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Detecting and localizing standing dead trees (SDTs) is crucial for effective forest

management and conservation. Due to challenges posed bymountainous terrain

and road conditions, conducting a swift and comprehensive survey of SDTs

through traditional manual inventory methods is considerably difficult. In recent

years, advancements in deep learning and remote sensing technology have

facilitated real-time and efficient detection of dead trees. Nevertheless,

challenges persist in identifying individual dead trees in airborne remote

sensing images, attributed to factors such as small target size, mutual

occlusion and complex backgrounds. These aspects collectively contribute to

the increased difficulty of detecting dead trees at a single-tree scale. To address

this issue, the paper introduces an improved You Only Look Once version 7

(YOLOv7) model that incorporates the Simple Parameter-Free Attention Module

(SimAM), an unparameterized attention mechanism. This improvement aims to

enhance the network’s feature extraction capabilities and increase the model’s

sensitivity to small target dead trees. To validate the superiority of

SimAM_YOLOv7, we compared it with four widely adopted attention

mechanisms. Additionally, a method to enhance model robustness is

presented, involving the replacement of the Complete Intersection over Union

(CIoU) loss in the original YOLOv7 model with the Wise-IoU (WIoU) loss function.

Following these, we evaluated detection accuracy using a self-developed dataset

of SDTs in forests. The results indicate that the improved YOLOv7 model can

effectively identify dead trees in airborne remote sensing images, achieving

precision, recall and mAP@0.5 values of 94.31%, 93.13% and 98.03%,

respectively. These values are 3.67%, 2.28% and 1.56% higher than those of the

original YOLOv7 model. This improvement model provides a convenient solution

for forest management.
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1 Introduction

Trees are essential for maintaining the ecological balance within

forest ecosystems (Manning et al., 2006; Nadrowski et al., 2010).

Diseases and pests are significant factors contributing to the

widespread death of trees (Bernal et al., 2023; Luo et al., 2023;

Wang J. et al., 2023). Regularly inspecting standing dead trees

(SDTs) in the forest to determine the causes of their death facilitates

early detection and the mitigation of potential pest and disease

issues. Therefore, it is essential to accurately and efficiently identify

and monitor dead trees in forest areas. Traditional SDTs inventory

methods often rely on rangers collecting coordinate location

information in the field. However, this approach is hindered by

challenging mountainous terrain and road conditions. Field

trekking for inventory purposes becomes difficult, costly, and

time-consuming (Butler and Schlaepfer, 2004).

To complement field trekking, low- and medium-resolution

satellite remote sensing images have been used to detect the extent

of forest infestation in localized areas (Eklundh et al., 2009; Coops

et al., 2010; Meng et al., 2016). However, these studies have

primarily focused on area-based detection, lacking the ability to

identify disease-infected dead trees at the single-tree scale. With

advancements in remote sensing platforms and technologies, the

use of high-resolution satellite remote sensing images (e.g.,

QuickBird, IKONOS) and aerial images has made it possible to

detect single tree. By combining these images with canopy detection

methods, more accurate identification of dead trees, even in

mountainous areas with challenging terrain and rugged roads, has

become achievable (Hicke and Logan, 2009; Wang et al., 2015;

Windrim et al., 2020). While Light Detection and Ranging (LiDAR)

technology can provide precise information on the location and

height of individual SDTS in forests, it comes with a high cost for

data collection (Chen et al., 2011). On the other hand, high-

resolution optical remote sensing images offer several advantages,

such as easy data collection and wide application, making them a

prominent focus for research on single-tree identification

techniques (Han et al., 2022; Lee et al., 2023; Zheng et al., 2023).

With the proposal and development of machine learning

methods, they have been utilized by scholars to detect dead trees

using high-resolution remote sensing images (Maxwell et al., 2018).

These methods involve the application of various machine learning

algorithms such as Support Vector Machine (SVM), Random Forest

(RF), k-Nearest Neighbor Algorithm (K-NN), Clustering Algorithm

and Artificial Neural Network (ANN) for SDTs detection (Celik,

2009; Lee et al., 2019; Miltiadou et al., 2020). However, the existing

methods often rely on manual design and extraction of image

features, which can limit their accuracy and robustness,

particularly in complex scenarios such as tree occlusion or when

dealing with similar colors of features. Accurately detecting dead

trees using machine learning methods becomes challenging due to

these limitations.

In recent years, deep learning has made significant

advancements, leading to the development of powerful object

detection models based on convolutional neural net-works
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(CNN). Compared to traditional machine learning methods, deep

learning models have the ability to automatically learn image

features during the detection of SDTs (Farias et al., 2018). They

can also synthesize contextual information and semantic

relationships within the image, enhancing detection accuracy (Lei

et al., 2021; Zhang et al., 2022). The end-to-end training approach

simplifies the dead trees detection system and has the potential to

improve overall performance and efficiency. Deep learning

algorithms based on CNN have demonstrated advantages over

other methods, leading researchers across various fields to explore

their application (Voulodimos et al., 2018; Naga Srinivasu et al.,

2023). In the field of forestry, deep learning has been widely used for

tasks such as forest resource management, soil analysis, tree

detection and classification (Srivastava et al., 2021; Wang et al.,

2021). Scholars have conducted research on dead tree detection

based on deep learning (Chiang et al., 2020; Li et al., 2022; Wang

et al., 2022). They primarily focus on detecting larger or densely

packed targets, with limited studies addressing the detection of

individual dead trees at a smaller scale. However, there are several

challenges in achieving SDTs detection at the single-tree scale: 1)

Multi-scale problem: SDTs exhibit variations in size dimensions

and shapes, making accurate localization challenging. The detection

models need to account for these multi-scale variations to

accurately identify dead trees. 2) Occlusion problem: In remote

sensing images, the presence of living trees can obscure SDTs,

making it difficult to distinguish their boundaries and features,

which could lead to missed detections. 3) Background complexity:

Remote sensing images may contain complex backgrounds,

including houses, land, bare rocks or other elements. This

complexity can result in misidentifications, where the background

is mistakenly detected as SDTs.

Deep learning-based object detection algorithms can be broadly

categorized into two types based on the presence of a candidate

region extraction step: two-stage algorithms, exemplified by Faster R-

CNN, and single-stage algorithms, represented by You Only Look

Once (YOLO). While two-stage algorithms, like Faster R-CNN,

typically exhibit slower detection speeds due to their two-step

nature, they often achieve higher detection accuracy. On the other

hand, YOLO, with its continuous improvements in network

architecture, demonstrates advanced performance in both detection

accuracy and speed (Sirisha et al., 2023). This paper presents an

improved algorithm based on the You Only Look Once version 7

(YOLOv7) model to address the challenges of detecting small targets,

mutual occlusion and complex backgrounds in optical remote

sensing images for automated SDTs detection. The contributions of

this paper can be summarized as follows:
1. Introducing the Simple Parameter-Free Attention Module

(SimAM) to enhance the model’s feature extraction

capabilities for small target dead standing trees.

2. Replacing the Complete Intersection over Union (CIoU)

loss with Wise-IoU (WIoU) improves the robustness and

detection accuracy of the model by focusing on ordinary

quality bounding box.
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Fron
3. Analyzing the performance metrics of the proposed

improved model, including precision, recall, mAP@0.5

and Frames Per Second (FPS), against a benchmark model.

4. Discussing the research advancements in SDTs detection

using deep learning methods, along with the limitations of

this study and future research directions.
The paper is structured as follows: the introduction offers the

research area, outlines the authors’ contributions and elucidates the

workflow of the model detection. Section 2 details the experimental

materials and introduces the proposed model for SDTs detection.

Section 3 showcases the experimental results. Discussion and

conclusions are presented in Section 4 and Section 5.

The workflow diagram of SDTs detection model based on the

improved YOLOv7 algorithm is shown in Figure 1. First, the

collected remote sensing images are preprocessed, including three

parts: image cropping, screening and labeling, and data

enhancement. Then the images are fed into the improved

YOLOv7 network for training to obtain the training model. The

SDTs in the test set of images are detected with the training model,

and finally the model detection effect is comprehensively evaluated

by combining various evaluation indexes and visualization results.
2 Materials and methods

2.1 Study areas and dataset

The study area for this experiment is the Experimental Forestry

Farm of Mao’er Mountain, located in the southeastern part of

Heilongjiang Province, China. It is situated in the northwestern part

of Shangzhi City, on the western slope of Zhang Guangcailing,

within the geographic coordinates of 45°16′ to 45°24′N and 127°30′
to 127°40′E (Figure 2). The Forestry Farm is divided into ten sizing

zones, characterized by numerous mountainous hills with gentle

slopes and elevations ranging from 200 to 600 meters above sea

level. The climate in Mao’er Mountain belongs to the temperate

continental monsoon climate. It experiences long and dry winters,

short and warm summers, concentrated rainfall, frequent spring

droughts, and occasional fall freezes. The area has an annual frost-

free period of approximately 125 days and an average annual
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precipitation of around 700mm. Being the source of the Ash

River and the Ujimi River, the area is fertile, and the soil

primarily consists of dark brown loam. The soil is rich in trace

elements and organic matter, accounting for approximately 68.18%

of the forest area. Since its establishment, the Mao’er Mountain

Experimental Forestry Farm has developed significant forestry land,

covering an area of 26,000 hectares, with a forest coverage rate of

83.29%. It possesses abundant forest resources, playing a crucial role

in maintaining the ecological balance of the region.

Due to the limited scope of existing research on SDTs and the

absence of publicly available datasets, we conducted this study using a

self-built dataset. In this study, the study area was photographed and

scanned using a high-resolution CCD sensor (DigiCAM-60) carried by

the LiCHy system to obtain 27.4G of raw remote sensing image data.

The flight altitude was 1000m and the day of shooting was clear and

cloudless. Table 1 shows the detailed parameters of the CCD sensor.

To prepare the original RGB images from the CCD sensor for

target recognition, a series of preprocessing steps are performed.

First, considering that the mismatch of aspect ratio may affect the

training effect of the model, the original image is cropped to 10824

RGB images of 3*1024*1024 uniform size using ArcGIS software.

Secondly, not every image in the dataset contains SDTs, and

images with dead trees have significantly fewer instances compared

to healthy trees. Considering the balance of samples in the object

detection task and the limited computational resources, in order to

allow the model to focus more on the core objective, which is the

detection of dead trees, we need to filter out images containing

SDTs. From the entire dataset, 1928 im-ages containing dead trees

are selected. Using the labelimg software, we annotated dead trees in

the images to create labels in VOC format for subsequent

comparative experiments. These VOC format labels were then

converted into YOLO format. The study primarily focused on

detecting dead tree crowns using RGB images. During annotation,

the focus was on distinguishing dead trees from the background,

requiring marking only the crowns of dead trees. By combining

visual interpretation and on-site surveys, specific rules were

established: the crown of an individual tree was the target, and if

all its tree tops showed signs of death, it was labeled as a dead tree

(category “0”). The labeling result is shown in the Figure 3, the

annotation file of image is used to represent the label category and

the coordinates of the rectangular marking box.
FIGURE 1

The workflow diagram of SDTs detection model.
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To enhance the model’s robustness and generalization ability

while avoiding overfitting, data augmentation techniques are

applied. The dataset is expanded through random flipping,

mirroring, and luminance adjustments. This augmentation

process generates a total of 9640 dataset samples. Figure 4

showcases some of the samples after data enhancement. The

labeled dataset is then di-vided into training, validation, and test

sets in a ratio of 6:2:2. This division results in a total of 5784 training

set samples, 1928 validation set samples, and 1,928 test set samples

for this experiment.
2.2 Related work

2.2.1 YOLOv7
This paper presents an algorithm based on the YOLOv7 for

detecting dead standing trees in large forests. The algorithm aims to

enable rangers to accurately locate dead standing trees quickly,

which is crucial for the maintenance of forest resources and

biodiversity. Given the requirements for accuracy and real-time
Frontiers in Plant Science 04
performance in SDTs detection, the YOLOv7 model is chosen as the

foundation for detecting and locating dead trees.

The YOLOv7 (Wang C. et al., 2023) comprises three basic

models with increasing parameter counts: YOLOv7-tiny for edge

GPU, YOLOv7 for normal GPU, and YOLOv7-w6 for cloud GPU.

Additionally, there are four extended models based on the basic

models, namely YOLOv7-X, YOLOv7-E6, YOLOv7-D6, and

YOLOv7-E6E. The model structure of YOLOv7 is illustrated in

Figure 5. The overall detection logic of YOLOv7 is similar to that of

YOLOv4 and YOLOv5.

The YOLOv7 model consists of four main components: input,

backbone, neck and head. The input component performs

preprocessing operations such as online data enhancement and

resizing on the original image to obtain a 640*640*3 RGB image. In

Figure 5, we use the abbreviation ‘Cat’ to represent ‘concatenate,’which

is employed to concatenate the outputs of multiple feature maps or

branches along the channel axis. This is done to provide a richer feature

representation and is commonly used for multi-scale information

fusion. The backbone component is responsible for feature extraction

from the input RGB image. In the YOLOv7 model, the backbone

utilizes the ELAN module, which controls the shortest and longest

gradient paths to achieve more effective learning and convergence. It

generates three feature maps that serve as inputs to the neck.

The neck component is responsible for multi-scale feature

fusion. It introduces the SPPCSPC module and optimizes the

PAN module. The SPPCSPC module combines the Spatial

Pyramid Pooling (SPP) structure with the Cross Stage Partial

(CSP) structure. The role of the SPP structure is to obtain

different receptive fields through max-pooling, and the role of the

CSP structure is to divide the input feature map into two parts. Each

part is separately processed through a subnetwork and in the

subsequent layer. The two parts of the feature map are then
TABLE 1 Main parameters of CCD sensors.

Main
parameters

Parameter
value

Main
parameters

Parameter
value

Frame Size 8956*6708 Pixel Size 0.25m*0.25m

Imaging
Sensor Size

3ns Bit Depth 16bits

FOV 56.2° Focal Length 50mm

Ground
Resolution

0.12m
BA

FIGURE 2

Location of the study area; (A) Map of Heilongjiang Province, China, with red dots representing the study area. (B) Geographic location of the
study area.
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concatenated as the input for the next layer. The SPPCSPC module

combines the advantages of both structures by parallel processing

the features into two parts. Only one part undergoes SPP structure

processing, and the final step involves concatenating the two parts

to reduce model computation and improve training speed. The

PAN module further enhances the model’s learning capability by

introducing an ELAN-W structure, which is similar to that used in

the backbone. This structure improves learning without changing

the gradient paths. The PAN module efficiently fuses multi-scale

feature maps, enabling the model to learn and capture information

at different scales effectively.

The head component is responsible for predicting image

features. It incorporates the RepConv design, which utilizes a

heavily parameterized convolutional architecture to enrich the

gradient diversity of feature maps at different scales. This reduces

model complexity, enhances the model’s prediction ability, and

predicts the bounding box location and confidence information of

SDTs using three feature maps.

2.2.2 Attention mechanisms
When performing a visual task, human vision will quickly focus

towards important regions and prioritize limited attention to
Frontiers in Plant Science 05
process the critical part of the task, researchers propose to process

data more efficiently by incorporating an attention mechanism

based on this characteristic of human vision. In recent years, the

attention mechanism, as a plug-and-play and very effective module,

has been widely used in a variety of deep learning tasks such as

natural language processing, computer vision and data prediction

(Niu et al., 2021).

The combination of attention mechanism and convolutional

neural network is the focus of research in the field of computer

vision, and the addition of the attention mechanism enables the

model to focus its attention on the object region of the image (Kim

and Verghese, 2012), differentiating from processing the whole

image, focusing on extracting the object region features, and

effectively improving the model performance. In terms of the

object detection task in the field of computer vision, the

introduction of the attention mechanism can make the object

feature extraction more adequate, reduce the interference of

the background image and negative samples (Chai et al.,

2023), and realize the effective improvement of the model

detection performance.

In this paper, several experiments are conducted with the

YOLOv7 model, and it is found that the model is not suitable for
FIGURE 4

Some samples after data enhancement.
BA

FIGURE 3

Data annotation; (A) label of SDTs; (B) annotations files of image.
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feature extraction of small targets in remote sensing images, which

exhibits issues of leakage and misdetection when detecting some

SDTs. Therefore, the attention module is added to the YOLOv7

model to improve its characterization ability and further improve

the model detection accuracy.

2.2.3 Bounding box regression loss function
Traditional target localization usually uses the Mean Square

Error (MSE) loss function to compute the coordinates of the

predicted bounding box centroid as well as the loss of width and

height (Redmon et al., 2016), which directly estimates the offset and

is susceptible to the interference of outliers and poor robustness. To

address the limitations of traditional BBR methods, researchers

have proposed several improved loss functions. Ross Girshick

introduced the Intersection over Union (IoU) loss (Girshick,

2015), which calculates the intersection and concurrency ratio

between the predicted and true bounding boxes. This loss

function reduces the impact of large-scale bounding boxes on the

model’s loss. However, it lacks attention to the non-overlapping

area between the two bounding boxes. To overcome this, the

Generalized-IoU (GIoU) loss (Rezatofighi et al., 2019) was

proposed, which uses the area of the smallest bounding box that

encloses both boxes as the denominator, providing a better measure

of overlap. The Distance-IoU (DIoU) loss incorporates the distance

between the centroids of the two bounding boxes into the loss

function, further improving the detection performance. Building
Frontiers in Plant Science 06
upon the DIoU loss, the Complete-IoU (CIoU) loss incorporates

the aspect ratio into the calculation of the loss function (Zheng et al.,

2022). This enhancement improves the convergence speed of model

training and the accuracy of bounding box detection.

In the YOLOv7 model, the CIoU loss is used for BBR. However,

it does not fully consider the balance between high and low-quality

examples. To reduce the impact of low-quality example regression

on the detection performance, this paper adopts a more balanced

gradient allocation method. By focusing the loss function mainly on

ordinary quality bounding boxes, the detection performance of the

model is further improved.
2.3 Improved YOLOv7 SDTs
detection model

2.3.1 SimAM attention mechanism
SDTs detection is challenging due to the complexity and

variability of target scale and picture background. Remote sensing

images often contain irrelevant features like roads and houses,

which can interfere with dead trees detection. Moreover, the

distribution of dead trees in the images can be diverse, requiring

high-performance detection and localization by the model.

Taking inspiration from Li, Y (Li et al., 2023), who proposed the

Attention-YOLOv4 algorithm to reduce background interference in

detecting small target traffic signs, this paper proposes the
FIGURE 5

Structure of YOLOv7 network.
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introduction of the SimAM module (Yang et al., 2021) to improve

the model’s anti-interference ability in dead trees detection. The

SimAM module, based on visual neuro-science theory, optimizes

the design of the energy function to compute different neuron

weights. It provides a fast closed-form solution for the optimized

energy function, enhancing the feature extraction capability of the

model without introducing additional parameters or increasing

computational complexity.

The minimum energy function effectively reduces the

computational amount while calculating the corresponding

weights of each neuron in the dead trees feature map and

discriminates the linear differentiability among neurons, the

minimum energy function can be expressed by Equations 1–3:

e*t =
4(ŝ 2 + l)

(t − m̂ )2 + 2ŝ 2 + 2l
(1)

m̂ =
1
Mo

M

i=1
xi (2)

ŝ 2 =
1
Mo

M

i=1
(xi − m̂ )2 (3)

In the equation, t represents the target neuron in a single

channel of the feature map, x represents the other neurons, M

represents the number of neurons in a single channel, l represents

the canonical term, and m̂ and ŝ 2 represent the mean and variance

of the other neurons in a single channel, respectively. According to

the above equations, it can be seen that the smaller the minimum

capability e*t is, the more linearly separable the target neuron is from

other neurons in a single channel, and the more critical it is for

model feature extraction. The weights corresponding to each

neuron in the feature map can be obtained from 1=e*t . Finally, the

model undergoes overall refinement through the scaling operator

(Equation 4).
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~X = sigmoid
1
E

� �
☉X (4)

Where E groups the minimum energy of all neurons, Sigmoid

function is used to prevent the value of E from being too large. The

structure of SimAM is shown in Figure 6. The feature map is fed

into the SimAM attention mechanism to get the weights of each

neuron and then normalized. Then each neuron of the original

feature map is multiplied by the corresponding weights to obtain

the output feature map.

2.3.2 Improved YOLOv7 model with introduction
of SimAM attention mechanism

SimAM is a plug-and-play module that enhances the network’s

representational ability by computing 3D weights, unlike channel and

spatial attention mechanisms that treat each neuron equally. In the

YOLOv7 network, the SimAM attention mechanism is incorporated

into backbone and neck feature extraction network. This module aims

to focus more on the detailed features of SDTs and improve the

model’s detection performance. The structure of the YOLOv7 network

with the SimAM attention mechanism is depicted in Figure 7.

2.3.3 Wise-IoU loss function
For SDTs detection using the YOLOv7 model, the CIoU is

utilized to calculate the BBR loss of the target. Figure 8 shows the

parameter information when the true and predicted bounding

boxes are overlapped, and Equation 5 is used to calculate the

IoU loss. Equation 6 is constructed to represent the BBR loss,

where the penalty term Ri is used to measure the effect of geometric

factors on the BBR loss. Zheng, Z et al. (Zheng et al., 2022)

simultaneously considered three geometric elements, namely the

intersection and concurrency ratio of the two bounding boxes, the

distance from the centroid and the aspect ratio. They constructed

both LCIoU and RCIoU (as illustrated in Equations 7, 8). The

equations are shown as follows.
FIGURE 6

SimAM attention mechanism.
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LIoU = 1 − IoU = 1 −
WiHi

Su
(5)

Li = LIoU +Ri (6)

LCIoU = LIoU +RCIoU (7)

RCIoU =
(x − xgt)

2 + (y − ygt)
2

W2
g +H2

g
+ av (8)
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a =
v

LIoU + v
,  v =

4
p2 tan−1

w
h
− tan−1

wgt

hgt

 !2

(9)

In Equation 9, a denotes the balance parameter and v   is used to

measure the consistency of the aspect ratio. Labeling inaccuracies will

inevitably occur when labeling a large amount of data, resulting in the

appearance of some low-quality examples, and the computation of

the localization loss will not be able to reduce the competitiveness of

the low-quality examples if the geometric factors are taken into

account, which affects the generalization performance of the model.

To mitigate the impact of low-quality examples, this paper replaces
FIGURE 7

SimAM module embedded design.
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the CIoU loss function in the YOLOv7 network with theWIoUv3 loss

function (Tong et al., 2023). By using WIoUv3, the interference

caused by low-quality examples during model training is reduced,

improving the overall performance of the model. The following

equations show the calculation of the WIoUv1 loss based on

attention (as illustrated in Equations 10, 11).

LWIoUv1 = RWIoULIoU (10)

RWIoU = exp
(x − xgt)

2 + (y − ygt)
2

(W2
g +H2

g )*

 !
(11)

Among them,RWIoU can increase the model’s focus on common

examples, and * denotes the separate separation of the length Wg  

and width Hg of the enclosing box, which serves to barely affect the

convergence of the RWIoU even if geometrical factors such as aspect

ratios are not taken into account.

Based on the dynamic non-monotonic focusing mechanism, the

degree of difference of the anchor box is denoted by b (as illustrated

in Equations 12). The mechanism primarily focuses on prioritizing

common examples, reducing the gradient gain allocated to high- and

low-quality examples, and preventing larger gradients of low-quality

examples from interfering with the BBR. The coefficient r   is set to

construct the WIoUv3 loss function (as illustrated in Equations 13).

b =
L*IoU
LIoU

∈ ½0, +∞) (12)

LWIoUv3 = rLWIoUv1, r =
b

dab−d (13)

When b = d r = 1 b varies with LIoU , allowing the gradient gain

assignment criterion to adapt accordingly. This ensures thatWIoUv3

can dynamically adjust the gradient gain assignment, giving greater

attention to common examples in a timely manner.
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Setting the momentum m bravely improves the focus on

common examples early in model training (as illustrated in

Equations 14), n  represents the total number of batches during

training, and t  denotes the number of epochs at which the IoU loss

approaches convergence.

m = 1 −
ffiffiffiffiffiffiffiffiffi
0:05tn

p
(14)

By increasing the model’s focus on average-quality examples, the

interference caused by low-quality examples to the BBR is reduced,

resulting in a more rapid and smooth BBR convergence to enhance

the model’s detection performance.
2.4 Experimental environment and
training parameter

The experimental environment and parameter settings used to

train the model during the experiment are shown in the Table 2.

Model training from scratch will lead to slow convergence and

poor results. In this paper, pretrained weights were used to

accelerate the convergence of the model during training when

experiments were conducted using the SDTs dataset. The initial

learning rate is set to 0.001, the cosine fire reduction strategy is used

to adjust the learning rate, the adaptive size of the image is set to

640*640, and 300 epochs of training are performed.
2.5 Evaluation metrics

The model detection performance was evaluated by comparing

the magnitude of precision (P), recall (R), mean average precision

(mAP) and frames per second (FPS) for detecting SDTs images

before and after the model improvement, while ensuring that the

experimental environments were the same. The precision represents
FIGURE 8

Parameter information when true and predicted bounding boxes are overlapped,the overlapped area can be expressed as Su = wh +wgthgt −WiHi.
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the proportion of positive targets among all targets predicted by the

model, and the recall represents the proportion of positive targets

among all ground-truth targets predicted by the model (as

illustrated in Equations 15, 16).

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

According to the true target bounding boxes and predicted

target bounding boxes, they are categorized into true positive cases,

false positive cases, false negative cases, and true negative cases, and

their corresponding numbers of detection boxes are denoted by TP,

FP, FN, and TN, respectively. Neither precision nor recall metrics

alone can show the detection capability of the model.

In order to comprehensively evaluate the detection performance

of the model, the P-R curve is drawn with R as the vertical

coordinate and P (the maximum P value is taken when R is the

same) as the vertical coordinate, and the area surrounded by the

curve and the coordinate axis is recorded as the average precision

(AP) of single-category object detection. The mean Average

Precision (mAP) represents the mean of AP of each category,

which is calculated by Equations 17, 18:

AP =
Z 1

0
PdR (17)
Frontiers in Plant Science 10
mAP = o
N
i APi
N

(18)

Where N is the number of target categories, in this paper, the

detection target category is only SDTs, so AP = mAP in

the following.
3 Results

3.1 Comparison of different
attention mechanisms

To validate the effectiveness of the improved algorithm with the

introduction of the attention mechanism, this paper employed the

SimAM attention mechanism and compared it with another simple

yet effective module, the Parameter-Free Average Attention Module

(PfAAM)(Körber, 2022). We further compared these mechanisms

to the Squeeze-and-Excitation Networks (SE) channel attention

mechanism (Hu et al., 2018), the hybrid attention mechanism

Convolutional Block Attention Module (CBAM) (Woo et al.,

2018), and Coordinate Attention (CA) (Hou et al., 2021), which

incorporates location information into channel attention. In order

to ensure a rigorous and effective comparison, different attention

mechanisms are added to the same network position while keeping

the rest of the network structure unchanged. The experimental

environment and model training parameters are kept consistent,

and the weights are loaded for testing and comparison after

training. The experimental results are presented in the Table 3.

From Table 3, it can be observed that the CBAM_YOLOv7

model has the highest number of parameters compared to the

YOLOv7 model, with an increase of 0.42M. It shows a slight

improvement of 0.89% in precision, a decrease of 1.22% in recall,

a decrease of 0.11% in mAP@0.5, and a significant reduction in

detection speed by 43 FPS. The SE_YOLOv7 and CA_YOLOv7

model exhibits improved performance in all metrics except for a

decrease in detection speed and an increase in the number of

parameters. The SE_YOLOv7 model shows a 1.01% increase in

precision value, a 0.68% increase in recall value, and a 0.56%

increase in mAP@0.5 value compared to the YOLOv7 model. The

CA_YOLOv7 model shows a 0.82% increase in precision value, a

1.16% increase in recall value, and a 0.66% increase in mAP@0.5
TABLE 3 Comparison of detection results of different attention mechanisms.

Attention Mechanisms
Parameters

(M)
P(%) R(%)

mAP
@0.5 (%)

mAP
@0.5:0.95

(%)
FPS

SE CBAM CA PfAAM SimAM

35.47 90.64 90.85 96.47 73.17 122

√ 35.8 91.65 91.53 97.03 73.58 105

√ 35.89 91.53 89.63 96.36 72.62 79

√ 35.76 91.46 92.01 97.13 74.03 93

√ 35.47 91.64 92.73 97.29 74.08 109

√ 35.47 92.89 92.03 97.48 74.14 112
fro
TABLE 2 Experimental environment and training parameter.

Name Specification Name Value

CPU
Intel(R) Xeon(R)

Gold 6354
Optimizer Adam

GPU
NVIDIA GeForce

RTX 3090
Epochs 300

Operating System Ubuntu 18.04 Learning Rate 0.001

Computing
Platform

CUDA 11.1 Weight Decay 0.0005

Framework Pytorch 1.8.2 Momentum 0.937

Language Python 3.8 Batch Size 16
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value compared to the YOLOv7 model. Without adding more

parameters, PfAAM_YOLOv7 demonstrated improvements of 1%

in precision value, 1.88% in recall value, and 0.82% in mAP@0.5

value compared to YOLOv7. The SimAM_YOLOv7 model

demonstrates optimal performance in all metrics, enhancing

precision by 2.25%, recall by 1.18%, and mAP@0.5 by 1.01%.

Additionally, the SimAM_YOLOv7 model achieves the highest

detection speed among the five models with attention

mechanisms, reaching 112 FPS.

Through the comparison and analysis of the experimental

results, it can be concluded that the SimAM_YOLOv7 model

exhibits better detection performance compared to the original

YOLOv7 model, as well as the SE_YOLOv7, CBAM_YOLOv7,

CA_YOLOv7 and PfAAM_YOLOv7 models, except for a slightly

lower detection speed compared to the original YOLOv7 model.

Furthermore, to further verify the impact of introducing different

attention mechanisms on the model’s detection performance, the

detection results are visualized and compared by loading images

from the test set for each model. Some detection results are shown

in Figure 9.

From the images in Group (A), it can be observed that for small

target images, YOLOv7, SE_YOLOv7, CBAM_YOLOv7 and

CA_YOLOv7 all exhibit instances of leakage detection, with one

target missed detection. CBAM_YOLOv7 mistakenly identifies a

tree with a similar color to the target as a dead standing tree, while

PfAAM_YOLOv7 incorrectly identifies one dead tree as two

separate instances. In Group (B), YOLOv7 misses two targets,

and the visualization results indicate that even after the

introduction of SE, CBAM and CA attention mechanisms, there

are still instances of leakage when detecting small targets, with two

targets missed detection, respectively. After the introduction of the

PfAAM attention mechanism, three targets were missed. However,

when using the SimAM_YOLOv7 model to detect SDTs, it

successfully detects all ground-truth targets in the two test

images. This suggests that it is capable of achieving

comprehensive and accurate detection for images with complex

backgrounds, similar colors and small targets.
3.2 Comparison of loss functions

The impact of different BBR loss functions on model

convergence is evaluated un-der identical experimental conditions

and model training parameters. In this paper’s experiments, the

CIoU and WIoU losses are introduced into the YOLOv7 model for

comparison. The YOLOv7 model with the CIoU loss is denoted as

YOLOv7-CIoU, while the YOLOv7 model with the improved loss

function is referred to as YOLOv7-WIoU. The change curves of the

two types of bounding box localization losses during the training

process are depicted in Figure 10.

From the Figure 10, it is evident that both the CIoU loss and the

WIoU loss reach convergence before 10 epochs during the training

process. However, the WIoU loss converges faster and exhibits

greater stability compared to the CIoU loss. Starting from the 87th
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epoch, the BBR loss of YOLOv7-WIoU becomes lower than that of

YOLOv7-CIoU, and the discrepancy between the two loss values

further amplifies in subsequent training. Eventually, at the end of

training, the BBR loss values for YOLOv7-WIoU and YOLOv7-

CIoU are 0.07537 and 0.07556, respectively, indicating a reduction

of 0.00019 in the WIoU loss compared to the CIoU loss. In

summary, this experiment validates the effectiveness of utilizing

the WIoU loss and demonstrates its significance in enhancing the

model’s performance.
FIGURE 9

Ground-truth and prediction result.
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3.3 Ablation experiments

The improvement algorithm proposed in this paper focuses on

two key enhancements. To further evaluate the algorithm’s

performance, we integrated SimAM into the backbone and neck

of the YOLOv7 model for separate comparisons. Ablation

experiments are conducted by loading the weights of the trained

model with different improvement points into the network. The

experiments are divided into six groups, controlling variables while

ensuring that the experimental environment and training

parameters remain unchanged. The resulting experimental

outcomes are presented in the Table 4.

The experimental results of integrating SimAM into the

YOLOv7 backbone and neck, respectively, indicate that both

embedding methods enhance the model’s detection performance.

The addition of SimAM to the backbone significantly enhanced the

model’s detection accuracy. Specifically, the precision, recall and

mAP@0.5 values increased by 0.61%, 0.1%, and 0.21% respectively,
Frontiers in Plant Science 12
compared to the improvements observed in the neck. However, it is

clear that embedding SimAM in both backbone and neck is more

effective in improving the detection performance.

The SimAM_YOLOv7 model, integrating SimAM into both the

backbone and neck of the YOLOv7 architecture, improves

performance across all metrics compared to the original YOLOv7

model, except for a reduction in detection speed by 10FPS. It

achieves this improvement by extracting feature information

through calculating the corresponding weights of each neuron in

the feature map. By replacing the CIoU loss with the WIoU loss in

YOLOv7, the convergence speed of the model is improved, and all

performance indexes show improvement compared to the original

YOLOv7 model. Specifically, the precision, recall and mAP@0.5

values are enhanced by 2.62%, 0.75%, and 0.87% respectively, while

the detection speed improves by 1 FPS.

Furthermore, when both the SimAM parameter-free attention

mechanism and the WIoU loss are introduced, the proposed

algorithm demonstrates significantly superior performance
FIGURE 10

Loss function iteration comparison.
TABLE 4 Results of ablation experiments.

YOLOv7
SimAM

WIoU P(%) R(%)
mAP

@0.5(%)
mAP

@0.5:0.95(%)
FPS

Backbone Neck

√ 90.64 90.85 96.47 73.17 122

√ √ 92.73 91.94 97.16 73.38 115

√ √ 92.12 91.84 96.95 73.20 114

√ √ √ 92.89 92.03 97.48 74.14 112

√ √ 93.26 91.6 97.34 74.77 123

√ √ √ √ 94.31 93.13 98.03 74.94 108
fro
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compared to the other models. Compared to the original YOLOv7

model, the proposed algorithm shows improvements of 3.67% in

precision value, 2.28% in recall value, and 1.56% in mAP@0.5 value,

while the detection speed decreases by 14 FPS. These results

effectively meet the real-time and accuracy requirements for SDTs

detection. Figure 11 presents some detection results from the

YOLOv7 model and the proposed model in this paper on the

SDTs dataset.

According to the Figure 11, when using the YOLOv7 model to

detect dead trees, there are instances of leakage and misdetection.

For example, in group (B) images, the targets on the right edge of

the first and second images are not detected, and in the third

picture, the model mistakenly detects similarly colored land and

healthy standing trees as SDTs.

However, when comparing the results of the improved model

proposed in this paper in group (C) images, it shows better
Frontiers in Plant Science 13
detection performance for targets at the image edges and

effectively improves the confidence level of detecting dead trees.

The improved model is less affected by complex backgrounds and

similar standing tree colors. The visualization results in Figure 11

demonstrate that introducing the attentional mechanism and the

WIoU loss in this paper without increasing model parameters

enhances the overall performance of the model, despite a slight

reduction in detection speed. The proposal of the improved model

is of great significance for further research on SDTs detection and

forest resource preservation.
3.4 Comparison experiments

In order to substantiate the superiority of the proposed

enhanced model, we conducted a comparative analysis with other
B CA

FIGURE 11

YOLOv7 model and improved model prediction results; (A) Ground-truth. (B) Predicted by YOLOv7. (C) Predicted by ours.
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commonly used algorithmic models under identical experimental

conditions and dataset. The Figure 12 illustrates the mAP@0.5-

value change curve for each model during the training process,

while Table 5 presents the results of the comparative experiments.

The figure illustrates that in this experiment, all models were

trained for 300 epochs. It’s evident that throughout the training

process, the detection accuracy of the models (typically denoted by

mAP@0.5) steadily enhances, ultimately reaching a stable state.

This signifies the convergence of the model training process. Faster

R-CNN demonstrates the quickest increase in mAP@0.5 compared

to other models and stabilizes first. The final mAP@0.5 values for

each model align with the results presented in Table 5.

From the Table 5, it is evident that the proposed model in this

paper achieves a higher mAP@0.5 value of 98.03% on the SDTs

dataset, outperforming other main-stream models. Only YOLOv5s,

YOLOv7 and YOLOv8s exhibit detection accuracies above 90%,

which are lower by 3.44%, 1.56% and 0.45% respectively, compared
Frontiers in Plant Science 14
to the improved model proposed in this paper. Among the other

models, the Faster R-CNN model with Res-Net50+FPN as the

backbone network demonstrates the highest mAP@0.5 value of

89.89%, while the detection mAP@0.5 value of the YOLOv4 models

does not exceed 80%. These results verify the effectiveness and

superiority of the improved model proposed in this paper in terms

of dead trees detection accuracy.

In terms of model detection speed, specifically real-time detection

performance, only four models, including the proposed model,

achieve a speed higher than 100 FPS. The proposed model in this

paper exhibits a detection speed of 108 FPS, which is slightly lower

than YOLOv8s, YOLOv7 and YOLOv5s models by19, 14 and 4 FPS,

respectively. However, it still holds a significant advantage over other

models and fully satisfies the real-time demand for SDTs detection.

Considering the detection mAP@0.5 and speed across various models,

single-stage YOLO models, including YOLOv5 and subsequent

versions, exhibit significant advantages over two-stage Faster R-
FIGURE 12

Different model training processes.
TABLE 5 Results of comparison experiments.

Model Backbone
mAP

@0.5(%)
mAP

@0.5:0.95(%)
FPS

YOLOv8s Darknet53 97.58 74.62 127

YOLOv7 Darknet53 96.47 73.17 122

YOLOv5s Darknet53 94.59 65.18 112

YOLOv4 Darknet53 79.15 49.06 50

Faster R-CNN ResNet50_FPN 89.89 54.59 31

Ours
SimAM_
Darknet53

98.03 74.94 108
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CNN models. Our proposed improved model, in particular, surpasses

other models in terms of detection performance. The potential reasons

for the superior performance of our proposed model are twofold:

Firstly, the SimAM attention mechanism significantly enhances the

model’s ability to extract individual features of standing dead trees

without introducing additional parameters. This reduction in

interference from complex backgrounds and variations in the scale

of dead trees during the detection process alleviates issues of both

missed detections and false positives, thereby improving the accuracy

of small target detection. Secondly, the replacement of the CIoU loss

function with WIoU enhances the model’s robustness by focusing on

bounding boxes of ordinary quality. This improvement accelerates the

model’s convergence speed, further enhancing the accuracy of

automatic detection of standing dead trees in high-resolution aerial

remote sensing images.
3.5 Impact of different sized datasets on
model performance

To verify the effectiveness of the data augmentation method

employed in this study, 1928 images were taken as the basis, and the

data volume was expanded by 2 times and 4 times, respectively. The

three datasets were then used to train the im-proved YOLOv7

model. The experimental results are summarized in the Table 6.

The Table 6 shows that as the amount of data input into the

model increases, the values of precision, recall, and mAP@0.5

gradually increase, but the growth rate slows down. When the

dataset size reaches 9640 images, which was prepared for this study,

the indicators reach their maximum values: precision at 94.31%,

recall at 93.13%, and mAP@0.5 at 98.03%. The Figure 13 illustrates

the corresponding precision, recall, and mAP@0.5 metrics for the

three datasets, along with their trends of change.
4 Discussion

Efficient and accurate automated identification of SDTs in

forests is crucial for safeguarding forest resources and

biodiversity. Conventional dead trees detection methods often

encounter challenges such as difficulty, high expenses, and limited

timeliness. To address these issues, this paper combines airborne

remote sensing and deep learning techniques to achieve real-time

and efficient automated identification of individual SDTs.

In this study, we utilized airborne remote sensing images with a

ground resolution of 0.12 m, captured from an altitude of 1,000 m, as

the data source. To meet the accuracy and real-time requirements, we
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proposed the improved YOLOv7 model for automated identification

of dead trees. The model achieved precision, recall, mAP@0.5 and

FPS values of 94.31%, 93.13%, 98.03%, 108 respectively. In similar

studies of dead tree detection, Chiang et al. applied transfer learning

to the Mask RCNN network for automated detection of SDTs in

aerial images (Chiang et al., 2020). Li et al. pro-posed the LLAM-

MDCNet method based on the MDCN network to detect clusters of

dead trees in aerial images, aiming to reduce the interference from

complex back-grounds and variable target scales by introducing the

LIAM attention module (Li et al., 2022). However, their methods did

not achieve the recognition of individual dead trees. To address the

issue, Jiang et al. improved the Faster R-CNN algorithm based on the

Swin-Transformer to enhance the learning of global information,

enabling the recognition of individual SDTs in UAV images (Jiang

et al., 2023). However, due to the two-stage nature of the Faster R-

CNN algorithm, involving candidate region extraction, target

classification and bounding box regression (BBR), the detection

speed is slower, making it challenging to meet real-time

requirements for SDTs detection (Ren et al., 2017). In an effort to

improve the trade-off between accuracy and efficiency, Wang et al.

proposed the LDS-YOLO method, which reduced the number of

model parameters by enhancing the backbone network and

introducing the SoftPool method into the SPP module. The

accuracy of dead trees detection achieved with LDS-YOLO was

reported as 89.11%, meeting the real-time requirements for

automated dead trees detection (Wang et al., 2022). However, there

is room for improvement in terms of the accuracy of detecting small

targets. Compared to previous studies, the model proposed in this

paper exhibits superior detection performance in both accuracy and

speed when identifying small-target dead trees at the individual tree

scale.After screening the dataset, it became evident that the sample

size was insufficient. To enhance the model’s robustness and

detection performance, data augmentation techniques such as

random flipping, mirroring, and brightness adjustments were

applied. Comparative experiments were conducted using the

improved YOLOv7 model with varying data volumes. The results

indicate that the mAP@0.5 value is positively correlated with the data

volume, especially when the data volume is limited. The provided

sample dataset in this paper reveals a dense distribution of trees in the

Forestry Farm, with small and scattered canopies of dead trees.

Challenges arise when recognizing dead trees, especially when

shadows cast by tall trees obscure them, and in complex

backgrounds where distinguishing dead trees becomes difficult.

Visualizations in Figures 9 and 11 indicate omissions and

misdetections when using the YOLOv7 model, suggesting that the

model has not fully learned the distinctive features of dead trees. This

study addresses this issue by introducing SimAM and WIoU, which
TABLE 6 Comparison of different data volumes.

Number P(%) R(%)
mAP

@0.5(%)
mAP

@0.5:0.95(%)
FPS

1928 72.48 69.40 76.70 44.52 108.40

5784 85.46 86.15 92.47 64.86 108.28

9640 94.31 93.13 98.03 74.94 108.53
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extract more detailed features from the limited dataset and improve

the model’s focus on bounding boxes of average quality.

Consequently, the detection accuracy of the model is significantly

enhanced. Further-more, the improved YOLOv7 model exhibits

faster detection speed compared to other mainstream models. This

capability is crucial for rangers to monitor forest dynamics in real-

time, effectively manage and protect forest resources.

This study has several limitations. Firstly, the improved model

may face occlusion by healthy trees when recognizing dead trees,

leading to misdetection and reducing the accuracy of the model. To

address this issue, referring to Hell, M (Hell et al., 2022) and Wing,

BM (Wing et al., 2015) for the detection of dead trees from LiDAR

data, we can consider combining LiDAR data with optical remote

sensing data. LiDAR data can provide information on tree height,

shape, and point-cloud density, while optical remote sensing data

can capture texture, color, and spectral features of the trees. By

fusing the two types of features, we can achieve more accurate

detection and localization of individual dead trees, thereby

enhancing the accuracy of dead trees detection. Moreover,

researchers have explored diseased and dead trees detection using

multi-temporal multispectral images, ALS data and CIR images

(Kaminska et al., 2018; Wu et al., 2023), which could serve as

valuable references for our future research.

Another limitation of this study is the insufficient consideration

of external environmental factors that may interfere with the

experiment. Variations in lighting conditions and resolution can

cause changes in the color and texture of SDTs, leading to detection

interference. To mitigate the impact of these factors, we can use

multiple image views or collect multi-temporal remote sensing

images under different environmental conditions. This approach

will provide more comprehensive tree contrast information and

improve the robustness of the detection model.
Frontiers in Plant Science 16
To sum up, our proposed automatic SDTs detection model

holds promising applications in forest protection and disaster

prevention. In the future, we will explore and develop more real-

time and efficient dead trees detection methods by incorporating

multiple data sources, thereby further enhancing the accuracy and

applicability of the model.
5 Conclusions

This study demonstrates the potential of deep learning algorithms

in detecting SDTs from airborne remote sensing images. To overcome

the limitations of traditional manual inventory methods, we propose

an automatic detection model based on an improved YOLOv7 for

efficient identification and localization of dead trees in remote sensing

images. The model, built upon YOLOv7, addresses challenges posed

by dense canopies and complex forest backgrounds by embedding the

SimAM attention mechanism module in the backbone and neck.

Compared to embedding the other four attention mechanisms in

YOLOv7, the SimAM_YOLOv7 model has a smaller number of

parameters and achieves higher detection accuracy. Additionally,

The WIoU loss function is employed instead of the CIoU loss to

enhance the model’s focus on ordinary labeled samples, improving

convergence speed and detection accuracy. The experimental results

reveal that the improved model achieves precision, recall, and mAP@

0.5 values of 94.31%, 93.13%, and 98.03%, respectively, representing a

3.67%, 2.28%, and 1.56% improvement over the original YOLOv7

model. Furthermore, the model outperforms other mainstream

models in terms of the combined performance of detection accuracy

and speed. The proposedmodel holds practical applications in forestry

management, offering a convenient solution for forest resource and

biodiversity conservation.
FIGURE 13

The detection results and metric trends for datasets of different sizes.
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