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Crop plants are vulnerable to various biotic and abiotic stresses, whereas plants

tend to retain their physiological mechanisms by evolving cellular regulation. To

mitigate the adverse effects of abiotic stresses, many defense mechanisms are

induced in plants. One of these mechanisms is the mitogen-activated protein

kinase (MAPK) cascade, a signaling pathway used in the transduction of

extracellular stimuli into intercellular responses. This stress signaling pathway is

activated by a series of responses involving MAPKKKs!MAPKKs!MAPKs,

consisting of interacting proteins, and their functions depend on the

collaboration and activation of one another by phosphorylation. These proteins

are key regulators of MAPK in various crop plants under abiotic stress conditions

and also related to hormonal responses. It is revealed that in response to stress

signaling, MAPKs are characterized as multigenic families and elaborate the

specific stimuli transformation as well as the antioxidant regulation system. This

pathway is directed by the framework of proteins and stopping domains confer the

related associates with unique structure and functions. Early studies of plant

MAPKs focused on their functions in model plants. Based on the results of

whole-genome sequencing, many MAPKs have been identified in plants, such as

Arbodiposis, tomato, potato, alfalfa, poplar, rice, wheat, maize, and apple. In this

review, we summarized the recent work on MAPK response to abiotic stress and

the classification of MAPK cascade in crop plants. Moreover, we highlighted the

modern research methodologies such as transcriptomics, proteomics, CRISPR/

Cas technology, and epigenetic studies, which proposed, identified, and

characterized the novel genes associated with MAPKs and their role in plants

under abiotic stress conditions. In-silico-based identification of novelMAPK genes

also facilitates future research on MAPK cascade identification and function in crop

plants under various stress conditions.

KEYWORDS
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1 Introduction

One of the sustainable development goals is to end world hunger,

and feeding a growing population is a significant worldwide societal

concern (Raza et al., 2021; Farooq et al., 2022; Rivero et al., 2022).

Despite the world’s population doubling, the long-term drop in global

undernourishment has been caused by a substantial rise in food

availability since 1960 (Ritchie and Roser, 2020). Nevertheless, there

are currently more than 820 million hungry people around the globe

(FAO et al., 2019). Only 9% of the world’s agricultural land is suitable

for growing crops, while the remaining 91% is subjected to abiotic

stress, which frequently occurs in combination. Abiotic stresses cause

losses in agricultural productivity of more than 50% (Raza, 2021;

Rivero et al., 2022). Still, due to climate change and the overuse of

natural resources, their severity and adverse effects are anticipated to

increase significantly, which not only reduce crop production but also

cause food insecurity in the near future (Minhas et al., 2017; Farooq

et al., 2022; Rivero et al., 2022).

Due to industrialization and climate change in recent decades,

plants are normally exposed to various abiotic stresses such as

drought, salinity, extreme temperature ranges, nutrient deficiency,

high heavy metal concentrations, and osmosis stress (Haider et al.,

2021; Raza et al., 2021; Raza et al., 2022a; Raza et al., 2022b; Raza et al.,

2022c; Raza et al., 2022d; Raza et al., 2022e). They cause a lot of

damage to plants’ physiology and also reduce growth and

development that ultimately minimizes the productivity of crop

plants (Anjum et al., 2017). To ensure good crop growth and

optimum productivity, stress tolerance mechanisms are imperative

to be studied for combating abiotic stresses in crop plants (Baer-

Nawrocka and Sadowski, 2019; Raza et al., 2022a; Raza et al., 2022b;

Raza et al., 2022c). Understanding these stress tolerance mechanisms

will enable the generation of more climate-smart and stress-tolerant

lines, which will maintain stability in the growth and productivity of

agricultural productivity. For this, it is necessary to understand the

genetic basis of a plant’s interaction when encountering ecological

stress. Several studies considering transcriptomics, genomics,

proteomics, metabolomics, and genome editing via CRISPR/Cas

technology provide a roadmap toward the acclimatization

mechanism in plants and crops (Wang et al., 2019; Raza et al.,

2022a; Raza et al., 2022b; Raza et al., 2022c; Raza et al., 2022d;

Yaqoob et al., 2023). In-depth molecular studies aid us in developing

varieties and cultivars through biotechnology, genetic engineering,

and other advanced breeding methods to develop plants that could

adapt to different abiotic stresses in a short time (Popescu et al., 2009;

Raza et al., 2022a; Raza et al., 2022b; Yaqoob et al., 2023). Post-

translational modification and signal transduction are mediated by a

process called phosphorylation, which changes the expression of

genes through transmission of protein signals. A serine/threonine-

protein kinase family called mitogen-activated protein kinase

(MAPK) is one of the widely studied gene families and contributes

to plant productivity under fluctuating environmental conditions

(Hamel et al., 2006).

In this regard, one of the major signal transduction pathways that

transduce extracellular stimuli into intracellular responses related to

stress is mitogen-activated protein kinase (Mathobo et al., 2017). The

first MAPK encoding gene was cloned in the 1990s; to date, many

MAPK genes have been identified and isolated from different plants
Frontiers in Plant Science 02
(Zaıdi et al., 2010), which are activated under abiotic stresses like

AtMPK4 and AtMPK6 in Arabidopsis and in rice (Oryza sativa) and

OsMAPK5 and OsMAPK2 under drought stress (Nadarajah and

Sidek, 2010). The abscisic acid (ABA) signaling pathway regulates

plant growth and development under abiotic stress conditions, such

as drought or high salinity (Cutler et al., 2010). Phosphorylation of

two ABA-responsive transcription factors (ABF1 and ABF4) by

AtCPK4, 11, and 32 suggested the role of kinases in regulating ABA

signaling through these transcription factors under stress conditions

(Choi et al., 2005). Using a yeast two-hybrid test, researchers looked at

the interactions between 30 members of the MPK family, 9 CPKs, 8

PP2Cs, 5 SnRKs, and 8 PP2Cs in maize’s (Zea mays) MAPK signaling

pathways. Moreover, three ZmCPKs connect with three distinct

ZmSnRK members, whereas four ZmCPK members positively

interact with 13 different ZmMPK members in various

combinations. These four ZmCPK proteins originate from three

distinct maize groupings. These physical connections between

ZmCPKs, ZmSnRKs, and ZmMPKs revealed that these signaling

pathways might interact directly with the defense mechanism in

maize and have indirect effects. The current work might contribute

to a better understanding of plant signal transduction (Khalid et al.,

2019). Concerning the downregulation of ZmMPK5, due to

ZmCPK11 silencing, the role of ZmCPK11 upstream of ZmMPK5

has been proposed (Ding et al., 2013).

MAPK gene families consist of a vast number of genes that are

classified into four different groups: A, B, C, and D. Owing to the

evolutionary divergence in different plants, these groups contain a

different number of MAPK genes; some of them are listed in Figure 1

and Table 1. This MAPK signaling cascade works like a chain reaction

as mitogen-activated protein kinsase kinase (MAPKK) is activated by

the upstream of the mitogen-activated kinase (MAPKKK), which, in

turn, activates the mitogen-activated protein kinase (MAPK) (Wang

et al., 2014; Mitula et al., 2015). This full chain of MAPKs is conserved

in plants, which signifies the evolutionary perspective of MAPKs. One

of the most important methods that is triggered by posttranslational

modification of signal transduction is called phosphorylation (Wang

et al., 2019). MAPKKK phosphorylates MAPKK on the conserved

serine/threonine motifs (Rodriguez et al., 2010), which finally brings

about the phosphorylation of TXY (T is threonine, Y is tyrosine, and

X is any amino acid) in MAPKs (Taj et al., 2010).

Transcription factors and downstream kinases activate the cell

after receiving extracellular signals from the activated MAPKs, which

describe the variation of the cellular development factors (Zhang

et al., 2018). The process of transmission and amplification of signals

occurs in stepwise phosphorylation (Hamel et al., 2006). When plants

are encountered by any abiotic stress or wounding, MAPK, as well as

other hormones like ethylene, jasmonic acid, and salicylic acid, are

activated. Studies also suggested that pathogen stimuli also cause the

induction of MAPKs in various plants like alfalfa (Medicago sativa),

rice (Orzya sativa), maize (Z. mays), and potato (Solanum tuberosum)

(Andrasi et al., 2019). Under adverse environmental conditions like

high temperature and water scarcity, MAPKs play a key role in signal

transduction (Muhammad et al., 2019). Studies also have revealed

that MAPK cascade is also activated under salt stress and freezing

temperature (Teige et al., 2004). Shreds of evidence provide the

signaling activation of MAPKs during early wounding in different

plants such as Arbodiposis, apple (Malus hupehensis), poplar
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(Populous alba), and rice, as reported previously (Takahashi et al.,

2011). Recently, manyMAPK genes have been identified, which play a

role under various stress conditions, but there is little knowledge on

the molecular mechanisms of MAPK triggering and signaling

(Figure 1) (Mohanta et al., 2015). The available knowledge about

the molecular characterization of the MAPK gene family under

abiotic stress is summarized owing to need for more information

about MAPK signaling and triggering in many crops. In this review,

we will focus on the action of transcription factors, transcriptomic

studies, and the molecular basis for understanding the biological,

biochemical, and physiological processes of different plants under
Frontiers in Plant Science 03
abiotic stresses. Furthermore, we summarized the classification of

different MAPK gene families in response to abiotic stress in plants

and molecular and cellular signaling pathways in plants for

acclimatization under an adverse environment. After all, many

phosphorylated MAPKs play a role in signal transmission. In short,

incorporating MAPK gene families in plant breeding to produce

stress-smart varieties is another aspect of research in MAPKs. This

review may help to comprehend the ecological importance of MAPKs

in plants to overcome the abiotic stresses for sustainable crop

production and also provide new insights for breeders to

incorporate MAPK gene families in plant breeding program to

produce abiotic stress resistance varieties.
2 Mechanism of MAPKs in crop plants

Plants have acquired different acclimatization strategies under

harsh environmental conditions over time via a number of molecular

systems that consist of sensing, signaling, and expression under stress

conditions by stress-responsive genes (Mahmood et al., 2020).

MAPKs are one of the tools that regulate growth and development,

cell division, proliferation, apoptosis, hormonal response, and other

stress responses by an extremely conserved network. It consists of the

three protein kinases MAPK, MAPKK, and MAPKKK. Sequential

phosphorylation activates these cascades such as activation of

MAPKKK phosphorylates the S/T-X (S/T is a serine/threonine and

X is an arbitrary amino acid) conserved motif that is present in the

activation loop of MAPKK (Rodriguez et al., 2010); then, the

activation of MAPKK phosphorylates the T-X-Y (T is threonine, Y

is tyrosine, and X is any amino acid) in the variant motif present in

the activation loop of MAPK (Taj et al., 2010). Then, these MAPK

cascades send the message in a well-designed manner to the primary

genes responsive to tolerance and then to secondary genes, which

induce tolerance in crops under stress conditions (Hamel et al., 2006).

The MAPK cascades are also phosphorylated by the following

activities such as regulation of microtubule proteins, cytoskeletal

activities, and other transcription factors that help in numerous

responses and phospholipases (Danquah et al., 2014). The

transmission of extracellular stimuli into cells and downstream

kinases is also activated by MAPK cascades (Xu et al., 2010). The

main channel of signal transduction and post-transcriptional

modification is carried out by phosphorylation. The process of

phosphorylation is a post-translational modification process that

alters the expression of downstream genes as well as diffuses and

intensifies the external signals (Colcombet and Hirt, 2008).

One of the wide-ranging gene families is the serine/threonine

protein kinase family of MAPKs, which are protein kinases and are

enzymatic in nature and mediate phosphorylation (Rodriguez et al.,

2010; Xu et al., 2010). Conventionally, MAPK cascades transmit

signals downstream by the activation of the stimulated receptors of

the cell membrane (Wang et al., 2014). By following this mechanism,

MAPKs, after activation, control the expression of many genes and

proteins by the phosphorylation of transcription factors. This

mechanism in plants plays a key role in cell differentiation, cell

growth, development, and hormonal movement, and in response to
A

B

FIGURE 1

(A) Phylogenetic analysis of plant mitogen-activated protein kinases
(MAPKs) and MAPK-likes in 13 plant species following Bayesian
inference. Different colors indicate different species. The monocot
clade and the PP sequence with the atypical MEY activation loop
within the TEY-B clade are marked by asterisks. (B) Phylogenetic
analysis of MAPKKKs in grapevine, apple, tomato, and Arabidopsis
using the neighbor-joining (NJ) tree using MEGA-X with 1,000
bootstraps. Adapted from He et al. (2020) and Janitza et al. (2012),
open-access articles distributed under the terms of the Creative
Commons Attribution License (CC BY).
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various biotic and abiotic stresses (Komis et al., 2018). In crop species,

the MAPK gene families are recognized owing to the many tolerant

genes in abiotic stress response, evident from genetic studies of

MAPK activity in recent years (SŠamajovaı ́ et al., 2013). The

MAPK mechanism is depicted in Figure 2, where extracellular

signals are detected by a plasma membrane and by sensors in

cytoplasm, which act like a chain reaction, leading to the activation

of MAPKKK and, subsequently, MAPKK and, as a result,

phosphorylation of MAPK, which helps in the phosphorylation of

proteins, enzymes, and post-transcriptional factors in the nucleus.

These factors finally send a message to stress-tolerant responsive

genes (Bigeard and Hirt, 2018; Singh et al., 2019). By understanding

this novel mechanism, MAPK genes can be identified in different crop

plants, which may help in maintaining plant growth under various

abiotic stress conditions, but still, there is a limitation due to the

activation of other intricate stress responsive mechanisms.
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3 MAPK complexity in abiotic stress
signaling interaction

Abiotic stresses, such as drought, cold, heat, salinity, and metals,

are closely associated with an adverse influence on the physiology of

plants (Krasensky and Jonak, 2012; Raza, 2021; Raza et al., 2021; Raza

et al., 2022a; Raza et al., 2022b; Raza et al., 2022c; Raza et al., 2022d).

For example, when the temperature rises, water deficiency, salinity,

and osmotic pressure in the tissues of plants may be encountered (Bita

and Gerats, 2013). Likewise, due to salinity and water scarcity, plants

suffer from osmotic stress, and signaling molecules are activated in

response to stress conditions (Rengasamy, 2006). The mechanism of

expression of resistance genes in various plants like maize (Z. mays),

rice (O. sativa), potato (S. tuberosum), and Arabidopsis is regulated

under various abiotic stress conditions, which are activated by

messenger-mediated signal transduction (Zhu, 2016; Zandalinas
FIGURE 2

The receptors after receiving the signals activate the specific mitogen-activated protein kinase (MAPK) proteins that are inactive before. Subsequently,
MAP4K activates other MAPKs (including MAP2K and MAP3K) by phosphorylating the ST (S/T is serine/threonine) and TXY (T is threonine, Y is tyrosine,
and X is any amino acid) motif in MAPKs (Rodriguez et al., 2010; Taj et al., 2010). As a result, MAPKs activate the transcription factors (TFs), enzymes, and
other downstream kinases that transmit extracellular environmental signals to the cells that play a role in growth, development, stress response, and
other physiological and biochemical processes (Zhang et al., 2018).
TABLE 1 Identification of groups of MAPK gene families in different plant species.

Plant species Group A Group B Group C Group D Total References

Arabidopsis 3 5 4 8 20 Cçakır and Kılıcçkaya (2015)

Rice 2 1 2 10 15 Reyna and Yang (2006)

Wheat 11 13 22 63 109 Lian et al. (2012)

Maize 7 7 6 19 39 Wang et al. (2010)

Cotton 4 6 5 12 27 Wang et al. (2016)

Poplar 4 4 4 9 21 Zhao et al. (2018)

Tomato 3 4 2 7 16 Kong et al. (2012)

Apple 5 6 5 10 26 Zhang et al. (2013)

Potato 1 4 2 8 15 Zaynab et al. (2021)
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et al., 2019). The large numbers of stress-responsive genes like MAPK

genes or MAPK cascades participate in a variety of abiotic stresses for

the protection and survival of plants (Ji et al., 2017; Yanagawa et al.,

2017). MAPK gene families have multiple functions in plants, such as

growth and development, immune defense system, and response to

biotic and abiotic stresses. Certain studies also point toward the role

of MAPK cascade in the regulation of cell death and defense

responses (Qiu et al., 2008; Zhou et al., 2017).

Recently, it was also reported that MAPK cascade has a dual

function in plant immunity: the basal resistance is regulated positively

and immunity regulation is facilitated negatively by kinase protein

(Zhang et al., 2012). One case reported in Arabidopsis also provides

evidence that MAPKs play a vital role in pathogen signaling (Doczi

et al., 2007). Furthermore, MAPK cascade mediates Ca2+ reactive

oxygen species (ROS) by signaling during early wounding (Pitzschke

and Hirt, 2009). MAPK pathways regulate the synthesis of ROS, and

certain genes of MAPKs are induced by ROS generation (Colcombet

and Hirt, 2008). H2O2 also plays a key role in activating orthologs of

MAPKs in many crops like tobacco (Nicotiana tobacum) and

Arabidopsis (Xing et al., 2008). MAPK cascade in Arabidopsis

regulates H2O2 metabolism (Nakagami et al., 2006), and in tobacco,

it is an important component in ROS metabolism (Ning et al., 2010).

In maize, H2O2 induces transcription and expression of MAPK

cascade, whereas in tobacco, it protects against ROS-mediated

injury under osmotic stress (Zhang et al., 2010; Kong et al., 2011).

This is due to the different expression patterns of MAPK gene families

under different stresses in different plant species. In maize, the MAPK

network works as an early signaling response by regulating the

production of ROS in plants subjected to drought stress (Gao and

Xiang, 2008).

In later developmental stages, one MAPKKK gene called

MAPKKK20 in Arabidopsis improves salt tolerance (Jammes et al.,

2009). Similarly, water loss by transpiration in the Arabidopsis double

mutant named MPK9/MPK12 is less as compared to its wild type.

Moreover, it was also documented that ABA regulates the

physiological response under abiotic stress (Tajdel et al., 2016). In

Arabidopsis, one MAPKKK gene named MAPKKK18 shows reduced

stomatal opening under normal conditions in mutant plants (Mitula

et al., 2015). Furthermore, this mutant also shows ABA-induced

stomatal closure, which shows that MAPKKK18 is directly

interacting with ABA components, which plays a key role in signal

modulation as SnRK2-6 kinase and PP2C phosphatase ABI1 (Zhang

et al., 2006). An increment of ABA in plants is an indication of

oxidative stress. An abnormal level of ROS causes the oxidation of free

radicals such as hydrogen peroxides, which is called oxidative stress

and leads to the injury of cells and tissues. The MAPK gene families

reinfoirces the ABA-induced antioxidant defense system by

decreasing the ROS production in many crops like maize (Shi

et al., 2011).

Under physiological and biochemical conditions of abiotic

stresses, the intricate role of kinase proteins by signal transduction

of MAPKs still has research gaps. It is required to associate the link

between MAPKs and their corresponding stress in vivo. In the future,

further functional analysis on MAPK members for physiological and

biochemical roles in stress management can be helpful in breeding

programs for innovation and advancement of agricultural science.
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4 Role of MAPKs under abiotic stresses

Plants often experience various abiotic stresses (drought, low and

high temperature, salinity, osmotic, etc.), which significantly affect

their growth, productivity, and nutritional quality (Yu et al., 2019; Sun

et al., 2020; Raza, 2021; Raza et al., 2021; Raza et al., 2022a; Raza et al.,

2022b; Raza et al., 2022c; Raza et al., 2022d). The role of MAPKs

against various abiotic stresses are briefly discussed in the

subsequent sections.
4.1 The role of MAPKs under drought and
oxidative stress

Drought stress is a major environmental factor affecting crops’

growth and productivity, leading to significant socioeconomic

damage (Sinha et al., 2011; Zhang et al., 2018; Raza et al., 2022a).

Drought occurs when water uptake within the plant by root is reduced

due to low moisture in the soil, afflicting root morphology growth and

physiology owing to wilt conditions, and consequently reducing the

annual yield in plants (Aditi et al., 2020; Ahmad et al., 2021; Feng

et al., 2022; Lu et al., 2022; Raza et al., 2022a). Biochemical and

transcriptional studies have elaborated the MAPK response in

drought in grassy and woody plants (Huang et al., 2020). Recently,

it was studied that the MAPK cascade was induced with Arbuscular

mycorrhizal fungi (AMF) inoculation in apple (Malus hupehensis)

seedling following increased expression level of MAPKs such as

MdMAPK16-2, MdMAPK17, and MdMAPK20-1 by 36.93%,

58.14%, and 54.14%, respectively, compared to those that do not

have AMF inoculation (Xu and Chua, 2012). By regulating the RNA

de-capping process in Arabidopsis, MAK6 improves the tolerance to

dehydration (Hua et al., 2006). In Arabidopsis, MAPK gene families

are activated. The promoter RD29, which is a dehydration-responsive

gene via transient expression assay, suggests that MAPK cascade plays

a vital role in drought signaling (Zaheer and Akhtar, 2016). In

Arabidopsis, the transcriptional regulation of 44 MAPKs has been

identified, out of which some are induced by water stress such as

MPK2 , MPK4 , MPK5 , MPK12 , and MAPKKK4 (Moustafa

et al., 2014).

Potato (S. tuberosum L.) is known as one of the drought-sensitive

crops, and serious yield loss has been threatened by drought stress

(Handayani et al., 2019; Sattar et al., 2021), as well as lessened the

quality of potato crops (Iftikhar et al., 2017). Studies revealed that 108

MAPK protein-coding genes have been found in potatoes (Zhu et al.,

2021). More recent studies confirmed that 22 MAPK genes had been

reported in the potato genome, such as StMAPK1 to StMAPK22

(Zaynab et al., 2021; Zhu et al., 2021), of which, six MAPKs have been

related to abiotic stress, as well as six types of plants hormones

(Boguszewska-Mankowska et al., 2020). StMAPK11 response is well

studied for drought stress in potato, and it shows reasonable drought

tolerance in potato when subjected under drought conditions (Zhu

et al., 2021). The drought sensitivity of potato is due to the shallow

root system that cannot explore the moisture from the deeper soil

layers (Kumar et al., 2008). Further studies related to the

characterization of MAPKs in drought stress can help improve the
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gene expression and physiology of potato. Many MAPKs related to

drought stress tolerance are also observed in rice such as MAPKKK

protein drought-hypersensitive mutant1 (DSM1), which shows

reduced ROS generation under water-stressed conditions and

increases the survival of plants under drought stress (Gao and

Xiang, 2008). Overexpression of OsMAPK5, which is an ortholog of

Arabidopsis MAPK3, also acts as a drought-responsive gene. Studies

also suggested that the OsMAPK2 responds to drought stress and salt

stress signaling within 15 min in rice crops, as shown in Figure 3

(Popescu et al., 2009).

Mostly abiotic stresses such as drought, cold, heat, and osmotic

stress interrupt the metabolic equilibrium of the cell, which causes

oxidative stress (Gill and Tuteja, 2010; Mittler et al., 2022; Raza et al.,

2022b). The abnormal level of ROS such as free radicals and non-

radicals leads to damage of specific molecules, which injured the cells

or tissues in broad terms. It is called oxidative stress, which is due to

the oxidation of molecules (Xing et al., 2007; Mittler et al., 2022).

Antioxidants like endogenous or exogenous compounds help in the

removal of ROS. Scavenger enzymes in plants like catalase decompose

H2O2 and overcome oxidative stress. ABA regulates the A. thaliana

CAT1, and MAPKK inhibitor PD98059 delayed CAT1 expression,

which is mediated by ABA signaling (Ning et al., 2010). Under

dehydration stress, the MKK1 and MPK6 mutant in A. thaliana

alter their response to ABA. It was proposed from the above findings

that MKKI–MPK6 controls the metabolism of H2O2 by CAT1 with

the absence of ABA-mediated activation of MPK6 and MMKI

(Nakagami et al., 2006). Plant defense mechanism and salicylic acid

(SA) accumulation are controlled by the CAT2 expression, which is

stimulated by MEKK1 and MPK4 (Colcombet and Hirt, 2008). ROS

metabolism is regulated by the MEKK1–MPK4 pathways (Ning et al.,

2010). Many other MPAKKKs in A. thaliana are activated by H2O2,

such as ANPI, which causes the downstream activation of MPK3 and
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MPK6, as shown in Figure 3 (Ding et al., 2009). These findings suggest

that MAPKs not only are induced by ROS but also control ROS and

arbitrate oxidative stress in crops. Oxidative stress is a communal

response under abiotic and biotic stress as ROS is a conjunction point

to indicate the stress in plants. Recently, ROS-mediated MAPK

signaling in plants has been described. In A. thaliana mutants,

MAPK studies reveal the specific protein association related to ROS

control (Ning et al., 2010). The significant roles of MAPK genes in

different crops like alfalfa (M. sativa), rice (O. sativa), cotton

(Gossypium hirsutum), maize (Z. mays), apple (Malus hupehensis),

potato (S. tuberosum), cucumber (Cucumis sativus), strawberry

(Fragaria vesca), mulberry (Moraceaemorus), and cassava (Manihot

esculenta) under drought condition are mentioned in Table 2. From

the above discussion, it is concluded that many MAPK gene families

in different crops integrate stress-related proteins and regulate

stimulus response. It is necessary to identify and isolate more

MAPK genes for crop improvement.
4.2 The role of MAPKs under cold stress

One of the most critical factors that affect the growth and

development of crops is cold stress or chilling temperatures like

sudden frost and snow, and freezing temperatures cause serious

damage to crop production and quality (Raza et al., 2021; Ma et al.,

2022; Raza et al., 2022c). When plants survive under cold or freezing

temperatures, it is called cold tolerance or winter hardiness (Peng

et al., 2006). The physiological and metabolic status of crops is

changed by the altered expression of many genes during cold

acclimatization (Agarwal et al., 2010; Medina et al., 2016; Raza

et al., 2021; Raza et al., 2022a; Raza et al., 2022c). In Arabidopsis,

MAPK genes like MEKK1, MKK2, MPK4, and MPK6 were shown to
FIGURE 3

The schematic diagram of different mitogen-activated protein kinase (MAPK) signaling molecules under different stress conditions in different crops. Solid
arrows show verified pathways; dashed arrows indicate assumed pathways; question marks indicate unknown cascade components.
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be activated under cold stress (Teige et al., 2004). The cold-sensitive

gene MKK2 does not have any effect on MPK4 or MPK6, which

suggests that MKK2 is an upregulator of MPK4 and MPK6 in low

temperature. This outcome shows that chilling temperature activates

MEKK1, MPK3, MPK4, and MPK6 (Krasensky and Jonak, 2012).

Another MAPKK gene named SbMAPKK in halophytes, such as sea

bean (Salicornia brachiate), shows upregulation under cold stress

(Meng and Zhang, 2013), because cold as well as salt stress induces

some kinase molecules that allow plants to survive under

adverse environments.

Recently, in tomato, CRISPR/Cas9-mediated SlMAPK3 mutants

were used to investigate the relationship between ferulic acid (FA) and

SlMAPK3 under chilling temperatures. It was shown that under low

temperature, i.e., 4°C, FA content increases, which then increases the

FA synthesis-related gene (SlPAL5, SlC3H, and SlCOMT) expression.

However, the knockout of SlMAPK3 inhibited the content of FA and

the expression of those genes compared with the control, which

suggested a close relationship between SlMAPK3 and FA. Plant

response to cold stress depends heavily on the CBF/DREB1 (C-repeat

binding factor/dehydration resistance element binding protein 1)- and

ICE1 (inducer of CBF expression1)-dependent transcriptional

regulatory mechanisms. It has been demonstrated that CBFs may

bind to cis elements in the COR (COLD RESPONSIVE) gene

promoters, sufficiently activating the expression of COR genes and

inducing resistance to cold stress. It was revealed that the FA in tomato

fruit provides resistance to chilling stress by upregulating the gene

expression of the repeat binding transcription factor (CBF), a

transcriptional pathway, in a MAPK3-dependent manner (Shu et al.,

2022). Under cold stress, MKK4/5-MPK3/6 and MEKK1-MKK1/2-
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MPK4, the two MAPK gene mutants, show response to external

stimuli produced by cold stress (Furuya et al., 2013; Pitzschke et al.,

2014). It is also documented that MEKK1-MKK2-MPK4/MPK6

pathways positively regulate the cold response and chilling

temperature tolerance in Arabidopsis (Teige et al., 2004). To induce

the kinase mechanism, MKK2 activity is phosphorylated by MEKK1

under cold conditions (Raina et al., 2013), which further activates

MKK2 that phosphorylates MPK4 and MPK6 (Teige et al., 2004), likely

adjusting downstream molecules to regulate the cellular status. These

findings showed that the MMK2 pathway regulates the freezing

response (Teige et al., 2004). SlMPK3 upregulates the growth of

tomato under low temperature (Yu et al., 2015). In potatoes, it is

reported that the MAPK3 showed a response under cold stress (Zhang

et al., 2017) and chilling temperature stress (Xie et al., 2012). MAPK3

also activates the phosphorylation downstream for ACC synthase and

transcriptional factor OsbHLH002/OsICE1 for chilling outbreaks (Xie

et al., 2012). Under cold stress, MKK2-MPK4/MPK6 cascades are

activated (Teige et al., 2004). In recent years, the MAPK genes in rice

OsMKK6-OsMPK3 have been identified, which are activated in cold

stress (Fu et al., 2012). cDNA library screening revealed another well-

studied MAPKK gene OsMEK1 that showed interaction with OsMAP1,

which is important in freezing temperature tolerance (An et al., 2012).

Under cold stress, the MPKK genes ZmMKK4 (Wu et al., 2011)

and ZmMPK7, as shown in Figure 3 (Osthoff et al., 2019), showed

upregulation in maize. These two genes are found in the nucleus and

control the transcription factors at low temperature. Similarly, five

more MAPKs have been identified, which responds positively in roots

of maize under cold stress (Osthoff et al., 2019). It is described that the

seedlings of cotton at low temperature (4°C) showed optimum growth
TABLE 2 MAPK gene signaling responses in different plants under drought stress conditions.

Plant
species MAPK genes Activation Plant

stage References

Arabidopsis
AtMPK2, AtMPK3, AtMPK4, AtMPK5,
AtMPK12, and AtMKK

Activated at the transcriptional level
Activated by promoter RD29 under dehydration

Seedling Chen et al. (2015)

Alfalfa MsP44, MsMKK4 Activated at the post-transcriptional level Seedlings Chen et al. (2015)

Rice

OsMPK3,4
Activated by the regulation of protein DSM1 (drought-
sensitive mutant1)

Seedling Huang et al. (2020)

OsMKK6
Transcriptionally regulated by drought Seedling

Huang et al. (2020)

OsDSM1 Gao and Xiang (2008)

OsMSRMK2,5 and OsMAPKK1 Activated under combined drought and osmotic stress Seedling
Wang et al. (2010); Chen
et al. (2015)

Cotton GhMAPK2, GhMAPK16 Activated under combined drought and osmotic stress Germination Wang et al. (2007)

Maize ZmMPK2 Activated under reducing water and osmotic pressure Seedling Zhang et al. (2011)

Apple MaMPK Activated at the transcriptional level Seedling Sun et al. (2017)

Potato StMAPK11 Activated by induction of drought and hormone stress Flowering Zhu et al. (2021)

Cucumber CsMAPKs
Activated by the regulation of stress-associated genes and
drought stress

Flowering Wei et al. (2014)

Strawberry FvMAPK5,8 Activated at the transcriptional level Reproductive Zhou et al. (2014)

Mulberry MnMAPK1, MnMAPK2 Negatively activated by drought stress Reproductive Yan et al. (2016)

Cassava MeMAPK
Activated 20% in leaves and 70% in roots under high
drought conditions

Flowering Chinnusamy et al. (2007)
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against cold stress, especially in root cells because of the over-

expression of the MAPK gene named GhMAPK (Zhang et al.,

2011). MAPK genes in different crops like Arabidopsis, alfalfa, blue

mustard (Chorispora Bungeana), cotton, maize, rice, and sea bean

(Salicornia brachiate) under cold and heat stress conditions are

mentioned in Table 3. Cold stress causes severe damage in many

regions of the world. Therefore, research should incorporate MAPK

cascades with the help of modern technologies in breeding resistance

cultivars of different crops by identifying novel MAPK gene families.
4.3 The role of MAPKs under heat stress

Temperature is considered the most essential factor to achieve

optimum metabolic processes, growth, development, and production

of plants (Yin et al., 2014; Haider et al., 2022; Raza et al., 2022c). The

amount of water in cells under different temperatures is a

fundamental feature for cell survival, which is directly proportional

to plant growth and damages the cell structure and organelles and
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reduces productivity (Jiang et al., 2015; Xing et al., 2015; Raza et al.,

2021). High temperature also causes overproduction of ROS due to

the high rate of respiration and photosynthesis, which significantly

affects the growth and development of plants (Li et al., 2012). MAPKs

play an important role under heat stress in plants such as aspen

(Brachypodium distachyon); 60% of genes activated under high

temperature by MAPKs signal transduction cascade (Suri and

Dhindsa, 2008). To date, few studies about heat stress signaling of

MAPKs provide evidence that only specific MAPKs are upregulated

or activated under high temperature stress (Munns et al., 2020). It has

been experimentally proven that MAPK3 is activated under heat

stress and ultra-irradiation and helps to mitigate stress by controlling

the growth of plants (Tuteja, 2007).

Secondly, the heat shock protein HSP70 plays a vital role in

response to heat stress signaling through the HSP gene by the

activation of the MAPK named HAMK in tobacco (Wei et al., 2014).

In cucumber (C. sativus), an MAPK gene named CsMKK4 is activated

after 8 h of heat treatment. Most of theMAPK genes showed activation

under heat stress except CsMPK3 and CsMPK7 (Wei et al., 2014). The
TABLE 3 MAPK gene signaling responses in different plants under cold and heat stress conditions.

Plant species MAPK genes Activation References

Cold

Arabidopsis AtMEKK1,6 Calcium-dependent activation, to regulate vacuolar processing enzyme (VPE) Zhang et al. (2006)

AtMPK1,6 MKK2 is the upstream activator of MPK4 and MPK6 Zhang et al. (2018)

AtMAPKK, AtMKK2

Alfalfa MsSAMK, MsP44MKK4 Activated by cold shock domain-containing proteins (CSDPs) Agarwal et al. (2010)

Blue mustard CbMAPK3 Activated under low temperature Nakagami et al. (2005)

Cotton GhMAPK, GhMAPK2, 7 Activated under 4°C Yang et al. (2019)

Maize ZmMPK3,5 Activated under high accumulation of proline Zhang et al. (2011)

ZmMPK17 Activated under chilling conditions Kong et al. (2011)

Rice OsMSRMK2 Activated at 12°C Meng and Zhang (2013)

OsMAPKK2, 4,6 and 10 Activated by low temperature stress at the transcriptional level

OsMKK6, OsMPK3 Activated by cold shock domain-containing proteins (CSDPs) Xie et al. (2012)

OsMAPK5 Activation under chilling temperature Xiong and Yang, 2003

Sea bean SbMAPKK Activated by cold shock domain-containing proteins (CSDPs) Meng and Zhang (2013)

Tomato SlMPK3 Upregulation under low temperature Yu et al. (2015)

Heat

Rice OsMKK4,6 Activated when temperature increased from 37°C Wen et al. (2002); Kumar et al. (2008)

OsMSRMK2 Activated at high temperature < 37°C Agrawal et al. (2002)

Alfalfa MsHAMK Activated by the activation of heat shock protein. Sangwan et al. (2002)

Potato StMPK1 Activated by high temperature stress at the transcriptional level Blanco et al. (2006)

Cucumber CsMKK4 Activated by the upregulation of heat shock transcription factors (HSFs) Wei et al. (2014)

Strawberry FvMAPKK3 Activated by the upregulation of HSFs Lohani et al. (2020)

Mulberry MnMAPK1,5,6 Activated at 40°C under high temperature Yan et al. (2016)

Tomato SlMPK1 Negitively regulated under high temperature Ding et al., 2018
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upregulated transcript level of FvMAPK3, FvMAPKK1, FvMAPKK3,

FvMAPKK6, and FvMAPKK7 in strawberry (F. vesca) has been

observed under high temperature (Zhou et al., 2014). In the same

way, under heat stress, the gene named FvMAPKK3 is activated (Zhou

et al., 2014). In mulberry (morus) under heat stress, eight MAPK genes

have been identified, which showed upregulation (MnMAPK1,

MnMAPK5, MnMAPK6, and MnMAPK9) and downregulation

(MnMAPK2, MnMAPK3, MnMAPK8, and MnMAPK10) (Yan et al.,

2016). Likewise, under high temperature, the downward growth

regulation of the tomato gene named SlMPK1 is shown (Ding et al.,

2018). The above studies indicated that under heat stress conditions,

MAPK cascade is regulated in plants. MAPK gene families related to

heat resistance is negligible; due to climate change, this stress will be a

severe threat in coming years. This stress can be overcome by

identifying desirable MAPK gene families in commercial crops.
4.4 The role of MAPKs under salinity and
osmotic stress

In plants, there are three major salt tolerance mechanisms,

namely, osmotic pressure tolerance, ionic balance management, and

decreasing the Na+ and Cl− cytoplasmic concentrations (Mohamed

et al., 2022; Raza et al., 2022d). Salinity stress is a very serious threat in

many regions of the world; more than 50% of irrigated soils all over

the world face reduction in the productivity of major agricultural

crops (Shi et al., 2010). Under salt stress, cell membrane and protein

disruption occurs due to the overproduction of ROS in plants, which

is one of serious problems for crops grown under salt conditions

(Nakagami et al., 2005; Raza et al., 2022d).

It was also reported that MAPK proteins are activated when

plants are subjected to salt stress; this leads to speeding up the

expression level of V-H+-ATPase, which increases the tolerance to

salinity stress (Krasensky and Jonak, 2012). In Arabidopsis, a MAPKK

gene named MEKK1 mRNA accumulated in response to high salt

stress. The protein–protein interaction between MMK2/MEK1 and

MPK4MAPKs,MMK21 andMKK2/MEK1MAPKKs, andMPK4 and

MEKK1 was shown by yeast two-hybrid analysis (Teige et al., 2004). It

was also documented that salt stress signal transmission occurred at

two MAPK cascades such asMPK4MAPK cascade with genes named

MEKK1-MEK1/MKK2-MPK4 and MPK6 and a second MAPK

cascade with a gene named p44MAPK involved in salt tolerance in

Arabidopsis, as shown in Table 4. MEKK1 involve as more upstream

of MKK2 and more downstream MAPKs MPK4 and MPK6 under

salinity stress (Teige et al., 2004). MAKs such as MPK6, MPK4, and

MKP1 play a negative role under salinity stress conditions (Faried

et al., 2017). A salt stress-induced MAPK named 46kDa SIMK

showed response under salt stress in alfalfa (Krasensky and Jonak,

2012). In vivo as well as in vitro tolerance to salt stress produced by

upstream kinase named SIMKK intermingles with SIMK by yeast

two-hybrid (Krasensky and Jonak, 2012).

Crops respond to salt stress through different processes like

elimination and appropriation of ions (Na+ and Cl−) into vacuole to

lessen cytotoxicity; research has shown that osmotic stress is also

regulated by MAPKs (Kim et al., 2003). Protective proteins like late
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embryogenesis abundant (LEA) and chaperones, a heat shocking

protein also speed up to defense the negativity of these toxic ions.

MAPKs also respond by conveying signals for osmotic stress to specific

effectors and play a key role to survive in the cell under high salt

concentration. It is already reported that MAPK cascade is activated

under salt and osmotic stress at both transcriptional and protein levels

(Iftikhar et al., 2017). In A. thaliana, genes like AtMEKK1, AtMKK2,

and AtMPK4, as shown in Figure 3, have stress tolerance under salinity

conditions.MMK gene named as SIMKK an upward regulator of SIMK,

a MAPK gene response upregulation in alfalfa under salinity as well as

osmotic stress (Xu et al., 2010). In addition, salicylic acid-induced

protein kinase (SIPK) regulates osmotic stress in tobacco in a very short

time (5 to 10 min) (Ghorbel et al., 2019; Habiba et al., 2021); SIPK is an

Arabidopsis MPK6 homolog in tobacco.

In another study, it was also shown that plant growth recovered

in the overexpression lines of StMAPK3 in potato, and the lethal

effects of osmotic stress and salinity were reduced by the MAPK

gene family (Zhu et al., 2020). The increased content of many

oxidative markers like NaCl, H2O2, polyethylene glycol (PEG), and

menthol is weakened by StMAPK3 overexpression in potato (Zhu

et al., 2020). Similarly, the opposite effect is shown by catalase

(CAT), peroxidase (POD), superoxide dismutase (SOD), and

proline content by StMAPK3. In Arabidopsis, interchangeable

names MPK4 and MPK6 have been identified, whereas salinity

signal responding genes like MEKK1 and MKK2 have also been

recognized (Teige et al., 2004). Salt tolerance is shown by the stress

marker gene MKK2 in transgenic plants. Gene promoters called

RD29A and RD29B were activated by the expression of MKK and

MPK, respectively (Zaheer and Akhtar, 2016), which shows that the

MAPKs regulate upward under salinity and osmotic stress. Many

MPKs (MPK9, MPK10, MPK11, MPK17, and MPK18), MKKs

(MKK7 and MKK9), and MEKKs (MEKK3, MEKK5, MEKK6, and

MEKK7) have been screened for salt and osmotic stress (Moustafa

et al., 2008; Chen et al., 2015). In maize, the MAPK named

ZmSIMK1 was identified as having high salt tolerance by the

overexpression of Arabidopsis transgenic plants. In the same way,

in maize, ZmMPK17 also showed high osmotic stress tolerance by

the activation of Arabidopsis MPK17 (Yang et al., 2019), which

provides an idea that further description and practical study of

MPK17 and its ortholog can provide better achievement in abiotic

stress tolerance gene identification and screening.

It is also described that, in rice, MAPKs control salinity and osmotic

stress; OsMPK4, OsMPK3, OsMSRMK2, OsEDR1, OsEDR1, OsMAPK5,

and OsMAPK4 have been classsified as salinity tolerance genes (Xie

et al., 2012). Salt tolerance and osmotic pressure are also affected by the

activation of OsMPK5 and OsMPK4 in transgenic maize line (Xiong

and Yang, 2003). Over-expressing GhMPK2 shows the osmotic stress

tolerance in transgenic cotton (G. hirsutum) (Yang et al., 2019).

Similarly, cucumber roots and transgenic tobacco seeds showed

overexpression of MAPK genes called CsNMAPK and CsNMPAK,

which showed a germination rate higher than wild type (Gomi et al.,

2005), which proves that CsNMPAK performs better under salt stress

condition in the early stages. Salinity is associated with osmotic stress;

from the above studies, it is strongly depicted that MAPK genes that are

activated under salinity conditions are also upregulated under osmotic
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stress conditions. The MAPK genes in different crops like Arabidposis,

maize, rice, cotton, blue mustard, alfalfa, rice, tobacco, potato, sea bean,

cucumber, tobacco, and potato under salinity stress and Arabidposis,

maize, tobacco, alfalfa, and potato under osmotic stress are mentioned

in Table 4.

The above discussion revealed that many MAPK genes related to

salinity and osmotic stress had been identified, and highly expressed under

saline and osmotic stress conditions. By identifying more MAPK genes in

crops, crop yield and productivity can be improved, and saline soil can be

brought under cultivation.
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4.5 The role of MAPKs under heavy
metal stress

Heavy metal ions play a vital role in the development and growth

as well as in the physiological processes of plants (Lee and Ellis, 2007;

Raza et al., 2022e). However, at higher concentrations, they can have

lethal effects on plant physiology. With the increase in concentration

of heavy metals in the soil, the cellular response of the plants is

activated (Raza et al., 2022e). A novel type of MAPK gene called

OsMSRMK2 in rice is activated when plants have high levels of
TABLE 4 MAPK gene signaling responses in different plants under salinity stress.

Plant
species

MAPK genes Activation Concentration References

Arabidopsis AtMEKK1,2 Activation by accumulation of sodium chloride High salt accumulation Teige et al. (2004); Moustafa et al.
(2008)

AtMPK1,3 Activation of RD29A and RD29B gene promoters Excess of salts Yu et al. (2010)

AtMPK4,6 Activated by phosphatidic acid (PA) Acid accumulation Moustafa et al. (2008)

Maize ZmMPK3,5 Activated under very high salt concentration High amount of salts Wang et al. (2010)

ZmSIMK1 Activated by high salinity Higher salt accumulation Gu et al. (2010)

ZmMKK4 Activated by NaCl accumulation Excess amount of NaCl Kong et al. (2011)

Rice OsMSRMK2,
MAPKK4, 6

Activated in response to high salt and cytotoxicity. NaCl accumulation Agrawal et al. (2002)

OsMAPK5, Activated by salt accumulation Very high concentration Xiong and Yang (2003)

OsMPK3, 4, 5 Activated by accumulation of arsenic stress and salts High arsenic and salt
concentration

Rao et al. (2010)

OsMKK6 Activated in hypersensitivity of other stresses High salinity

OsEDR1 Activated by high salt accumulation Excess salt amount Kim et al. (2003)

OsMAPK4 Activated under salt accumulation NaCl excess amount Rao et al. (2010)

Cotton GhMAPK,
GhMPK2

Activated by salt stress and osmotic adjustment High amount of salts Wang et al. (2007); Zhang et al.
(2011)

Blue mustard CbMAPK3 Activated under salt accumulation High salt accumulation Zhang et al. (2006)

Sea bean SbMAPKK Activated under salt accumulation Water reduction and salt
accumulation

Agarwal et al. (2010)

Cucumber CsNMAPK Activated under salt accumulation Salt accumulation Xu et al. (2010)

Tobacco NtSIPK Activated by salt stress and osmotic adjustment NaCl accumulation Mikolajczyk et al. (2000)

Potato StMAPK3 Activated by salt stress and osmotic adjustment PEG, menthol, and NaCl
treatment

Zhu et al. (2020)

Osmotic stress

Arabidopsis AtMPK1, 4, 6,
and 20

Activated under high salt accumulation and improved
the osmosis

Hyper-osmolarity Droillard et al. (2004); Moustafa et al.
(2008)

AtMKK7,9 Activated under higher NaCl concentration Sodium chloride excess Moustafa et al. (2008)

AtMPK9, 17,18 Activated under higher salt accumulation Hyper-osmolarity Moustafa et al. (2014)

Maize ZmMPK7 Activated under salt accumulation and molecular
imbalance

Hyper-osmolarity Zong et al. (2009)

Tobacco NtSIPK Activated by salicylic acid under high salt concentration Higher osmotic stress Mikolajczyk et al. (2000)

Alfalfa MsSIMK Upstream activation by SIMKK Higher osmolarity Jonak et al. (2004)

Potato StMAPK3 Activated by NaCl (40 mM and 80 mM) Salt accumulation Zhu et al. (2020)
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cadmium, mercury, and copper ions (Yang et al., 2019). Studies have

also confirmed the activation of MAPK genes in rice (O. sativa) with

the high level of cadmium ions (Haider et al., 2021).

Many MAPK genes like SIMK, MMK2, MMK3, and SAMK in

alfalfa (M. sativa) seedling are activated when they are exposed to

copper and cadmium ions stress (Gupta et al., 2009). Studies have also

confirmed that the activation of SIMKK is only under copper ion

stress but not under cadmium ion stress, as shown in Table 5. It was

documented that this MAPK activity is specific in response as specific

treatment indicates the specific signals’ transduction (Yeh et al.,

2004). Involvement of MAPK genes called OsMPK3, OsMPK4, and

OsMKK4 mediated heavy metal stress tolerance in rice seedlings as

shown in Figure 3 (Gupta et al., 2009). In maize (Z. mays), under

heavy metal stress, the activation of MAPK genes has also been

confirmed (Lumbreras et al., 2010). These findings show the role of

MAPKs in signaling activation under various heavy metal stresses.

From the above discussion, except rice, maize, and alfalfa, there

are no other crops in whichMAPK gene families have been identified.

In the near future, heavy metal stress will severely threaten crops due

to climate change and heavy industrialization. The researcher’s job is

to verify the functional roles ofMAPK genes and other mechanisms to

develop heavy metal resistance cultivars.
5 Conclusion

There is growing evidence that the MAPK cascade is the hub of a

sophisticated network structure that transduces signals related to

plant stress tolerance. The MAPK cascade gradually amplifies and

conveys stress signals to downstream response components through

phosphorylation and dephosphorylation, leading to various stress

responses. Furthermore, a better understanding of the MAPK

cascades’ process should make it easier to create new methods for

enhancing plants’ ability to withstand stress. Numerous genetic

engineering methods are available to increase abiotic stress

tolerance in crops. As key players in signal transduction and

regulators of gene transcription, MAPK cascades have already been

used to improve abiotic stress tolerance, as discussed in this review.

Molecular biology analysis of the MAPK cascade’s components and

its function is essential for enhancing crop improvement. Research on
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the function of MAPK genes or the mechanism by which the MAPK

cascade regulates plant stress resistance is still limited, despite many

studies in plants that have demonstrated the involvement of MAPK

cascades in numerous biological processes in response to abiotic and

biotic stresses. In addition, different stress stimuli can activate the

same MAPK cascade genes. The above discussion concludes that the

MAPK cascades and the molecular mechanisms of plant stress

resistance have great significance for elucidating the entire stress

tolerance signal transduction pathway in plants.
6 Future perspective

Abiotic stress in crops helps to expand the tolerance of crops

under different abiotic stresses by various methods of genetic

manipulation. A number of studies recounted that by exploiting

MAPK pathways in crops like Arabidopsis and many other crops

like potato, maize, rice, and poplar, stress tolerance has improved. In

the near future, investigation should include detecting the MAPK

substrate, and by using advanced breeding methods and molecular

methodologies, the development of new lines would be able to

withstand harsh environments to meet the food requirements of the

increasing population. Interacting protein is the main factor that

needs to identify and quantify for producing multiple environmental

stress, also with their mode of action, which is like that (MAPKKK-

MAPKK-MAPK) chain and accumulated into one functional ‘MAPK

transgenic circuits’ which could be inserted into target sequence or

cell through genetic engineering and biotechnology to develop a

tolerance species for specific function having specific kinase protein.

It is important to study the function of MAPKs related to abiotic

stress in crops, and previous studies have confirmed their role in crops

related to abiotic as well as biotic stress. In the future, there is a need

to identify more MAPK gene families in crops related to

environmental stresses and also identify their functional analysis

through advanced methodologies like transcriptomics, proteomics,

metabolomics, bioinformatics, CRISPR/Cas technology, and DNA/

RNA sequencing to encourage analysis of a regulation network that

controls abiotic stress response. In addition, identification and

functional analysis of MAPKs can be further processed by

mutation, gene silencing, and microRNA techniques to produce
TABLE 5 MAPK gene signaling responses in different plants under heavy metal stress conditions.

Plant
species

MAPK genes Stress causing metals Methods Reference

Alfalfa MsMMK2, MsMMK3,
MsSAMK

Cadmium and copper Complex activation pattern of MAPKs: SIMK, MMK2,
MMK3, and SAMK

Jonak et al. (2004)

Rice OsMSRMK2, OsMPK3,4, and
OsMKK4

Mercury, copper, cadmium,
and arsenic

Overexpression of functions of an OsMSRMK2 and MBP
kinase

Agrawal et al. (2002)

OsHMA3 Cadmium Overexpression of a functional allele of OsHMA3 Ueno et al. (2010); Shao
et al. (2018)

OsLCT1 Cadmium Knockdown of OsLCT1 Ueno et al. (2010)

OsNRAMP5 Cadmium CRISPR/Cas9-mediated editing of OsNRAMP5 Uraguchi et al. (2011)

OsHMA3 Cadmium Articulation and tissue restrictions of OsHMA3 Shao et al. (2018)

Maize ZmMPK3 Cadmium Signaling activation of ZmMPK3 Wang et al. (2010)
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transform into crops for tolerance to biotic stresses.
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