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Traditionally, selective breeding has been used to improve tree growth. However,

traditional selection methods are time-consuming and limit annual genetic gain.

Genomic selection (GS) offers an alternative to progeny testing by estimating the

genotype-based breeding values of individuals based on genomic information

using molecular markers. In the present study, we introduced GS to an open-

pollinated breeding population of Korean red pine (Pinus densiflora), which is in

high demand in South Korea, to shorten the breeding cycle. We compared the

prediction accuracies of GS for growth characteristics (diameter at breast height

[DBH], height, straightness, and volume) in Korean red pines under various

conditions (marker set, model, and training set) and evaluated the selection

efficiency of GS compared to traditional selection methods. Training the GS

model to include individuals from various environments using genomic best

linear unbiased prediction (GBLUP) and markers with a minor allele frequency

larger than 0.05 was effective. The optimized model had an accuracy of 0.164–

0.498 and a predictive ability of 0.018–0.441. The predictive ability of GBLUP

against that of additive best linear unbiased prediction (ABLUP) was 0.86–5.10,

and against the square root of heritability was 0.19–0.76, indicating that GS for

Korean red pine was as efficient as in previous studies on forest trees. Moreover,

the response to GS was higher than that to traditional selection regarding the

annual genetic gain. Therefore, we conclude that the trained GS model is more

effective than the traditional breeding methods for Korean red pines. We

anticipate that the next generation of trees selected by GS will lay the

foundation for the accelerated breeding of Korean red pine.
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1 Introduction

Korean red pine (Pinus densiflora Siebold & Zucc.), a species

native to South Korea, belongs to the genus Pinus of the family

Pinaceae and is widely distributed throughout East Asia, from the

Korean Peninsula to Japan and China (Szmidt and Wang, 1993).

Considering its high timber value, the reforestation of Korean red

pine accounted for approximately 17% of the annual reforestation

area in South Korea as of 2020, highlighting the need for research

on improving wood productivity by breeding economic traits

(KFS, 2021).

Breeding is important for genetically improving trees by

applying genetic principles and techniques (White et al., 2007).

However, compared with crops and livestock, forest trees have a

longer generation period, and the establishment of a breeding

population by crossing and nurturing takes a long time.

Consequently, the advancement of a generation requires 30–45

years for tree breeding. Currently, the most advanced tree-breeding

program for loblolly pines (Pinus taeda) has progressed to the

fourth generation (Isik and McKeand, 2019). As the response to

selection, which is the expected value of improvement according to

the progress of one generation, is limited, rapid generational

advancement is required to achieve accelerated breeding.

Since the development of next-generation sequencing (NGS)

and statistical analysis methods for large-scale data, genomic

selection (GS) has been proposed as an alternative to traditional

selection methods. GS is a selective breeding method that uses

molecular marker information rather than phenotype or pedigree

information to estimate the genetic value of each individual as a

criterion for selection in the breeding population (Meuwissen et al.,

2001). Unlike conventional family selection (FS) and marker-

assisted selection, GS estimates breeding value by summing the

effects of thousands to hundreds of thousands of markers, making it

possible to discern individual distinctions caused by minute marker

effects (Goddard et al., 2011). Additionally, GS focuses solely on

selection efficiency and does not require any prior information, such

as the association between the phenotype and marker, location of

the quantitative trait loci on the genome, or the relative influence of

the marker on the phenotype (Isik et al., 2016). Accordingly, the

time and effort required to find information on the association

between a specific marker and the trait can be saved in GS. In

addition, GS is particularly advantageous for forest trees because GS

does not reply on reference genomes.

Studies on GS in loblolly pine and eucalyptus hybrids marked

the first application of this approach to forestry (Resende et al.,

2012; Resende et al., 2012a; Resende et al., 2012b). Subsequently,

experimental studies on GS in conifers such as Pinus, Picea,

Pseudotsuga, and Cryptomeria and broadleaf trees such as

Eucalyptus, Castanea, Fraxinus, and Populus have been conducted

(reviewed in Lebedev et al., 2020). Previous studies on forest trees

employed population sizes of 25–338 half-sibling or full-sibling

families as research subjects, primarily focusing on assessing their

growth and wood quality attributes.

Generally, the GS in forest trees proceeds as follows: First, the

genotypes and phenotypes of the training group in the breeding

population are evaluated. Second, the two datasets are combined to
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create a prediction model that simultaneously estimate the effects of

all marker loci. Third, cross-validation is performed to test the

applicability of the developed model. Finally, genetic values are

predicted for different subgroups of the breeding population, and

individuals for advanced generations are selected based on the

estimated genomic values (Grattapaglia, 2014).

In this study, we proposed an efficient GS model for Korean red

pine by investigating the impact of various factors, including the

single nucleotide polymorphism (SNP) marker set, predictive

model, and training dataset, on prediction accuracy in the half-sib

population. Additionally, the prediction accuracy of the trained GS

model was evaluated through standardization. Moreover, the

efficiency of GS was evaluated by comparing the response to GS

and conventional selections.
2 Materials and methods

2.1 Study population

The study population was from an open-pollinated progeny

trial established for the progeny test of plus trees by the National

Institute of Forest Sciences (NIFoS). Seeds obtained from 49 grafted

clones (20 and 29 clones of plus trees from Gangwon and

Kyeongbuk provinces, respectively) of the clone bank located in

Taean were nursed to produce 1-1 seedlings. Subsequently, the

seedlings were distributed and planted in 6 regions: Taean (36°46’

N, 126°38’ W), Chuncheon (37°89’ N, 127°63’ W), Gongju (36°60’

N, 127°10’ W), Kyeongju (35°92’ N, 129°09’ W), Naju (35°06’ N,

126°84’W), andWanju (35°85’N, 127°28’W). A total of 2,643 trees

for which both phenotypes and genotypes were investigated from

the open-pollinated progeny trial were used for the analysis: 609

from Taean, 726 from Chuncheon, 456 from Gongju, 380 from

Kyeonju, 247 from Naju, and 225 from Wanju. These trees

belonged to 44 open-pollination families (Supplementary Table 1).
2.2 Phenotyping

The target traits of GS were growth, including diameter at breast

height (DBH), height, straightness, and volume. Laser scanning

technology, which is capable of consistently generating high-

precision outputs as well as environmentally friendly because of

its nondestructive properties (Dittmann et al., 2017; Chen et al.,

2019), was used to replace the conventional survey. To obtain the

phenotype of each individual, point cloud data from six sites in the

study population were obtained using a LiDAR device (ScanStation

P40, Leica) in 2017 and 2018. For batch data processing, the point-

cloud data were separated into trees and ground, and the ground

was flattened. The DBH (m) was obtained by dividing the

circumference of the tree at a height of 1.2 m from the ground by

the circumference ratio (p). Tree height (m) was measured as the

distance from the ground to the top of the canopy. The volume (m3)

of each tree was calculated as (DBH)2 × (height). To calculate

straightness, an imaginary baseline was written connecting the

center point of the tree trunk at the root collar and a height of
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6 m. The distances from the baseline to the center point of the tree

at heights of 0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 m were calculated. The

straightness was digitized by taking the negative natural log (-loge)

of the standard deviation of the six distance values. Specifically, the

more the stem had a shape similar to the baseline, the greater the

calculated straightness. The distribution of the phenotypic data used

in this study is shown in Supplementary Figure 2..
2.3 Genotyping

To investigate the genotype of each tree at the six test sites,

cambium tissues were collected from tree stems, and DNA was

extracted using the Exgene™ Plant SV Kit (Geneall, Seoul). SNP

probe information for genotyping was obtained using a 50 K SNP

chip for Korean red pines (Cheon et al., 2021). The SNP chip was

developed using genotyping-by-sequencing (GBS) information

from 46 trees tested in the open-pollinated progeny trial.

Axiom™ analysis suite (v5.0.1) was used for SNP calling. First,

the sample quality was investigated, and samples with a sample call

rate of less than 97% or a DQC value of less than 0.82 based on

probe intensity were excluded. The genotypes (AA, BB, AB, and

NN) were clustered for each SNP marker based on the intensity

ratio of the two allele probes.
2.4 Preparation of GRM

As there should be no missing genotype data to write a genomic

realized relationship matrix (GRM), imputation was performed

using Beagle (v5.2), which operates even without a reference

genome (Browning and Browning, 2009). GRMs were prepared

according to the formula described by VanRaden (2008). For

comparison with the GRM, a numerator relationship matrix

(NRM) consisting of the relationship coefficients of two

individuals was also written using pedigree information. The

GRMs differed according to the marker set used, but the

coefficients of the GRM and NRM commonly showed

approximate matches (Supplementary Figure 3).
2.5 Heritability

The heritability of the mixed model was obtained as the

variance of NRM, and the GRM was divided by the total variance

in the best linear unbiased prediction (BLUP).

h2NRM =  
s 2
NRM

s 2
NRM +  s2

r
, h2GRM =  

s 2
GRM

s 2
GRM +  s 2

r

The site and block were set as the fixed effects of the mixed

linear model in the combined and one-site analyses, respectively.

Family heritability was estimated using analysis of variance

(ANOVA). The mathematical linear model for analyzing the

variance component and heritability of each site was as follows:
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Xijk =  m + Bi +   Fj +  BFij +   ϵijk

where Xijk is the phenotype of the k-th tree of the j-th family in

the i-th block. m is the overall mean, Bi is the effect of the block, Fj is

the effect of family, BFij is the interaction effect of block and family,

and ϵijk is the error term. The mathematical linear model for the

combined analysis of the six sites is as follows:

Xijkl =  m + Si + Bij +   Fk +   SFik + BFijk +   ϵijkl

where Xijkl is the phenotype of the l-th tree of the k-th family in

the j-th block of the i-th site, m is the overall mean, Si is the effect of

the site, Bij is the effect of the block, Fk is the effect of the family, SFik
is the interaction effect of the site and family, BFij is the interaction

effect of the block and family, and ϵijk is the error term.
2.6 SNP marker selection

To compare the prediction accuracy according to the SNP

calling the quality of markers, markers selected based on loose,

moderate, and strict standards were used for GS. The loose standard

was the use of all markers, the moderate standard was to meet the

default quality threshold of the SNP calling program (call rate

(CR)≥97% and Fisher’s linear discriminant (FLD)≥3.6), and the

strict standard was the addition of the threshold of CR≥99%,

FLD≥5, heterozygous strength offset (HetSO)≥0, and homozygote

ratio offset (HomRO)≥0. In common, markers with minor allele

frequency (MAF) of 0.05 or higher were used.

To study the prediction accuracy according to the number of

markers, all 17 K (17,074) markers showing genotype variation and

2 K (2,000), 6 K (6,000), and 10 K (10,000) markers randomly

selected markers were used for GS. In addition, markers with MAF

of 0.25, 0.05, and 0.0005 or higher were selected and compared to

investigate the impact of MAF on prediction accuracy.
2.7 Genomic estimated breeding
value prediction

Six genomic predictive models, including genomic BLUP

(GBLUP), Bayesian least absolute shrinkage and selection

operator (LASSO), Bayesian Ridge Regression, Bayes A, Bayes B,

and Bayes C, were used to predict genomic estimated breeding value

(GEBV). In addition, additive BLUP (ABLUP), a pedigree-based

prediction method using NRM, was compared. BLUPs were

performed using remlf90 in the R package BreedR (v0.12.5). In

addition, five Bayesian models were applied with 20,000 iterations

using the GBLR function of the R package BGLR (v1.0.8) (Pérez and

de Los Campos, 2014).
2.8 Genomic selection scenario and
evaluating prediction accuracy

To evaluate the prediction accuracy of GS, the data set was split

into the training set, of which both genotype and phenotype were
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used for training the model, and the test set, of which phenotype

were masked, so to be predicted by model. In this study, three

genomic selection scenarios were performed according to how

training set and test set were defined: within-region prediction,

between-region prediction, and combined-region prediction.

Three-, five-, ten-, and twenty-fold cross-validations were

examined and compared in a within-region prediction scenario.

In the between-region prediction scenario, all individuals in the

remaining five regions (training set) were trained to predict the

GEBV for one region (test set). In addition, in the combined-region

prediction scenario, 10-fold cross-validation was performed by

randomly dividing the groups regardless of the region. When

multiple regions were included in a scenario, the phenotype was

corrected by setting the region as a fixed effect in the linear model.

The prediction accuracy was evaluated using accuracy (AC) and

predictive ability (PA). Accuracy was the Pearson correlation

coefficient of the GEBV of the test set and the EBV calculated by

ABLUP using pedigree information and all phenotypes

(Supplementary Figure 4), which we assume as true breeding

value (TBV) as in traditional genetics and majority of forest tree

GS studies (Chen et al., 2018; Li et al., 2019; Beaulieu et al., 2020).

The predictive ability was the Pearson correlation coefficient

between the GEBV of the test set and the phenotype. In cross-

validation, prediction accuracy is the average values of correlation

coefficients for each subset. For a meaningful comparison, we also

presented the average correlation coefficient for the same subset in

between-region prediction.
2.9 Response to selection

To compare the response to the selection of GS and two

traditional selections, FS and phenotypic selection (PS), the

annual genetic gain of each was calculated. Genetic gains from FS

and PS were calculated as follows (Voss-Fels et al., 2019).

DGP =
ih2sP

t

where DGP is the annual genetic gain, i is the selection intensity,

h2 is hGRM
2 for PS and family heritability by ANOVA

(Supplementary Table 5) for FS, sP is the square root of

phenotypic variance for PS and family phenotypic variation for

FS, and t is breeding cycle. The genetic gain from GS was measured

as follows (Isik et al., 2017; Voss-Fels et al., 2019).

DGA =
irsA

t

where DGA is the annual genetic gain, i is the selection intensity,

r is the accuracy of GS, sA is the square root of the additive genetic

variance, and t is the breeding cycle. The selection intensity,

according to the selection ratio, was calculated assuming a normal

phenotypic distribution.

The breeding cycle of the GS was assumed to be 15 years,

considering the age of reproduction of Korean red pine. For the FS,

the time required for the progeny test (30 years in the study

population) was added. Accordingly, a total breeding cycle of 45
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years was assumed for the FS. In addition, for PS, the breeding cycle

was assumed to be 30 years because of the time required to grow to

the phenotyping age.
3 Results

3.1 Heritability

To estimate narrow-sense individual heritability and breeding

values in this study, a mixed model was employed instead of the

traditionally used ANOVA as the latter is not suitable for unbalanced

data with different observation numbers per family and block (Isik

et al., 2017). The relationship matrices, GRM and NRM, were used as

random effects of the mixed model. The heritability of the population

ranged from0.000 to0.723, exhibiting substantial variability across test

sites and traits (Table 1). Height displayed the highest heritability

among all the assessed traits. NRM and GRM heritability estimates

showed a similar trend depending on the test sites and traits. Notably,

the heritability values derived from the GRM were generally higher

than those derived from the NRM.
3.2 Impact of SNP marker set on
predictive accuracy

To determine the impact of SNP marker quality on the

prediction accuracy of GS, GBLUP analysis was performed using

different marker quality standards, and the resulting accuracies and

predictive abilities were compared. The number of markers meeting

the standards was 6,464 for the loose standard, 1,164 for the

moderate standard, and 571 for the strict standard, respectively.

Across all the traits and regions, the stricter the applied standard,

the lower the accuracy and predictive ability (Supplementary Table

6). Although some data showed differences within the error range,

all traits in Chuncheon exhibited significant differences in accuracy

across the different marker sets. In the subsequent analysis, a loose

standard was applied for the selection of markers to achieve

relatively high GS accuracy.

To examine the impact of the number of markers, all 17 K

(17,074) markers showing genotype variation and 2 K (2,000), 6 K

(6,000), and 10 K (10,000) marker sets randomly selected from

among them were used in GBLUP, and prediction accuracy was

compared. As a result, the accuracy was 0.09–0.46 for 2 K, 0.18–0.47

for 6 K, 0.24–0.48 for 10 K, and 0.22–0.51 for 17 K marker sets

(Figures 1A-D; Supplementary Table 7). Also, the predictive ability

was -0.03–0.43 for 2 K, 0.01–0.42 for 6 K, 0.01–0.44 for 10 K, and

0.02–0.46 for 17 K marker sets (Figures 1E-H; Supplementary Table

7). Generally, as the number of markers decreased, the prediction

accuracy decreased.

Subsequently, an analysis was conducted to investigate whether

a reduction in the number of MAF markers would result in a

decrease in prediction accuracy. The prediction accuracy was

compared using GBLUP analysis with 2 K (2,248), 6 K (6,464),

and 10 K (9,799) markers with MAF of 0.25, 0.05, and 0.0005 or

higher, respectively. As a result, the accuracy was 0.14–0.5, and the
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predictive ability was -0.02–0.46, showing differences within the

error range (Supplementary Table 8). Specifically, when markers

with low MAF were excluded, the prediction accuracy did not

decrease, unlike when random markers were excluded.
3.3 Impact of the predictive model on
predictive accuracy

The prediction accuracies of various models were analyzed and

compared to identify a suitable predictive model for GS in Korean

red pine. In addition, ABLUP was performed to compare the

efficiency of GS with pedigree-based selection. As a result, six GS

models exhibited an accuracy of 0.15–0.5 and a predictive ability of

0.01–0.44, with no significant differences observed among one

another (Figure 2; Supplementary Table 9). Meanwhile, compared

with ABLUP (accuracy 0.32–0.72, predictive ability -0.18–0.25)

based on pedigree information, the GS models generally showed

lower accuracy and higher predictive ability (Figure 2;

Supplementary Table 9), which may likely be attributed to the

fact that the phenotype is not strongly correlated with the initially

assumed TBV (Supplementary Figure 4).
3.4 Impact of training data set on
predictive accuracy

To examine whether the size of the training and test sets affected

the prediction accuracy of theGS of Korean red pine, the accuracy and

predictive ability of GBLUPwere compared by varying the number of

cross-validation folds. As a result of 3-, 5-, 10-, and 20-fold cross-
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validations, the accuracy was 0.14–0.51, and the predictive ability was

-0.07–0.44, showingdifferenceswithin the error range regardless of the

size or ratio of the training set (Supplementary Table 10). For some

regions and traits, such as the volume in Naju, the prediction accuracy

increased as the training set size increased.

To determine whether GS can be applied to populations in

different environments, within-, between-, and combined-region GS

scenarios were compared (Figure 3; Supplementary Table 11).

Accuracy did not show consistent results depending on whether the

analysis waswithin or between regions.However, the predictive ability

was generally higher in the within-region prediction (0.02–0.41) than

in the between-region prediction (0.05–0.24). In the combined-region

scenario, the accuracy was 0.38–0.48, which was higher than the

average of six regions (0.33–0.38), and the predictive ability was

0.07–0.18, which was lower than the average of the six regions (0.17–

0.28). Higher accuracy could be obtained when the GS model was

trainedby combiningmultiple environments, consistentwith previous

study in two spruce species (Lenz et al., 2017; Chen et al., 2018).
3.5 Prediction accuracy evaluation

Synthesizing the study results, the optimized GS model for

Korean red pine was the GBLUP model, using the genotypes of

6,464 markers with an MAF of 0.05 or higher. Finally, the

prediction accuracy of the GS performed by this model was

0.164–0.498 for accuracy and 0.018–0.441 for predictive ability

(Table 2). The prediction accuracy was highest for height in

Taean. The mean prediction accuracy for all regions was the

highest for height. The population size and prediction accuracy

were not correlated.
TABLE 1 Narrow-sense heritability by the mixed model using NRM and GRM in progeny test sites.

Region a Estimates DBH Height Straightness Volume

T hNRM
2 0.103 (0.083) 0.249 (0.124)* 0.078 (0.092) 0.143 (0.092)

hGRM
2 0.186 (0.106) 0.723 (0.103)** 0.146 (0.105) 0.276 (0.112)*

C hNRM
2 0.195 (0.101) 0.380 (0.148)* 0.045 (0.060) 0.208 (0.103)*

hGRM
2 0.420 (0.099)** 0.393 (0.098)** 0.227 (0.095)* 0.463 (0.105)**

G hNRM
2 0.407 (0.187)* 0.457 (0.200)* 0.245 (0.144) 0.413 (0.190)*

hGRM
2 0.354 (0.151)* 0.720 (0.138)** 0.356 (0.146)* 0.393 (0.150)**

K hNRM
2 0.055 (0.115) 0.000 (0.000) 0.327 (0.193) 0.001 (0.003)

hGRM
2 0.051 (0.105) 0.564 (0.197)** 0.405 (0.171)* 0.004 (0.091)

N hNRM
2 0.068 (0.155) 0.132 (0.179) 0.366 (0.277) 0.043 (0.151)

hGRM
2 0.546 (0.228)* 0.642 (0.215)** 0.395 (0.291) 0.519 (0.225)*

W hNRM
2 0.070 (0.188) 0.108 (0.212) 0.000 (0.003) 0.206 (0.235)

hGRM
2 0.173 (0.175) 0.105 (0.187) 0.286 (0.245) 0.173 (0.187)

Combined hNRM
2 0.074 (0.031)* 0.146 (0.049)** 0.113 (0.042)** 0.108 (0.040)**

hGRM
2 0.066 (0.017)** 0.104 (0.020)** 0.059 (0.017)** 0.082 (0.018)**
Standard error of heritability estimation in parenthesis.
The values marked with asterisk indicate a difference from zero (*, a<0.05; **, a<0.01).
aT, Taean; C, Chuncheon; G, Gongju; K, Kyeongju; N, Naju; W, Wanju.
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Pearson correlation analysis was performed for each region and

trait to reveal the correlation between heritability and prediction

accuracy of GS in Korean red pine. The correlation coefficient

between accuracy and heritability was 0.735 (p<0.001), and that

between predictive ability and heritability was 0.924 (p<0.001),

indicating a strong correlation (Figure 4).
3.6 Response to selection

To test the efficiency of GS versus traditional breeding, the genetic

gains expected to be obtained using GS, PS, and FS were compared.

Regarding the annual genetic gain in the combined region analysis, GS

was the highest, followed by FS, and PS was the lowest for height,
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straightness, and volume (Figure 5). The efficiency of GS was superior

to thatof the two traditional selectionmethods forDBH.GS showedan

annual genetic gain equivalent of 2.9–3.7 times PS and1.7–3.2 times FS

when 20% selection was conducted. In addition, the annual genetic

gain of GS was the highest at 0.09–1.24% volume. In addition, GS was

the most efficient of the three selection methods in the within-region

analysis (Supplementary Table 12). In the GS within the region, a

response to selection of up to 1.9% per year was obtained.
4 Discussion

Breeding woody plants is a time- and cost-intensive process

compared with that of crops, primarily because trees have a lengthy
A

B

D

E

F

G

H

C

FIGURE 1

GBLUP accuracy and predictive ability using 17 K (17,074) markers showing genotype variation and 2 K (2,000), 6 K (6,000), and 10 K (10,000)
markers randomly selected from them. (A, E) DBH (B, F) height (C, G) straightness and (D, H) volume. (A-D) accuracy (E-H) predictive ability. Bar and
error bar are mean and standard error of accuracy and predictive ability from 10-fold cross-validation.
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juvenile period, take longer to flower and produce seeds, and are

physically larger than crops. Progeny tests for forest trees require a

vast area and prolonged observation. In addition, as forest tree

utilization continues to diversify and global climate change

intensifies, the target traits of tree breeding are rapidly changing.

Therefore, accelerated breeding is crucial for forestry.

The major advantage of GS in forest trees is that the selection

efficiency can be improved by reducing the generation interval

through genomic information-based selection before the

phenotypes are expressed (Grattapaglia and Resende, 2011).

Moreover, GS can increase selection intensity, resulting in a

greater response to selection (Isik, 2014; Grattapaglia, 2017).

Therefore, if GS is introduced into the breeding of Korean red
Frontiers in Plant Science 07
pine, we can expect significant improvements by accelerating

generations at a relatively low cost through early and intense

marker-based selection rather than relying solely on progeny tests.
4.1 Heritability predictive accuracy

Heritability has been reported to have a significant effect on the

prediction accuracy of GS. The prediction accuracy of GS increased

as heritability increased in loblolly pine (Resende et al., 2012a), and

the square root of heritability was strongly correlated with GS

accuracy (Lian et al., 2014). However, in large training populations

of 1,000 or more, heritability has a relatively small effect on GS
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FIGURE 2

Accuracy and predictive ability by ABLUP and genomic selection models, including GBLUP and five Bayesian models. (A, E) DBH (B, F) height
(C, G) straightness and (D, H) volume. (A-D) accuracy (E-H) predictive ability. BRR, Bayesian ridge regression; BL, Bayesian LASSO; BA, Bayes A;
BB, Bayes B; BC, Bayes C. Bar and error bar are mean and standard error of accuracy and predictive ability from 10-fold cross-validation.
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accuracy compared to other factors (Grattapaglia and

Resende, 2011).

Heritability estimates obtained using the GRM in this study

were generally higher than those obtained using the NRM for each

region (Table 1). This difference is because the relationship

coefficients of the NRM may not accurately reflect the actual

relationships among individuals. In the present study, the kinship

coefficient of open-pollinated family progenies was assumed to be

0.25, based on the half-sib family assumption (Wright, 1922).

However, in the real world, kinship relationships among open-

pollinated siblings might be stronger because of various factors,

including self-pollination, self-half, half-sib, full-sib, and common

ancestry between female and male parents (Askew and El-

Kassaby, 1994).
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According to the correlation analysis, the prediction accuracy of

GS in the Korean red pine was strongly influenced by heritability

(Figure 4). Predictive ability showed a stronger correlation with

heritability than with accuracy because it was calculated by

phenotype, which implied the effects of environment and non-

additive genetic variance. Therefore, heritability must be considered

when performing GS on Korean red pines.
4.2 Model optimization

The essential stage of GS is training the model to estimate the

effects of all markers. This stage includes optimizing the model to

achieve the best prediction efficiency. We investigated the impact of
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FIGURE 3

GBLUP accuracy and predictive ability of within- and between-region analysis and combined region analysis for four traits. (A, E) DBH (B, F) height
(C, G) straightness and (D, H) volume. (A-D) accuracy (E-H) predictive ability. Bar and error bar are mean and standard error of accuracy and
predictive ability from 10-fold cross-validation.
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the marker set, predictive model, and training dataset on the

prediction accuracy of the model optimization for GS in Korean

red pine.

Ensuring the quality of the SNP array data is crucial because it

significantly affects the accuracy and precision of subsequent

analyses. Contaminated data may lead to false-positive or false-

negative results, underscoring the importance of controlling the

data quality (Yang et al., 2011). Although previous studies on GS in

forest trees have generally set a call rate criterion of 85–95%
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(Beaulieu et al., 2014; Cappa et al., 2019; Ukrainetz and

Mansfield, 2020a), the impact of marker quality on the accuracy

of GS has not been extensively explored. This study compared the

effects of marker set size and quality on GS accuracy in Korean red

pines (Supplementary Table 6). Notably, we found that including

markers of slightly lower quality but increasing the number of

markers was more effective in improving the accuracy of GS than

focusing only on high-quality markers. This may be because the

imputation of missing genotypes could compensate for the low call

rates of the markers. Previous studies have shown that adding

markers with low call rates can improve prediction accuracy when

the markers are not saturated in the whole genome (Rutkoski et al.,

2013). This suggests that the 500–1000 SNP markers in the array

used in this study may not be sufficient to capture the entire Korean

red pine genome. Another possible explanation for the higher

accuracy of the imputed data is that imputation can capture

associations among closely related individuals that might have

been missed due to missing data (Weigel et al., 2010; Rutkoski

et al., 2013).

The number of markers used in GS is a critical factor that affects

the prediction accuracy as well as the computational time required

for the analysis. Therefore, identifying the optimal number of

markers for GS analysis is important. Our study showed that the

MAF had a more significant impact on the prediction accuracy of

GS than the number of markers (Supplementary Tables 7, 8).

Specifically, for height in Chuncheon and Kyeongju, we observed
TABLE 2 Prediction accuracy for four traits using GBLUP of 10-fold cross-validation.

Trait Prediction accuracy a Region b

T C G K * N W Mean Combined

DBH AC 0.294 0.497 0.328 0.249 0.441 0.267 0.346 0.377

PA 0.111 0.29 0.18 0.049 0.322 0.188 0.19 0.124

G/A 1.022 1.948 0.864 1.117 4.197 3.23 – 1.223

G/H 0.257 0.447 0.303 0.217 0.436 0.452 – 0.483

Height AC 0.498 0.422 0.485 0.249 0.443 0.164 0.377 0.476

PA 0.441 0.264 0.413 0.19 0.32 0.062 0.282 0.091

G/A 2.664 1.189 1.633 – 4.41 0.94 – 1.159

G/H 0.519 0.421 0.487 0.253 0.399 0.191 – 0.282

Straight-
ness

AC
0.32 0.426 0.341 0.36 0.288 0.265 0.333 0.453

PA 0.102 0.167 0.206 0.212 0.18 0.168 0.173 0.185

G/A 2.258 2.626 1.048 0.981 0.981 4.038 – 1.558

G/H 0.267 0.351 0.345 0.333 0.286 0.314 – 0.762

Volume AC 0.338 0.485 0.363 0.242 0.439 0.231 0.35 0.421

PA 0.177 0.296 0.224 0.018 0.31 0.179 0.201 0.07

G/A 1.274 1.775 1.029 – 5.098 2.067 – 0.539

G/H 0.337 0.435 0.357 0.285 0.43 0.43 – 0.244
aAC, accuracy, r(GEBV, EBVim), EBVim is estimated using ABLUP with all phenotypic data; PA, predictive ability, r(GEBV, phenotype); G/A, Predictive ability of GBLUP against that of ABLUP;
G/H, Predictive ability of GBLUP against the square root of heritability.
bT, Taean; C, Chuncheon; G, Gongju; K, Kyeongju; N, Naju; W, Wanju.
* Values for height and volume were omitted because the predictive ability of ABLUP was negative.
FIGURE 4

Prediction accuracies according to heritability.
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a significant decline in the prediction accuracy and predictive ability

when the MAF was below 0.25 (2 K), suggesting that useful markers

for prediction were present between the MAF range of 0.05 and

0.25. This MAF range was consistent with the selection of markers

based on an MAF of 0.005–0.05 in previous studies on the GS of

forest trees (Beaulieu et al., 2014; Cappa et al., 2019; Ukrainetz and

Mansfield, 2020a). Therefore, our study supports the conclusion

that selecting markers based on an MAF of 0.05 is efficient for GS

analysis of Korean red pine, consistent with previous studies.

The GBLUP model was originally proposed as a predictive

model for GS, and subsequent developments have led to the

application of Bayesian models in various situations. However,

most studies on the quantitative traits of forest trees, including

spruce hybrids, blue gum (Eucalyptus globulus), maritime pine

(Pinus pinaster), lodgepole pine (Pinus contorta), and Japanese

cedar (Cryptomeria japonica), have not found any significant

advantage in a particular model (Ratcliffe et al., 2015; Isik et al.,

2016; Durán et al., 2017; Hiraoka et al., 2018; Ukrainetz and

Mansfield, 2020b). Factors such as overfitting the training

population and computing time should be considered when the

accuracies of all models are similar (Heslot et al., 2012). Considering

the similar accuracy and predictive ability of the six models tested in

this study and that GBLUP was nine times faster than the Bayesian

methods, we concluded that GBLUP is a more efficient choice for

the GS of Korean red pine.

Generally, the ratio of training set size to test set size did not

affect predictive accuracy (Supplementary Table 10), which was

consistent with the results for Norway spruce (Picea abies) (Chen

et al., 2018) and eucalyptus (Tan et al., 2017). This suggests that

other factors, such as population structure and environment, were
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more important than the ratio of the training set when the

population size was 200–700 for the GS of Korean red pine.
4.3 Environment effect on GS

The interaction between genotype and environment (G×E) refers

to the inconsistency in the expression of traits when individuals are

grown in different environments. Typically, there is greater interaction

when clones or families change ranks across different environments.

BecauseGSranks individuals according to theGEBV, consideringG×E

when developing GS strategies is important (Grattapaglia, 2017). The

predictive abilitywas lower in the between-region scenario than that in

the within-region scenario (Figure 3; Supplementary Table 11),

indicating a strong G×E in study population. This result was further

supported by the generally low type-B genetic correlation

(r12 =  sa12=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2
a1s 2

a2  
p

 ) and changing phenotype ranks of family

across six sites (Supplementary Table 13, Supplementary Figure 14).

Training across a range of environments may be beneficial to increase

the probability of including similar environments for new populations

in the training dataset. As a direction for further research, an approach

worth considering is the utilization ofmodels that take environmental

factors into account, as exemplified in some crop studies (Burgueño

et al., 2012; Jarquıń et al., 2014; Sukumaran et al., 2017).
4.4 The efficiency of GS in Korean red pine

Similar to many previous studies on black spruce (Picea

mariana), white spruce (Picea glauca), and lodgepole pine (Lenz
A B

DC

FIGURE 5

Annual genetic gain of genomic selection and two traditional selections by proportion selected for four traits. (A) DBH, (B) height, (C) straightness,
and (D) volume. GS, genomic selection; FS, family selection; PS, phenotypic selection.
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et al., 2017; Beaulieu et al., 2020; Lenz et al., 2020a; Ukrainetz and

Mansfield, 2020b), the predictive ability of GS models was higher

than those of FS and PS in Korean red pine, confirming that GS for

obtaining GEBV using DNA markers has an advantage in

phenotype prediction over traditional selection in forest trees.

The prediction accuracy of GS is influenced by population-

specific features, such as heritability, making direct comparisons

across different populations unreliable. Instead, standardization

using measures, such as the prediction accuracy of ABLUP or

heritability, can be used for more accurate comparisons. Within-

region analysis showed that the predictive ability of GBLUP

compared to ABLUP ranged from 0.864 to 5.098 (Table 2), which

was higher than the range of 0.80 to 0.95 reported for Norway

spruce (Chen et al., 2018). The predictive ability of GBLUP against

the square root of heritability was 0.19 to 0.76 (Table 2), which was

lower on average than the result for Norway spruce (higher than

0.69) but similar to the result for white spruce (Beaulieu et al., 2020;

Lenz et al., 2020b). Therefore, GS in Korean red pine was as efficient

as in previous forest tree studies.

The annual genetic gain comparison revealed that GS was more

efficient than the conventional selection methods (Figure 5).

Moreover, selection intensity in the GS was enhanced. Because

selection can be conducted at the seedling stage in GS, whereas PS

and FS are conducted at the age after phenotype expression, the

selection intensity could be increased in GS for the same number of

selected trees (Grattapaglia, 2017). Therefore, in terms of annual

genetic gain, the GS of Korean red pine was judged to be more

efficient than the two traditional selection methods in both within-

and combined-region scenarios.
4.5 Prospective of GS of Korean red pine

Statistical GS models such as GBLUP and Bayesian models are

constrained by various factors, such as their underlying assumption of

additive effects, limited capacity to capture non-linear relationships,

and the difficulty they encounter when handling extensive datasets

(Budhlakoti et al., 2022). Conversely, machine learning-based GS

methods provide a more versatile and scalable approach, adept at

capturing intricate non-linear relationships, rendering them

particularly well-suited for addressing various genetic scenarios

(Montesinos-López et al., 2021a; Montesinos-López et al., 2021b).

Given the substantial impact of environmental factors and the

prevalence of missing genotype data in this study, exploring deep

learning-based genomic selection is essential for future research

endeavors in GS of Korean red pine.
5 Conclusion

In this study, an efficient GS model for Korean red pine was

presented, and its selection efficiency was evaluated. As a result of

comparing various marker subsets, predictive models, and scenarios

to optimize the GS model in Korean red pine, training the model

with markers of MAF of 0.05 or more, using GBLUP as a predictive

model, and including as many environments as possible was
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effective. The GS of the Korean red pine was as efficient as that of

the other tree species. In addition, it was found to have a higher

response to selection than traditional PS and FS. Thus, GS is an

appropriate alternative to the traditional selection of Korean red

pines. The results of this study provide evidence that GS is effective

for forest trees even in challenging environments characterized by

mountainous terrain, low heritability, and widespread distribution

across diverse regions.
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SUPPLEMENTARY FIGURE 2

Distribution of phenotypes by test site and combined data. (A) DBH, (B)
height, (C) straightness, and (D) volume. Box colors and red X symbols

indicate the median and mean of phenotypes respectively in each site.

Alphabets in box indicate the Games-Howell post-hoc analysis group. T,
Taean; C, Chuncheon; G, Gongju; K, Kyeongju; N, Naju; W, Wanju.

SUPPLEMENTARY FIGURE 3

Heatmaps of coefficient of (A) numerator relationship matrix and (B) genomic
realized relationship matrix ordered by open-pollinated family and (C)
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distribution of GRM coefficients according to their corresponding NRM
coefficients. Symbol X indicates the mean of the genomic realized relationship

coefficient. GRM was prepared with marker filtering according to the default

threshold formarker quality suggested by the SNP calling program,MAF of 0.05,
and classifications of high resolution (1,164 SNPs) in this figure.

SUPPLEMENTARY FIGURE 4

Breeding values estimated using ABLUP by site for four traits. (A) DBH, (B)
height, (C) straightness, and (D) volume. T, Taean; C, Chuncheon; G, Gongju;
K, Kyeongju; N, Naju; W, Wanju.
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