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The patterns of inbreeding
depression in food-deceptive
Dactylorhiza orchids
Ada Wróblewska*, Beata Ostrowiecka, Emilia Brzosko,
Edyta Jermakowicz, Izabela Tałałaj and Paweł Mirski

Faculty of Biology, University of Bialystok, Białystok, Poland
Introduction: Inbreeding depression (ID) in food-deceptive plants have been

reported previously, however, it has not been often proven that selfed seeds

germinate better than outbred ones or that selfing affects ID. To resolved these

issues, food-deceptive related Dactylorhiza majalis, D. incarnata var. incarnata and

D. fuchsii orchids were investigated.

Methods: Hand pollination treatments and control pollination were conducted.

Fruit set, number of seeds per fruit, seed length, number of well-developed seeds

per fruit, and proportion of in vitro asymbiotic germination seeds, were analyzed

in relation to inflorescence levels and used as fitness indicators for these orchids.

The ID and pollen limitation were measured.

Results: The lowest ID (d = −1.000) was in D. majalis, and present in combination

with a high pollen limitation in its populations. D. fuchsii showed higher ID (d =

0.366), and D. incarnata var. incarnata weak ID (d = 0.065), although ID varied

between its fitness components. The seed number per fruit differed significantly

between the treatments and the inflorescence levels in treatments.

Discussion: This study emphasizes that the breeding system rather than the

flower position on the inflorescence shaped the quality and quantity of

reproductive output. The ID and its effect on germination of food-deceptive

orchid seeds undoubtedly played an important role.
KEYWORDS

Dactylorhiza fuchsii, Dactylorhiza incarnata var. incarnata, Dactylorhiza majalis, fruit
set, inbreeding depression, in vitro asymbiotic seed germination
1 Introduction

Inbreeding depression (ID) is a mechanism that is defined as the reduction in the

fitness of offspring resulting from an interbreeding between related individuals (Barrett &

Harder, 2017). The effects of ID have usually been studied in relation to the mating systems,

population size, area of geographical distribution, and their consequences on different

developmental plant life stages (i.e., seeds, juveniles, and adult stages) (Glaettli & Goudet,

2006; Angeloni et al., 2011; Valtueña et al., 2014; Blambert et al., 2016). Angeloni et al.

(2011), using meta-analysis of 116 studies and 107 plants, found that ID was significant for
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all life history stages and reproductive traits. In their study, ID

increased with population size and varied depending on the method

of measuring plant fitness. They also concluded, that self-

compatible plant species are much more prone to inbreeding than

self-incompatible species, and often to display ID. This can

contribute to a faster removal of deleterious alleles in different life

stages. They also explained that significant ID was found for all the

life stages, but the lowest ID in the early life stage (i. g. germination)

than in the late life stages for self-compatible species can occur.

From another point of view, the study by Baskin & Baskin

(2015) on 743 germination cases has showed that outbred seeds can

germinate better, equal (in 50.1% of cases), or less well than inbred

seeds. The authors recommended improving the germination

procedure in the natural environment, but there is no doubt that

this procedures requires further investigation. Mechanisms

associated with ID, such as a lower germination rate and low

juvenile survival, as well as a decline in the growth fitness of

progeny derived from selfing, promote undoubtedly the evolution

of outcrossing (Smithson, 2006).

The mating system has frequently been emphasized as the best

predictor of ID (Johnson & Nilsson, 1999; Juillet et al., 2006). In

Orchidaceae, in which approximately one-third of all known

orchids implement deception, outcrossing is exhibited as the

main mating system (Ackerman, 1986; Dafni, 1987; Nilsson,

1992; Jersáková et al., 2006). Husband & Schemske (1996)

reported that genetic load is observed in outcrossing plants to

favor the evolution if inbreeding avoidance. They showed

empirical evidences that outcrossing species have significantly

greater ID at seed viability than selfing species. Therefore, ID may

be considered as a mechanism favoring the evolution and

maintenance of food deception strategy in orchids. Then,

Smithson (2006) compiled ID from the literature based on the

various life stages within nectarless orchids (d = -0.064 – 0.713) and

these wild spectrum of values did not fully support the predictions

and experimental data of Husband and Schemske (1996). However,

the earlier scarce surveys of food-deceptive, and self-compatible

orchids evaluated that the fruit set was the effect of different mating

system i.e. outcrossing, selfing, or mix-mating. In this way, the

mating systems can contribute to the different effects of

reproductive output and ID (Johnson & Nilsson, 1999; Smithson,

2006; Tremblay et al., 2005; Kropf & Renner, 2008; Ostrowiecka

et al., 2019).

Our study focused on Dactylorhiza taxa, which are food-

deceptive orchids with no rewards for their pollinators (Claessens

and Kleynen, 2011). More published studies of ID have analyzed an

early life stage in this group of plants, but there are still often

contradictory results. In Dactylorhiza genus, only two taxa, D.

sambucina and D. praetermissa, have been examined for ID

(Ferdy et al., 2001; Juillet et al., 2006). Depending on different

developmental life stages of these plants (e. g. seeds, germination, or

juvenile and adult) and type of crosses (outcrossing or selfing) both

strong and weak ID were recognized. The negative correlation

between fitness indicators and the position of the fruit on D.

praetermissa inflorescence suggested that resource might be

limited, and selective abortion might be important. Further, ID

may vary through ontogeny, and the total amount of ID suffered by
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an inbred individual is a product of reduced fitness at all life stages.

In this context, in ID studies of food-deceptive Dactylorhiza taxa it

is important to consider their current mating system, and to

compare fitness component traits at different life stages in natural

pollinated, inbred, and outbred individuals (Carr & Duasch, 1996;

Husband & Schemske, 1996). Therefore, we focused on three

Dactylorhiza taxa i.e. D. majalis, D. incarnata var. incarnata, and

D. fuchsii. They are terrestrial, long-lived, self-compatible, and

tuberous perennial orchids that reproduce either by seeds or

(rarely) vegetatively (Vakhrameeva et al., 2008; Claessens and

Kleynen, 2011; Ostrowiecka et al., 2019). They produce a single

multi-flowered inflorescence and flowers with short spurs (Naczk

et al., 2018). The flower number on inflorescence differs between

taxa, and they open from bottom to top sequentially but very

quickly or all flowers on an inflorescence can be open

simultaneously (Ostrowiecka et al., 2019). Pollination occurs by

different taxonomical groups of insects (Hymenoptera, Diptera,

and/or Coleoptera), which can promote cross-pollination and/or

geitonogamy (Hedrén & Nordström, 2009; Ostrowiecka et al., 2019;

Wróblewska et al., 2019).Dactylorhiza majalis blooms first from the

beginning of May to the beginning of June. The flowering period of

D. incarnata and D. fuchsii occurs between June and July

(Ostrowiecka et al., 2019), and the fruits occur from the end of

July. The variable fruit set ranges from 7.4% to 77.5% in three

Dactylorhiza taxa (Vallius et al., 2004; Kindlmann & Jersáková,

2006; Claessens and Kleynen, 2011). Pollen limitation has also been

observed in these plants and has been recognized as an important

phenomenon that shapes the quality and quantity of the fruit set

and seeds (Kropf and Renner, 2008). Molecular markers such as

cpDNA (trnL, trnF and psbC–trnK), internal transcribed spacer

(ITS) sequences, and flow cytometry data confirmed the taxonomic

status of the studied three orchids (Wróblewska et al., 2019).

Here, the second key issue in investigation ID patterns of three

Dactylorhiza taxa is phylogenetic relationship between them.

Dactylorhiza majalis is allotetrapolyploid, and has survived in

central European glacial refugia during the last ice age (Balao

et al., 2016), or formed probably at different times in the recent

half of the Quaternary (Brandrud et al., 2020; Hawranek, 2021). Clo

(2022) investigated the effect of polyploidy on the evolution of ID

using meta-analysis, and hypothesized that ID should be lower in

allopolyploids compared to diploids progenitors. This meta-

analysis showed theoretical expectations that due to an initial

bottleneck, the masking of deleterious mutations, and/or a slower

increase in homozygosity during selfing events, (new)polyploid

lineages benefit from a strong decrease in ID (se also e. g. Otto &

Whitton, 2000; Clo, 2022). However, empirical studies on the

relationship between allopolyploidy and ID have still produced

conflicting results (Johnston and Schoen, 1996; Rosquist, 2001;

Pannell et al., 2004; Barringer & Geber, 2008; Vandepitte et al.,

2011). In resolving these above-mentioned issues and to bridge the

knowledge gap between food-deception strategy and mating

systems in closely related diploid and polyploid Dactylorhiza

orchids, we analyzed the various fitness traits (i.e., fruit set,

quantity and quality of seeds, and germination) over the life stage

categories following control pollination, self and outcross hand

pollinations to determine (1) how mating system shapes the
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magnitude of ID at these fitness components, (2) how the flower

position along the inflorescence affects reproductive success and ID,

and (3) what are the fitness traits in which ID is the

more pronounced.
2 Material and methods

2.1 Study sites

This two-year study was conducted from May to July across

three populations each of D. majalis (KA, 2014-2015; SKI, 2015-

2016; and SKII, 2016-2017), D. incarnata var. incarnata (ZB, 2014-

2015; RO and MR, 2015-2016), and D. fuchsii (BR, CM, and GR,

2015-2016), located in northeastern Poland (Supplementary Table

S1; Figure 1). Dactylorhiza majalis grows in wet meadows,

cohabitating with abundant entomophilous and rewarding plants,

comprising approximately 20% of the herb layer. The abundance of

D. majalis varied, with around 120–200 (to ca. 1,000) flowering

individuals (Supplementary Table S1). The three D. incarnata var.

incarnata populations varied in sizes ranging from 35 to 200

flowering plants (Supplementary Table S1). These populations

inhabited sedge communities in the Biebrza Valley and Rospuda

Valley, with a rewarding plant species cover of about 10%.
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Dactylorhiza fuchsii was found in open hornbeam forests in the

Białowieża Primeval Forest and nearby areas and one population in

the Biebrza Valley (84–193 flowering plants), all with a low density

of rewarding plants.
2.2 Open and hand pollination experiments

Over a two-year period (2014 to 2017), open and hand

pollination experiments were conducted on three Dactylorhiza

taxa during peak flowering, when most flowers were open. Open

pollination treatments (n = 5 inflorescences per population/year,

90–340 flowers per population/year, Supplementary Table S1) and

four hand pollination experiments were carried out on bagged

inflorescences, during the optimum of flowering (almost all

freshly flowers on the inflorescences were opened). For the hand

pollination treatments, we employed three treatments on nylon

mesh bag-enclosed inflorescences: (1) spontaneous self-pollination

to assess autogamy (n = 2–5 inflorescences per population/year, 20–

154 flowers per population/year, Supplementary Table S1), (2)

induced self-pollination to determine self-compatibility (using

pollen from the same flower) (n = 2–5 inflorescences per

population/year, 37–203 flowers per populat ion/year,

Supplementary Table S1), and (3) geitonogamy (using pollen

from another flower on the same plant) (n = 1–5 inflorescences

per population/year, 37–203 flowers per population/year,

Supplementary Table S1). Additionally, (4) induced xenogamy

(cross-pollination with pollen from different plants within the

same population, approximately 3 m away) was performed (n = 5

inflorescences per population/year, 76–177 flowers per population/

year, Supplementary Table S1). All flowers for each treated plant

were hand pollinated. After each treatment, the inflorescences were

quickly rebagged. In total, 518 inflorescences and 9994 flowers were

analyzed over two years across all treatments and taxa

(Supplementary Table S1).

Pollination treatments were conducted in two stages: initially

without division of the inflorescence, followed by targeted

treatments on lower, middle, and upper sections of the

inflorescence in each population to investigate the effect of flower

position on fitness traits (fruit set, seed quantity and quality,

germination). Flower allocation to each level was based on near-

equal numbers. Statistical analyses of seed variability and the

likelihood of in vitro asymbiotic germination to protocorm stage

were performed for all hand pollination treatments, both divided

and non-divided of inflorescence.
2.3 Fruit set, seed quantity and quality

Upon maturity, fruit set, total seed number per fruit, mean

viable seed length (mm), seed categories based on embryo shape,

and viable seeds germinating into protocorms on various

asymbiotic media were measured. Seeds were immediately sown

post-collection and evenly spread in Petri dishes marked with a grid

(6 × 6 for D. fuchsii and D. majalis, 10 × 11 for D. incarnata var.

incarnata). A random selection of 11 or 20 squares (confidence level
FIGURE 1

Localities of nine Dactylorhiza populations in north-eastern Poland.
D. majalis (DM), KA, SKI, and SKII, D. incarnata var. incarnata (DI), ZB,
MR, and RO, D. fuchsii (DF) CM, BR, and GR.
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of 0.02) was used for analysis, with a pseudorandom number

generator implemented in the R environment (R 3.6/4.0 software,

R Core Team, 2021). Categories included seeds with deformed

embryos and well-developed globular embryos (Lemus et al., 2021).

Sixty well-formed seeds per capsule were randomly chosen and

measured using an OLYMPUS SZX2-ILLT stereomicroscope and

MultiScan v.14.02 software.

For in vitro germination, seeds were stratified at 4°C for 12

weeks, surface sterilized in 5% NaOCl with Tween 80, and air-dried

before sowing on Malmgren (1996) (D. fuchsii) and FAST (Lindén,

1980) (D. majalis and D. incarnata var. incarnata) media.

Germination and protocorm development were assessed under a

microscope after 40 days of incubation in the dark at 19–20°C. Total

seed germination and protocorm development were assessed under

a light microscope.
3 Data analysis

3.1 Fruit set and seed variability

Given the non-normal distribution of the data, traditional

transformations (arcsin, log + 1, square root) were ineffective for

ANOVA requirements. Therefore, Kruskal–Wallis tests and Dunn’s

post-hoc tests with Bonferroni correction were employed to identify

differences in fruit production, seed number per fruit, seed length,

well-developed seed frequency per fruit, and in vitro germination

rates between control and hand pollination treatments, and among

flower positions on the inflorescence for each taxon. Variables

included treatment types (control, selfing, cross-pollination),

inflorescence levels (lower, middle, upper), and dependent factors

(fruit set, seed number, seed length, well-developed seed

proportion, in vitro germination rates). R 3.6/4.0 software was

used for analysis, and standard errors were provided with mean

values (R Core Team, 2021).
3.2 ID coefficient and pollen limitation

The ID coefficient d was calculated from five reproductive traits

(fruit set, seed number, seed length, well-developed seed

proportion, in vitro germination), both for entire inflorescences

and division of inflorescence on three levels, using formulas by

Ågren and Schemske (1993) and Lande and Schemske (1985). The

formula d = 1 − (Ws/Wo) was used when Ws < Wo, and d = (Wo/

Ws) − 1 for Ws > Wo, where Ws represents the average fitness of

selfed progeny and Wo represents that of outcrossed progeny. The

estimation was carried out using data whereWs denotes the average

fitness of selfed progeny from autogamy and geitonogamy

treatments and Wo denotes the average fitness of manually

outcrossed progeny (Lande and Schemske, 1985; Charlesworth &

Charlesworth, 1987). Cumulative d values were calculated

incorporating the correlation among data sets, using the approach

by Husband & Schemske (1996): d = 1 − (WsF/WoF xWsNS/WoNS x

WsSL/WoSL x WsDS/WoDS x WsIV/WoIV), where F is fruit set; NS is

seed number per fruit; SL is seed length, DS is frequency of properly
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developed seeds per fruit, and IV is proportion in vitro asymbiotic

germinated seeds to protocorm. The values of d range from −1 to 1,

where 0 signifies no ID, positive values indicate that the outcrossed

offspring outperformed the inbred offspring, and negative values

indicate the opposite (Charlesworth & Charlesworth, 1987).

Pollen limitation (PL) was calculated using the Larson and

Barrett (2000) formula: PL = 1 – (control fruit set/cross-pollination

fruit set), where PL values range from 0 (no pollen limitation) to 1

(maximum pollen limitation), and negative values indicate greater

pollen receipt in naturally pollinated flowers (Lázaro and Traveset,

2006, González-Varo et al., 2009).
4 Results

4.1 Reproductive success and seed viability

There were significant differences in fruit set between control

pollination and hand pollination treatments in the three

Dactylorhiza taxa (Figure 2; Supplementary Table S2). In D.

majalis, D. incarnata var. incarnata, and D. fuchsii, fruit set was 3

to 4 times lower in control pollination (35.7–44.0%) compared to

hand pollination (85.0–90.2% for cross-pollination and 88.9–95.6%

for self-pollination, Figure 2; Supplementary Table S2). No

significant decrease in fruit set was observed from the lower to

the upper position on the inflorescence for each Dactylorhiza

species in both control and hand pollination treatments (Figure 2;

Supplementary Table S1). Spontaneous autogamy was recorded in

less than 1% of all studied flowers across the threeDactylorhiza taxa;

hence, it was excluded from further analysis.

The seed number per fruit varied significantly between control

and hand pollination treatments, and often between inflorescence

levels within each taxon (Figure 2). In D. majalis andD. fuchsii, seed

numbers per fruit were higher in control pollination than in both

selfing and crossing experiments. In contrast, D. incarnata var.

incarnata exhibited a higher number of seeds in outcrossing

compared to selfing and control pollination (Figure 2,

Supplementary Table S2). The lower part of the inflorescence

produced a higher seed count per fruit than the upper part in

control pollination across the three taxa (Supplementary Table S2).

Significant variations in seed length and the number of seeds with

well-developed embryos were observed only between the different

orchid treatments (Table S2). Seeds from control pollination showed

a higher frequency of well-developed embryos than those from selfing

and outcrossing in all Dactylorhiza taxa (Figure 2).

No significant differences were observed in in vitro asymbiotic

seed germination between control and hand pollination treatments

in D. majalis and D. incarnata var. incarnata (Figure 2;

Supplementary Table S2). However, a significant difference was

noted in the proportion of in vitro germinated seeds among all

treatments in D. fuchsii (Figure 2). Notably, in vitro asymbiotic seed

germination varied significantly between inflorescence levels in

control pollination for D. fuchsii and in cross-pollination for D.

majalis (Supplementary Table S2). The frequency of in vitro seed

germination from the control fruit set was comparable to that of in

vitro germinated seeds from selfing in D. fuchsii (Figure 2).
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4.2 ID and pollen limitation

The three Dactylorhiza taxa exhibited varying levels of ID. The

cumulative ID at the taxa level was negative and lowest inD. majalis (d =
−1.000), nearly close to zero (d = 0.065) in D. incarnata var. incarnata,

and moderately positive in D. fuchsii (d = 0.366). Differences in ID were

observed between species for all fitness parameters and across

inflorescence levels (Figure 3). Dactylorhiza majalis showed negative

ID values in three out of four reproductive features studied (seed length,

frequency of well-developed embryos in seeds, and proportion of in vitro

seed germination), both with and without division of inflorescence into

three levels (Figure 3). The lowest ID values were consistently noted at

the upper level of the inflorescence in D. majalis.

Conversely, in D. fuchsii, the ID estimate increased up to 0.400

in in vitro asymbiotic seed germination without division of

inflorescence and across the three inflorescence levels (Figure 3).

Other ID values in D. fuchsii were near zero (Figure 3).

Moderate ID was recorded for seed length, seed number per fruit,

and the proportion of seeds with well-developed embryos inD. incarnata

var. incarnata (Figure 3). PL was high, reaching 0.481 inD. fuchsii, 0.643

in D. incarnata var. incarnata, and the highest at 0.663 in D. majalis.
5 Discussion

5.1 Potential of inbreeding depression

The link between mating systems and inbreeding depression (ID)

has been well-established in many studies. Smithson (2006)

discovered that nectarless orchids tend to exhibit high levels of ID,

which may be indicative of reduced self-fertilization (autogamy and/

or geitonogamy). In orchids employing food-deceptive strategies,

particularly those that are self-compatible, high ID is often observed.

This is likely due to the fact that deceived pollinators typically visit

only a few flowers among plants within populations, thereby

promoting cross-pollination and reducing the likelihood of

inbreeding (Ackerman, 1986; Dafni, 1987; Gill, 1989; Nilsson, 1992;

Neiland & Wilcock, 1998; Jersáková et al., 2006; Juillet et al., 2006;

Kropf & Renner, 2008; Jacquemyn & Brys, 2020). However, it appears

that the impact of ID varies across different fitness traits. Smithson

(2006) and Sletvold et al. (2012) noted significant ID in food-

deceptive Orchidaceae, particularly in the early stages of life

history, ranging from fruit set to protocorm development. Our

study of Dactylorhiza orchids revealed that ID varied considerably

among reproductive traits. In early life stages, such as seed viability,

distinct patterns of ID were observed, suggesting that deceptive

strategies in these orchids cannot be attributed to a single

mechanism for reproductive success. In D. fuchsii, significant ID

was evident, with outcrossed progeny demonstrating superior fitness

compared to selfed progeny. This shows a strong outcrossing mating

system, as described by Husband & Schemske (1996). However, the

frequency of in vitro germinated seeds from selfed and control-

pollinated flowers was similar, yet lower than that from outcross
FIGURE 2

Fitness traits for fruit set quantity and quality, and germination of
Dactylorhiza majalis (DM), D. incarnata var. incarnata (DI), and D.
fuchsii (DF) seeds that were the effect of control pollination (natural
pollination, CONT), selfing (SELF), and outcrossing (OUT). Dark
green line, comparison between treatments; Brown asterisk,
comparison between levels of inflorescence; *p < 0.05; **p < 0.001;
***p < 0.001. The box-and-whisker plot includes the mean (denoted
by a horizontal bar in the box), standard error (denoted by a square),
and standard deviation (denoted by the box).
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pollination. It provided only partial support for the hypothesis that

inbred progeny harboring deleterious alleles are eliminated during

over-fertilization or early seed development.

The observed cumulative d value in D. fuchsii (0.366) aligns

roughly with previous estimates for other species, such as D.

sambucina (d = 0.42, Nilsson, 1980), but is lower than reported by

Jersáková et al. (2006), (d = 0.63) and Juillet et al. (2006), (d = 0.47).

This value was similar to Smithson (2006) findings for nectarless

orchids (d = 0.32 ± 0.05) and lower than that reported by Husband &

Schemske (1996) for allogamous angiosperms (d = 0.53). The

remarkably low ID in D. majalis and the absence of ID in D.

incarnata var. incarnata raise intriguing questions. In D. majalis,

strong outbreeding depression, evidenced by differences in seed

length, well-developed embryos, and in vitro seed germination

between outcross and self-progeny, was observed. However, no

significant differences were noted across three inflorescence levels.

Dactylorhiza incarnata var. incarnata exhibited outbreeding

depression in seed germination, while hand-selfed flowers produced

seeds with similar viability to naturally pollinated flowers. These results

suggest that in D. majalis and D. incarnata var. incarnata, pollinator
Frontiers in Plant Science 06
limitation is likely, and ID is negligible, with biparental inbreeding

being more common. The negligible ID in D. incarnata var. incarnata

(d = 0.065) may reflect a historical prevalence of selfing, leading to a

reduced genetic load and decreased inbreeding depression (Husband &

Schemske, 1996). Hedrén & Nordström (2009) proposed that

populations of D. incarnata var. incarnata might consist of several

inbred lines. This hypothesis is supported by studies from Naczk et al.

(2018) and Vallius et al. (2004). The extremely low ID in the

allopolyploid D. majalis, potentially exacerbated by within-

population relative pollination, suggests reduced fitness due to

detrimental alleles at a local geographic scale (Husband et al., 2008).

There is evidence suggesting a lack of selection against selfed progeny

in this polyploid. It is plausible that inbred progeny harboring

deleterious alleles are not eliminated during over-fertilization or early

germination phases (Ortiz-Barney & Ackerman, 1999). Dactylorhiza

majalis, an allotetrapolyploid relative to its diploid progenitors D.

incarnata and D. fuchsii (Pillon et al., 2007), represents a complex

taxonomic group that evolved through multiple and independent

hybridization events. The genus’s taxonomic complexity is likely

attributable to its migration history during glaciations and
FIGURE 3

Distribution of inbreeding depression (d) in fruit set, seed number per fruit, seed length, frequency of well-developed embryos in seeds, and
proportion of in vitro asymbiotic seed germination of Dactylorhiza majalis, D. incarnata var. incarnata, and D. fuchsii, with division on three levels and
without division of inflorescence (see text, Material and Methods).
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interglacial periods, as well as episodes of polyploidization. Otto &

Whitton (2000) noted that taxa belonging to polyploidy, which are at

or near mutation-selection equilibrium, are expected to harbor greater

genetic loads than comparable diploids, potentially leading to higher

levels of ID in the progenitors (Ronfort, 1999; Pannell et al., 2004).
5.2 Mating system and pollen limitation

Amixedmating systemwas observed in all studiedDactylorhiza taxa

(Hedrén&Nordström, 2009; Ostrowiecka et al., 2019). Ostrowiecka et al.

(2019) found that pollinator behavior in D. majalis likely promotes

geitonogamy, explaining the development of selfed seeds in fruits at

different levels of the inflorescence with germination potential similar to

that of outcrosses within populations. Our results, particularly

concerning the level of fruit set, corroborate previous studies on

Dactylorhiza (Neiland & Wilcock, 1998; Vallius, 2000; Claessens and

Kleynen, 2011). We did not confirm spontaneous autogamy in the three

Dactylorhiza taxa, and our findings affirm that these taxa are highly

dependent on pollinators, with a notable presence of pollen limitation,

especially in D. majalis. This observation aligns with the common

occurrence of pollen limitation in deceptive orchids (Tremblay, 2006;

Henneresse et al., 2017). The foraging behavior of deceived pollinators

likely results in the transfer of low amounts of pollen per visit, increasing

the risk of pollen limitation and reducing the likelihood of receiving

pollen from different individuals. Ostrowiecka et al. (2019) reported that

mean visitation frequency by Apis mellifera was extremely low and time

of visits ofA.mellifera on inflorescences lasted from 11-40 s in studiedD.

majalis. Additionally, our data suggest that pollinator foraging behavior

remained consistent across the inflorescence during the flowering season,

indicating that flower position on the inflorescence did not significantly

impact fitness components such as seed length, well-developed seeds,

and in vitro asymbiotic seed germination. However, the observed

decrease in seed number per fruit from the lower to the upper level of

the inflorescence is typically attributed to the resource hypothesis,

suggesting increased competition for resources among pollinated

flowers (Devlin, 1989; Berry & Calvo, 1991; Obeso, 1993; Diggle,

1995). This decrease in seed set across the inflorescence has also been

noted inDactylorhiza maculata and Epipactis helleborine, potentially due

to limited resources and morphological differences in the upper flowers

(Light &MacConaill, 1998; Vallius, 2000). In summary, our study as the

first revealed that fitness traits in early life stage in threeDactylorhiza taxa

depend significantly on type of mating system, but little influence on

flower position on inflorescence. These hypotheses warrant further

investigation in the context of the three taxa studied.
6 Conclusions

Our experimental findings revealed that high ID was maintained

only in the diploid, food-deceptive D. fuchsii, particularly at the

asymbiotic in vitro germination stage. In contrast, ID manifested at

low to moderate levels in the allotetraploid D. majalis and, to some

extent, in its diploid ancestor D. incarnata var. incarnata, with little

evidence of selection against selfed offspring. Additionally, our study

showed that the mating system, rather than the position offlowers on
Frontiers in Plant Science 07
the inflorescence, primarily influenced the quality and quantity of

reproductive output. The impact of ID on the germination life stage

played a significant role in the reproductive ecology of these taxa.
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