
arXiv. doi: 10.48550/arXiv.1904.07850

Zhu, X., Lyu, S., Wang, X., and Zhao, Q. (2021). “TPH–YOLOv5: Improved YOLOv5
based on transformer prediction head for object detection on drone–captured
scenarios,” in Proceedings of the IEEE/CVF international conference on computer
vision. 2778–2788. doi: 10.48550/arXiv.2108.11539
frontiersin.org

https://doi.org/10.11707/j.1001-7488.20180421
https://doi.org/10.11707/j.1001-7488.20180421
https://doi.org/10.1080/01431161.2016.1253898
https://doi.org/10.1016/j.gecco.2021.e01517
https://doi.org/10.3669/j.issn-2096-3971.2021.02.003
https://doi.org/10.48550/arXiv.1904.07850
https://doi.org/10.48550/arXiv.2108.11539
https://doi.org/10.3389/fpls.2024.1290845
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Brandt’s vole hole detection and counting method based on deep learning and unmanned aircraft system
	1 Introduction
	2 Materials and methods
	2.1 Overview of the study area
	2.2 Image acquisition
	2.3 Dataset construction
	2.4 Deep learning algorithm
	2.5 Evaluation indicators
	2.5.1 Resolution evaluation
	2.5.2 Model accuracy evaluation
	2.5.3 Model optimization evaluation
	2.5.4 Verification of the number of regional vole holes


	3 Results
	3.1 Flight height
	3.2 Model performance
	3.3 Model optimization
	3.3.1 IoU threshold
	3.3.2 Confidence threshold

	3.4 Model inference

	4 Discussion
	4.1 Comparison of different labeling methods
	4.2 The challenge of repeat counting
	4.3 Image resolution and model optimization

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


