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of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China, 3Institute of Crop
Science and Ecology, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
Tetrastigma hemsleyanum is a valuable herb widely used in Chinese traditional and

modernmedicine. Winter cold severely limits the artificial cultivation of this plant, but

the physiological and molecular mechanisms upon exposure to cold stress in T.

hemsleyanum are unclear. T. hemsleyanum plants with different geographical

origins exhibit large differences in response to cold stress. In this research study,

using T. hemsleyanum ecotypes that exhibit frost tolerance (FR) and frost sensitivity

(FS), we analyzed the response of cottage seedlings to a simulated frost treatment;

plant hormones were induced with both short (2 h) and long (9 h) frost treatments,

which were used to construct the full-length transcriptome and obtained 76,750

transcripts with all transcripts mapped to 28,805 genes, and 27,215 genes,

respectively, annotated to databases. Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis showed enrichment in plant hormone signaling pathways.

Further analysis shows that differently expressed genes (DEGs) concentrated on

calcium signaling, ABA biosynthesis and signal transduction, and ethylene in

response to cold stress. We also found that endogenous ABA and ethylene

content were increased after cold treatment, and exogenous ABA and ethylene

significantly improved cold tolerance in both ecotypes. Our results elucidated the

pivotal role of ABA and ethylene in response to cold stress in T. hemsleyanum and

identified key genes.
KEYWORDS
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1 Introduction

Tetrastigma hemsleyanum Diels et Gilg is an herbaceous climber that is widely

distributed in tropical and subtropical regions, mainly in provinces of south and

southwest China (Wang et al., 2015). In China, T. hemsleyanum is used as traditional

medicine “San ye qing,” a broad-spectrum antibiotic material against fever and
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inflammation (Li, 1998). It has also exhibited antioxidant, antivirus,

antitumor, immunomodulatory, and hypoglycemic effects in

modern pharmacological research studies (Ji et al., 2021). Because

of its slow growth, it usually takes 3–5 years to meet the

requirements of commercial medicinal materials, so it is a

precious perennial medicinal resource. Due to overexploitation,

wild resources have been on the verge of extinction in recent years

(Peng et al., 2019) and the supply of medicinal herbs is largely

dependent on cultivation. For synthesized utilization of land and

imitating wild conditions to improve the quality, artificial T.

hemsleyanum is usually planted in the mountains, causing the

herb to suffer from winter cold frequently.

Cold stress is a major environmental factor that limits

agricultural production (Einset et al., 2007). Low temperatures

limit CO2 fixation coupled with an overreduction in the electron

transport chain, leading to photosynthesis suppression and

dramatic increases in reactive oxygen species (ROS) (Maleki and

Ghorbanpour, 2018). In response to abiotic stresses, plants have

evolved highly complex adaptive mechanisms. Once the receptor is

triggered by cold stimulation, a signal is spread by transduction

pathways, and induced gene-expression changes subsequently cause

physiological changes, including an increase in antioxidant levels,

induction of influx of cellular calcium ions, alteration in membrane

lipid composition, adjustment of hormone levels, and changes in

electrolyte leakage and soluble proteins.

Low temperatures, especially winter minimum temperatures,

are one of the primary forces determining the geographic

boundaries of many plant species (Pither, 2003), but physiological

tolerance to cold also varies among populations within a species

(Armstrong et al., 2020). T. hemsleyanum plants with different

geographical origins contained enormous genetic variability (Peng

et al., 2015), which caused different morphological characteristics

and environmental adaptability. It provides convenience for

ascertaining the cold response and regulatory networks of cold

tolerance in T. hemsleyanum.

Short-read RNA-Seq (mainly using Illumina technology) has

been used for over a decade; however, Illumina sequencers are

appropriate only for short-read-length sequencing because of

information loss caused by fragments during sample preparation

and spliced after sequencing (Cui et al., 2020). Nanopore sequencing

technology is a new approach that can sequence single long DNA and

RNA molecules (Deamer et al., 2016; Wang Y. H. et al., 2021). Since

the first nanopore sequencer, MinION, was provided by Oxford

Nanopore Technologies (ONT), it has been used extensively to

assemble the initial reference genomes of many non-model

organisms (Scheunert et al., 2020), but only several researchers in

transcriptomics have explored the molecular mechanisms in plants to

date, such as in Arabidopsis (Cui et al., 2020; Parker et al., 2020; Qin

et al., 2022), rose (Li et al., 2021), peach (Liu et al., 2021), quinoa

(Zheng et al., 2022), and potatoes (Xiong et al., 2022).

In this research study, we monitored the phenotypes of T.

hemsleyanum seedlings at their preferred temperature, 2 h and 9 h

frost stress, and sequenced their full-length transcripts using the ONT

method. As a result, we identified numerous genes that may take part

in the cold stress response. These genes are involved in hormone and

signal transduction pathways, especially the biosynthesis and signal
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transduction of ABA and ethylene. Endogenous ABA and ethylene

contents were increased after cold treatment, and exogenous ABA

and ethylene significantly improved cold tolerance. These results

indicated the pivotal role of ABA and ethylene in the cold stress

response of T. hemsleyanum. This study provides insight into the cold

stress response pathway in T. hemsleyanum and thus provides a basis

for improving the resistance of this cash crop to cope with

increasingly frequent cold waves in the major grain-producing area

south of the Yangtze River in China.
2 Results

2.1 Variations in cold tolerance of different
T. hemsleyanum ecotypes

T. hemsleyanum collected from different geographical areas

exhibits various cold tolerances. When exposed to −3°C, the

leaves of sensitive T. hemsleyanum ecotype seedlings exhibited

severe damage; most sensitive ecotype seedlings died after

exposure to −4°C for 12 h (Figure 1). It is difficult to take typical

tissue for further analysis. Therefore, in this study, cottage seedlings

of T. hemsleyanum ecotypes that exhibited frost tolerance (FR) and

frost sensitivity (FS) were selected and exposed to a simulated frost

treatment (−2°C) for analysis of physiological indicators and gene

expression. In contrast, a −4°C simulated frost treatment was

performed to evaluate the cold tolerance survival rate.
2.2 ONT RNA-seq and
functional annotation

To investigate the molecular mechanisms underlying the frost

response, transcriptome sequencing was performed on the leaves of

T. hemsleyanum ecotype seedling growth at normal temperature

(25°C, CK), exposed to frost conditions (−2°C) for a short time (2 h)

and a long time (9 h).

A total of 18 libraries from six samples (three biological replicates

per sample) were obtained. The clean data output from each sample

was at least 6 GB, and 89%~92% of clean reads, namely, 5.40–8.95

million, were full-length reads. After mapping to the T. hemsleyanum

genome, 4.83~7.94 million reads were mapped, and mapped rates in

all libraries exceeded 97% (Supplementary Table 1).

A total of 76,750 transcripts were obtained, and 53,190

transcripts were newly found. A total of 28,805 transcripts were

mapped to existing genes, and 4,121 were new genes (Figure 2A). A

total of 27,215 genes were annotated in databases, and the

percentage that was annotated was 94.5% (Figure 2A).
2.3 Kyoto Encyclopedia of Genes and
Genomes clustering analysis of differently
expressed genes

To further elucidate the changes regulated by cold stress in two

T. hemsleyanum ecotypes with different cold tolerances, we
frontiersin.org
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analyzed the differently expressed genes (DEGs) in FS and FR after

cold treatment for 2 h and 9 h relative to CK, respectively, and

DEGs in cold treatment for 9 h relative to 2 h. DEGs were identified

based on a false discovery rate (FDR) ≤0.05 and fold change ≥2. A

total of 6,086 DEGs were detected in all the 18 cDNA libraries: 3,683

genes were differentially expressed after 2 h and 3,095 after 9 h of

cold stress exposure in FS, and 2,659 genes were differentially

expressed after 2 h and 2,670 after 9 h of cold stress exposure in

FR (Figure 2B). Generally speaking, the 9-h-simulated frost

treatment resulted in more DEGs, but most of these were already

present after 2 h, with only 73 DEGs in FS and 275 DEGs in FR

differentially expressed after 9 h of cold treatment relative to 2 h,

which may suggest a rapid response of transcriptomic changes,

which already happened a short time after applying cold stress.

There were more DEGs in FS than in FR compared with their

respective controls, indicating that some adaptive traits already exist

in the more cold-tolerant FR at moderate temperature conditions,

resulting in FR being less affected and the sensitive variety FS being

more affected by cold stress.

KOBAS 2.0 software was used for the Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis of DEGs in 2-h

and 9-h treatment samples relative to controls in both ecotypes.

DEGs were annotated to 134 KEGG reference pathways (Figure 3A),

26 KEGG pathways induced by cold were predominantly

significantly enriched in at least one dataset, and 58 KEGG

pathways suppressed by cold were predominantly significantly

enriched in at least one dataset (Supplementary Figure 1).

DEGs participating in inositol phosphate metabolism

(ko00562), glyoxylate and dicarboxylate metabolism (ko00630),

MAPK signaling pathway (ko04016), plant hormone signal
Frontiers in Plant Science 03
transduction (ko04075), circadian rhythm (ko04712), and

ubiquitin-mediated proteolysis (ko04120) were predominantly

upregulated, and fatty acid degradation (ko00071), starch and

sucrose metabolism (ko00500), other glycan degradation

(ko00511), limonene and pinene degradation (ko00903), base

excision repair (ko03410), beta-alanine metabolism (ko00410),

pantothenate and CoA biosynthesis (ko00770), and peroxisome

biosynthesis (ko04146) were predominantly downregulated after 2

h and 9 h of cold stress in both ecotypes.

To further elucidate the cold-induced transcriptomic variations,

gene set enrichment analyses (GSEAs) were performed (Figure 3B).

Plant hormone signal transduction (ko04075), circadian rhythm

(ko04712), and ubiquitin-mediated proteolysis (ko04120) pathways

were also induced. At the same time, fatty acid degradation

(ko00071), limonene and pinene degradation (ko00903), beta-

alanine metabolism (ko00410), pantothenate and CoA biosynthesis

(ko00770), DNA replication (ko03030), and tryptophan metabolism

(ko00380) were suppressed significantly in both ecotypes after the 2-h

and 9-h treatments. It indicated that these pathways might be central

mechanisms in response to low-temperature stress.

To better understand the correlation between these DEGs and

the variation in the cold stress response, we performed a weighted

correlation network analysis (WGCNA). Co-expression modules

were generated by linking to the traits, including ecotypes and cold

treatments. A total of five modules were generated (Figure 3C), and

consistent with the pairwise comparison, modules colored black

showed a significant correlation with normal atmospheric

temperature, DEGs in black module obviously enrichment in

plant hormone signal transduction (ko04075) (Figure 3D), but no

modules correlating with the 2-h or 9-h cold treatments were found.
FIGURE 1

Cold injury in different T. hemsleyanum cottage ecotypes. Representative images of 2-month-old cottage seedlings of FR and FS grown under
control (CK) and exposed to a simulated frost treatment for 12 h (T) were exhibited to demonstrate the difference in frost tolerance between the
two ecotypes.
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2.4 Temperature sensing in the
cold response

Changes in membrane fluidity are widely considered to be

involved in temperature sensing. Both cold and heat alter cellular

membrane fluidity, which can affect the structure and/or activity of

membrane-localized proteins such as Ca2+ channels, thereby

triggering Ca2+ influx, a crucial process for inducing temperature-

responsive gene expression.

In this study, we found six genes encoding calmodulin proteins,

and four were induced by cold (Figure 4). There were two

upregulated calmodulin proteins highly expressed; 1,621 counts of

The01G014180 were detected in samples at normal temperature in

FS, significantly upregulated by 6.9-fold (11,123 counts) in the 2-h

cold treatment and by 4.5-fold (7,294 counts) in the 9-h cold

treatment. A total of 209 counts of ONT.15400 were detected in
Frontiers in Plant Science 04
CK, upregulated by 20.7-fold (43,293 counts) in the 2-h cold

treatment and 31.2-fold (6,542 counts) in the 9-h cold treatment

in FS. This may cause OXI1 and three out of four RbohD genes to

become upregulated in response to cold stress, especially OXI1

(The14G001130) upregulated 6.5-fold after 2 h and 17.8-fold after 9

h of cold treatments in FS. These may be key genes in the response

to cold stress.

These key genes were also induced in FR but slightly less than

that in FS. A total of 2,034 counts of The01G014180 were detected in

CK samples, but it was upregulated by 4.3-fold (8,741 counts) in the

2-h cold treatment and by 1.86-fold (3,780 counts) in the 9-h cold

treatment in FR. A total of 227 counts of The01G014180 were

detected in CK samples, upregulated by 8.73-fold (1,985 counts) in

the 2-h cold treatment and by 7.36-fold (1,673 counts) in the 9-h

cold treatment in FR. The expression of ONT.15400 was 2.18- and

3.91-fold in FS compared with FR after 2-h and 9-h cold treatments.
A

B

FIGURE 2

DEGs in T. hemsleyanum in response to cold stress. (A) Functional annotations of all genes in the indicated databases. (B) The number of DEGs
induced and reduced by cold.
frontiersin.org

https://doi.org/10.3389/fpls.2024.1285879
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Qian et al. 10.3389/fpls.2024.1285879
Th e s am e e x p r e s s i o n p a t t e r n a l s o h a p p e n e d i n

OXI1 (The14G001130).

In addition, 26 genes encoding calcium-binding protein (CML)

were found, and 25 were induced by cold exposure. Most expressed

lower, but three highly upregulated CML expression. Among them,

ONT.10697 and The16G003530 were expressed more in FR than in

FS at normal temperature and after cold stress, whereas ONT.1464

was expressed more in FS. CML was found to regulate stress

response through the nitrogen monoxide (NO) signaling pathway;

these three CMLs may be key genes as well.
2.5 ABA biosynthesis and signaling
pathways in cold response

Abscisic acid (ABA) is a vital phytohormone that plays a key

role in plant stress responses. In this research study, DEGs were

significantly clustered in plant hormone signal transduction,

whereas many DEGs in ABA biosynthesis were upregulated; we
Frontiers in Plant Science 05
speculated that ABA might be related to the T. hemsleyanum

cold response.

There were 11 DEGs annotated to six KEGG catalogs in the

ABA synthesis pathway, including protein lutein deficient 5 (LUT5,

ONT.690), b-carotene 3-hydroxylase (crtZ, The13G012840),

zeaxanthin epoxidase (ZEP, ONT.20306, The02G023090, and

The05G017100), 9-cis-epoxycarotenoid dioxygenase (NCED,

The08G020520, The15G003070, and The15G003170), ABA

DEFICIENT 2 (ABA2, The01G012390, and The20G009070), and

abscisic-aldehyde oxidase (AAO3, ONT.11866). Most DEG levels

were low or downregulated by cold, including three NCEDs, which

is the committing step in ABA synthesis; for instance, around 179

counts of The15G003070 (NCED) were detected in FS and 668 in FR

at normal temperature, which was 3.7-fold that in FS, it was

downregulated by 13.8-fold after 2 h and 7.2-fold after 9 h of cold

stress in FS, and it was downregulated by 21.7-fold after 2 h and

20.2-fold after 9 h of cold stress in FR. However, the crtZ gene

(The13G012840) and one ZEP gene (The02G023090) were highly

expressed and upregulated by cold (Figure 5A).
A B

D

C

FIGURE 3

KEGG clustering analysis of DEGs. (A) KEGG pathway enrichment analysis based on DEGs. (B) KEGG pathway enrichment analysis by GSEA.
(C) Relationships between module eigengenes and external traits in WGCNA. Each row represents a consensus module, and each column represents
a specific trait. The numbers in each grid represent the correlation coefficients between module eigengenes and corresponding traits, with P values
indicated in parentheses below. (D) KEGG pathway enrichment analysis based on DEGs in the black module (P < 0.05).
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Around 1,000 counts of The02G023090 (ZEP) were detected in

both ecotypes at normal temperatures. It was upregulated by 2.5-

fold after 2 h and 2.0-fold after 9 h of cold stress in FR but not

significantly upregulated in FS. As for The13G012840 (crtZ), 1,130

counts were detected in FR at normal temperature, which was 4.7-

fold that in FS. The expression of The13G012840 was upregulated to

5,212 at 2 h and 3,977 at 9 h after cold treatments in FR, whereas it

was also upregulated to 2,011 at 2 h and 2,752 at 9 h after cold

treatments in FS. The13G012840 and The02G023090 may be key

genes leading to the difference in cold tolerance between FR and FS.

CYP707A gene in the downstream ABA synthesis pathway

transforms ABA to inactive metabolites such as phasic acid and
Frontiers in Plant Science 06
dihydrophaseic acid; the CYP707A gene (The05G009220) was

suppressed by cold in FR, whereas abscisate beta-glucosyltransferase

(AOG), which controls ABA glycosylation for storage, was upregulated

in both FS and FR, so that available ABA in plants increased.

In addition, the expression of DWARF27 (The08G015650),

which controls the biosynthesis of strigol, was significantly

upregulated and highly expressed. Strigol promotes the growth

and nutrient uptake efficiency of inter- and endosymbiotic

microorganisms, which may enhance the cold tolerance of plants

in another way.

We found 17 DEGs annotated to four KEGG catalogs in the

ABA signaling pathways (Figure 5B). Protein phosphatase 2C
A B

FIGURE 5

Cold-responsive DEGs regulate ABA biosynthesis and signaling pathways. (A) Cold-responsive DEGs in ABA biosynthesis. (B) Cold-responsive DEGs
in the ABA signaling pathway. Each colored cell in the heatmap represents log2 of the DEG CPM (mean of three biological replicates); red represents
induced genes, and blue represents repressed genes. A schematic diagram of signaling pathway genes; red boxes represent all annotated genes that
were upregulated, blue boxes represent all annotated genes that were downregulated, green boxes represent both up and downregulated genes
found in this location, and black boxes represent no DEGs found in this location.
FIGURE 4

Cold-responsive DEGs involved in temperature sensing and calcium signal pathways. Each colored cell in the heatmap represents log2 of the DEG
CPM (mean of three biological replicates); red represents induced genes, and blue represents repressed genes. A schematic diagram of signaling
pathway genes; red boxes represent all annotated genes that were upregulated, blue boxes represent all annotated genes that were downregulated,
green boxes represent both up and downregulated genes found in this location, and black boxes represent no DEGs found in this location.
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(PP2Cs) negatively regulated downstream genes, and ABA binds to

PYRABACTIN RESISTANCE 1 (PYR1), which in turn binds to and

inhibits PP2Cs. Two DEGs encoding PYR/PYL (The13G014680 and

The15G012950) and three DEGs encoding PP2C (The03G019340,

The19G009760, and The24G006800) were upregulated by cold,

especially The24G006800 which was highly expressed and

expressed more in FS, which may be the most critical DEG in the

ABA signaling pathway.

There were two SUCROSE NONFERMENTING 1-RELATED

PROTEIN KINASE 2 genes (SnRK2, The18G004420, and

The18G012980) downregulated by cold, but finally, four ABA-

RESPONSIVE ELEMENT BINDING PROTEIN genes (ABF,

The05G009140 , The06G010930 , The10G006490 , and

The12G015590) were upregulated. In addition, mitogen-activated

protein kinase kinase kinase 17 (MAPKKK17) was induced by

SnRK2 and positively regulated stress adaption; in this research

study, three MAPKKK17 (The07G003990, The09G014140, and

The19G012780) were also upregulated by cold.

ABA can also regulate stress tolerance response through the

MAPK pathway. There were two DEGs encoding CAT that were

highly expressed and regulated by cold; the expression of

The08G020500 was suppressed, whereas The10G020820 was

induced by 4.4-fold at 2 h and 6.87 at 9 h in FS, whereas its

expression was 5.7-fold in FR compared with FS; after cold stress, it

reached more than 10,000 counts.
2.6 Ethylene biosynthesis and signaling
pathways in cold response

The precursor of ethylene is produced from the methionine

salvage pathway. Peroxides produced by cellular damage during

stress were sensed. The signal was transduced to upregulate

ethylene biosynthesis through the MAPK pathway. Two DEGs

encoding mitogen-activated protein kinase (MPK3, ONT.16948,

and The19G006960) were upregulated by cold; the expression of

The19G006960 was 3.7-fold higher in FR than in FS, and it was

upregulated by 9.5-fold at 2 h and 6.4-fold at 9 h after cold

treatment in FS. In contrast, it was upregulated by 2.8-fold at 2 h

and 1.5-fold at 9 h after cold treatment in FR.

We found 19 DEGs annotated to 10 KEGG catalogs in the

methionine salvage pathway; six KEGG catalogues were

upregulated, namely, tyrosine aminotransferase (TAT), S-

adenosylmethionine decarboxylase (speD), 1,2-dihydroxy-3-keto-5-

methylthiopentene dioxygenase (mtnD), adenosylhomocysteinase

(AHCY), cystathionine gamma-synthase (DNMT3B), and S-

adenosylmethionine synthetase (metK). Among these, two metK

genes (The0G010940, The17G003520) and two speD genes

(The03G011170, The23G007700) were highly expressed and

significantly induced, which may be key genes in promoting the

methionine cycle (Figure 6A).

1-Aminocyclopropane-1-carboxylate synthase (ACS) and

aminocyclopropanecarboxylate oxidase (ACO2) catalyze SAM to

produce ethylene . The08G018940 encoding ACS and

The07G004960 encoding ACO2 were upregulated, especially the

expression of The07G004960 which was induced by 13.1-fold at 2 h
Frontiers in Plant Science 07
and 8.2-fold at 9 h after cold treatment in FS and 3.9-fold at 2 h and

2.5-fold at 9 h after cold treatment in FR.

There were nine DEGs annotated to four KEGG catalogs in the

ethylene synthesis pathway, including ETR (ONT.19229,

The03G005740 and The22G010650), CTR1 (The03G000500,

The09G000490, The17G002240, and The25G004030), EIN3

(The20G004880), and EBF (The03G015580). All DEGs were

upregulated by cold stress. Among them, EIN3 was highly

expressed and significantly upregulated by cold stress (Figure 6B).
2.7 Validation of different expressed genes
involved in cold response

To verify the reliability and accuracy of RNA-seq data,

quantitative real-time PCR (qRT-PCR) was used to detect the

relative expression levels of 19 important and typical genes

participating in temperature sensing, ABA, and ethylene

biosynthesis and signaling pathways. Most of these genes were

significantly and substantially induced by the 2-h and 9-h cold

treatments (Figures 7A–C). The expression pattern detected with

qRT-PCR was highly consistent with that detected using

transcriptomics (R2 = 0.8873) (Figure 7D); it revealed the

reliability of these RNA-seq data.
2.8 Effect of ABA and ethylene on the T.
hemsleyanum cold stress response

Since we found that the expressions of key genes related to ABA

and ethylene were induced in response to cold stress, the ABA and

ethylene contents in T. hemsleyanum after simulated frost

treatments were examined. Endogenous ABA and ethylene were

both induced by chilling stress and increased during −2°C chilling

(Figures 8A, B). There was no significant difference between ABA in

FS and FR, whereas the ethylene level was higher in FS than in FR

during a 12-h treatment. After 12 h of chilling, the ABA content

increased by 52.6% in FS and 57.0% in FR whereas the ethylene

increased more strongly, by 107.7% in FS and 225.0% in FR. The

results also revealed the positive role of ABA and ethylene in

response to chilling at the metabolic level.

In order to verify it further, exogenous phytohormones were

sprayed on the FS seedlings, and −4°C chilling was applied. The

chilling injury was obviously alleviated by ABA and ethylene,

especially ethylene (Figures 8C, D). The survival rate was

increased by 10.7% with ABA and 25.0% with ethylene.
3 Discussion

Tetrastigma hemsleyanum is an herb that is widely used in

Chinese traditional and modern medicine. As a thermophilous

plant, winter cold severely limits the artificial cultivation of this

plant. Several studies have been carried out aimed at the cold

response in T. hemsleyanum, but the mechanisms of cold

sensitivity in this plant remain unclear. In this study, the
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transcriptomes in T. hemsleyanum seedlings of the cold-resistant

variety FR and the cold-sensitive variety FS exposed to −2°C for 2 h

and 9 h were compared and analyzed to decipher the T.

hemsleyanum cold stress response.

A total of 76,750 transcripts and 28,805 genes were obtained,

4,121 of which were new genes; furthermore, the sequence was

obtained using the latest ONT with exceptional read length, further

enriching the existing T. hemsleyanum gene bank.

Calcium is a secondary messenger used in many plant signaling

processes. Cell membrane solidification induced by cold can affect

the structure and/or activity of membrane-localized proteins,

thereby triggering Ca2+ influx, a crucial process for inducing

temperature-responsive gene expression (Knight et al., 1996; Ding

et al., 2020). Plants possessed several major systems to sense and

conduct Ca2+ signaling, including CaM (calmodulin)/CMLs (CaM-

like proteins), CCaMK (Ca2+- and Ca2+/CaM-dependent protein
Frontiers in Plant Science 08
kinase), CDPKs (Ca2+-dependent protein kinases), and CBLs

(calcineurin B-like proteins), CIPKs (CBL-interacting protein

kinases) (Galon et al., 2010). In this research study, we found six

genes encoding calmodulin proteins; four were induced by cold, and

two were highly expressed, which may cause OXI1 and three out of

four RbohD genes to be upregulated in response to cold stress. In

addition, we found 26 genes encoding CMLs, 25 induced by cold,

and three were highly expressed. The results demonstrated that

calcium signaling was regulated in response to the cold stress in

T. hemsleyanum.

Except for the genes controlled by Ca2+, RbohD and OXI1 are

also regulated by ROS and ROS-generating stimuli independently,

playing important roles in the plant immune response to pathogens.

Specifically, RbohD regulates oxidative burst during perception of

pathogen-associated molecular patterns (PAMPs) by pattern

recognition receptors (PRRs), OXI1 kinase is required for
A

B

FIGURE 6

Cold-responsive DEGs regulate ethylene biosynthesis and signaling pathways. (A) Cold-responsive DEGs in ethylene biosynthesis. (B) Cold-
responsive DEGs in the ethylene signaling pathway. Each colored cell in the heatmap represents log2 of the DEG CPM count values (mean of three
biological replicates); red represents induced genes, and blue represents repressed genes. A schematic diagram of signaling pathway genes; red
boxes represent all annotated genes that were upregulated, blue boxes represent all annotated genes that were downregulated, green boxes
represent both up- and downregulated genes found in this location, and black boxes represent no DEGs found in this location.
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activation of mitogen-activated protein kinases (MAPKs), and an

essential part of the signal transduction pathway links oxidative

burst signals to diverse downstream responses (Rentel et al., 2004;

Kadota et al., 2015). In this research study, two out of three cold-

induced RbohD genes were expressed more in FS, and OXI1 was

dramatically induced, and the expression in FS was 2.61-fold that in

FR, which might cause more serious injury in FS after cold stress.

ABA is a vital phytohormone that regulates many essential

physiological and biochemical processes, and it has a key role in

stress resistance during plant growth and development (Huang

et al., 2017). Stress rapidly triggers ABA production (Yamaguchi-

Shinozaki and Shinozaki, 2006; Li et al., 2021), which causes ABA

levels to increase and cold tolerance to be enhanced, such as in

Arabidopsis and wheat (Choi et al., 2000; Hou et al., 2010). ABA is

perceived by pyrabactin resistance (PYR)/PYR1-like (PYL)/

regulatory components of ABA receptor (RCAR) receptors, which

inactivate PP2C, resulting in activating the protein kinase SnRK2;

SnRK2s activate many proteins via protein phosphorylation

regulating stomatal closure (Lv et al., 2018). Group A PP2Cs

interacted physically with SnRK2s in various combinations and

e ffi c i e n t l y i n a c t i v a t e d ABA-a c t i v a t e d SnRK2 s v i a

dephosphorylation of multiple Ser/Thr residues in the activation

loop. This step was suppressed by the RCAR/PYR ABA receptors in

response to ABA in Arabidopsis (Singh et al., 2015). The center

stage in the ABA signaling pathway of PP2Cs was also verified in

rice (Xue et al., 2008). In this research study, most DEGs in the ABA
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synthesis pathway were expressed at low levels or downregulated by

cold, but genes encoding crtZ and ZEP were significantly induced

by cold, which might be vital genes causing ABA to increase during

short-term cold response in T. hemsleyanum. Some DEGs encoding

PYL, PP2C, SnRK2, and ABF detected in this research study were

also upregulated by cold, which may regulate numerous target genes

in ABA-dependent pathways and ABA functional responses.

Ethylene is a crucial plant growth regulator that mediates cold

stress responses in a species-dependent manner (Wang Y. C. et al.,

2021). For example, ethylene positively affects the cold tolerance of

tomato (Lycopersicon esculentum) (Ciardi et al., 1997). By contrast,

ethylene levels are negatively correlated with the cold tolerance of

Medicago truncatellid (Zhao et al., 2014). Low temperatures

promote ethylene release in grapevines, and exogenous ACC (1-

aminocyclopropane-1-carboxylat, the precursor of ethylene)

increased the grapevine cold tolerance (Sun et al., 2016); ethylene

positively regulated grapevine cold tolerance by modulating AP2/

ERF andWRKY transcription factors, and the response of ABA and

IAA during cold stress may be regulated by ETH signaling (Hou

et al., 2023). T. hemsleyanum is also classified as a member of Vitisl.

In this research study, DEGs encoding MPK3, which promoted

ethylene synthesis, were upregulated, DEGs annotated to 12 KEGG

catalogs in the ethylene synthesis pathway, and 10 KEGG catalogs

were upregulated, including vital genes ACS and ACO2. DEGs

annotated to four KEGG catalogs in the ethylene synthesis

pathway were all upregulated by cold stress. It demonstrated that
A B

CD

FIGURE 7

qRT-PCR analysis of different expressed genes involved in cold response. Relative expression of the key DEGs involved in (A) temperature sensing,
biosynthesis, and signaling of (B) ABA and (C) ethylene. (D) Expression pattern validation by analyzing the linear dependence relation between the
log2 fold change in key DEGs obtained from RNA-seq and qRT-PCR. The gene expression was determined by fold change relative to the reference
gene MDH. All data were collected from three biological replicates and three technical replicates for each sample.
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ethylene might be the major cold-responsive phytohormone within

the 9 h stress treatment of T. hemsleyanum.

In addition, phytohormones can also regulate target genes

through the MAPK signaling pathway. MAPK signaling is

regulated by posttranslat ional modificat ions such as

phosphorylation and ubiquitination, which might be the reason

that we found no DEGs annotated to KEGG catalogs in some

intermediate loci of transduction pathways, but DEGs encoding

CAT were drastically changed. Posttranslational regulation might

also happen in other nodes of phytohormone signaling pathways.

The 9-cis epoxycarotenoid dioxygenase (NCED) is considered

to be a key rate-limiting enzyme in ABA biosynthesis (González-

Silva et al., 2011); previous research has shown that cold stress

caused significant upregulation of NCEDs at 24 h in T.

hemsleyanum (Peng et al., 2021). However, in this research study,

two out of three NCEDs were suppressed by cold, and one out of

three NCEDs were only significantly induced in FS. All NCED genes

were expressed at low levels. It indicated that the 9-h cold treatment

is not sufficient to activate some cold response methods; it is

necessary to spend more t ime to observe long-term

transcriptional regulations.

Many vital DEGs we found, such as ONT.15400 (CaM),

The10G020820 (CAT), and The19G006960 (MPK3), were
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expressed more in FR leaves at normal temperature, which might

help form the cold tolerance. Some inherent traits that cannot be

found in the transcriptome, such as the composition of the

membrane, proline, and soluble sugar construction, might have

reduced the cold injury before the cold response in the tissue of cold

tolerance ecotypes, which may be the reason why more DEGs and

more dramatic expression changes were found in the seedlings of

sensitive ecotypes.

The change in expression level changed the endogenous ABA

content, and exogenous ABA improved the cold tolerance of FS,

consistent with previous research, which found endogenous ABA

content at 0°C in other T. hemsleyanum ecotypes (Peng et al., 2021).

Furthermore, we found a positive role of ethylene in response to

cold stress, and the effect of ethylene might be stronger than ABA

within 12 h.
4 Materials and methods

4.1 Plant materials and growth conditions

Two Tetrastigma hemsleyanum (Sanyeqing) ecotypes grown in

the plant garden of Hangzhou Academy of Agricultural Sciences
A

B D

C

FIGURE 8

Effects of ABA and ethylene on cold tolerance in T. hemsleyanum. The variation in endogenous ABA (A) and ethylene (B) in FS and FR after chilling.
Effect of exogenous ABA (C) and ethylene (D) on cold stress response after chilling. The content of plant hormones was detected after −2°C at
different times, and data are the mean ± SD of three biological replicates. The letters indicate significant differences (multiple comparisons by
Duncan, P < 0.05). The effect of exogenous phytohormones was tested in FS seedlings, and the phenotypes were recorded after −4°C treatment for
12 h.
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(Hangzhou, Zhejiang Province, China) were involved in this

research study. FS has large leaves and stout semi-cylindrical

stalks; FR has medium-sized leaves and medium-thickness,

cylindrical stalks.

Stem segments with one node and one bud were clipped and

planted in peat. After 2 months of growth, cutting seedlings that had

built root systems and sprouted five to six nodes were selected.
4.2 RNA isolation and
transcriptome sequencing

4.2.1 Library preparation
Selected seedlings were exposed to a simulated frost treatment

(−2°C) for 0 h, 2 h, and 9 h. Three samples were performed for each

cultivar, and each sample contained 12 plants. Leaves at the third

and fourth nodes from the tip were collected and stored at −80°C

for further analysis.

RNA samples were prepared using an RNA simple Total RNA

Kit (DP411, TIANGEN), RNA integrality was tested by agarose gel

(LabChip GX, Agient2100), and the RNA concentration was

detected using a NanoDrop 2000 (Thermo Fisher Scientific).

Library preparation was performed according to the standard

protocol provided by ONT. A mass of 1 mg total RNA was prepared

for cDNA libraries using the cDNA-PCR Sequencing Kit (SQK-

LSK110+EXP-PCB096) protocol provided by ONT. The template-

switching activity of reverse transcriptases enriches full-length

cDNAs and adds defined PCR adapters directly to both ends of

the first-strand cDNA, followed by cDNA PCR for 14 cycles with

LongAmp Tag (NEB). The PCR products were then subjected to

ONT adaptor ligation using T4 DNA ligase (NEB). Agencourt XP

beads were used for DNA purification according to the ONT

protocol. The final cDNA libraries were added to the

PromethION Flow Cell (R9 Version, FLO-PRO002, Nanopore)

and run on the PromethION platform at Biomarker Technology

Company (Beijing, China).

4.2.2 Data optimization
Raw reads were first filtered with a minimum average read

quality score = 6 and a minimum read length = 350 bp. Ribosomal

RNA was discarded after mapping to the rRNA database. Next, full-

length, non-chimeric (FLNC) transcripts were determined by

searching for primers at both ends of the reads. Clusters of FLNC

transcripts were obtained after mapping to the reference genome

with mimimap2 (2.16), and consensus isoforms were obtained after

polishing within each cluster by pinfish (v0.1.0).

4.2.3 Quantification of gene/transcript expression
levels and differential expression analysis

Consensus sequences were mapped to the reference genome

using minimap2 (2.16). Mapped reads were further collapsed by the

cDNA_Cupcake (5.8) package with min-coverage = 85% and min-

identity = 90%. A 5′ difference was not considered when collapsing

redundant transcripts. The coding sequence (CDS) was predicted

using TransDecoder (v3.0.0).
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Quantification of gene/transcript expression levels and

differential expression analysis

Full-length reads were mapped to the reference transcriptome

sequence. Reads with a match quality above 5 were used to quantify

further. Expression levels were estimated by reads per gene/

transcript per 10,000 mapped reads. For samples with biological

replicates, differential expression analysis of two conditions/groups

was performed using the DESeq2 R package (1.6.3) (Love et al.,

2014). DESeq2 provides statistical routines for determining

differential expression in digital gene expression data using a

model based on the negative binomial distribution. The resulting

P values were adjusted using Benjamini and Hochberg’s approach

for controlling the FDR. Genes with an FDR <0.05 and fold

change ≥2 found by DESeq2 were assigned as differentially

expressed. Heatmaps were generated by TBtools (https://

github.com/CJ-Chen/TBtools).

4.2.4 Gene functional annotation and
enrichment analysis

Gene Ontology (GO) enrichment analysis was implemented using

the GOseq R (2.18.0) packages based on Wallenius non-central hyper-

geometric distribution (GO database released on 2020-06-01) (Young

et al., 2010). KOBAS (Mckenna et al., 2010) software was used to test

the statistical enrichment of DEGs in KEGG pathways (KEGG version

is 20191220). The obtained novel transcript sequences were also

aligned to the NR (202009) (Deng et al., 2006), Swissprot (202005)

(Apweiler et al., 2004), COG (COG2014) (Tatusov et al., 2000), KOG

(KOG2003) (Koonin et al., 2004), and Pfam (Pfam33.1) (Kanehisa

et al., 2004) databases. GSEA was performed using online tools in

BMKCloud (www.biocloud.net).

4.2.5 WGCNA analysis
WGCNA with all 18 libraries acquired from ONT RNA-seq was

performed using the WGCNA R package in BMKCloud

(www.biocloud.net) (Langfelder and Horvath, 2008). Co-

expression network modules were identified based on counts per

million mapped reads (CPM) ≥10, variation of CPM ≥0.5; the

minimum module size was 10, the minimum height for merging

modules was 0.3, and the soft threshold power was picked by the

program automatically. The central hub genes were defined as those

with module eigengene-based connectivity (kME) >0.7 within an

assigned module, and modules were correlated with ecotypes and

treatments to identify co-expression.
4.3 Validation of gene expressions involved
in cold response

Plant tissue was the same batch as that used for transcriptome

sequencing. RNA samples were prepared using the RNeasy Plant

Mini Kit (Qiagen), and DNA was eliminated using an RNase-Free

DNase Set (Qiagen). cDNAs were synthesized using SuperScript™

III First-Strand Synthesis SuperMix for qRT-PCR (Invitrogen). The

samples were amplified in Power SYBR® Green PCR Master Mix

(Applied Biosystems) and detected using a CFX384 Real-Time PCR
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System (Bio-Rad). Three samples were performed for each cultivar,

and three replicates were performed for each sample. The MDH

(malic dehydrogenase) gene was selected as an internal reference

gene. The information on DEGs whose expression have been

detected is offered in Supplementary Table 2. The primers were

designed using Beacon Designer 7.8 and Primer Premier 6.0

(Supplementary Table 3).
4.4 Phytohormone measurement and
exogenous phytohormone treatment

Plant samples used for phytohormone measurement were

prepared as described in 2.1. A mass of 0.1g tissue from each

biological replicate was crushed in 1 mL of PBS solution (0.01

mol·L−1, pH = 7.2–7.4). The measurement was performed according

to the standard protocol of ELISA kits provided by mlbio

Biotechnology (https://www.mlbio.cn/).

Plants used for evaluation of the effect of exogenous

phytohormones were cultivated as described in 4.1. A total of 28

seedlings were included for each treatment; 100 mL of 500 mmol/L

ABA or 60 mg/L ethylene was sprayed on seedlings and cultivated

for 3 days and then sprayed with exogenous phytohormones and

cultivated for 3 days again. Treated seedlings were exposed to a −4°C

simulated frost treatment for 12 h.
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