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The composition of Pseudostellaria heterophylla (Tai-Zi-Shen, TZS) is greatly

influenced by the growing area of the plants, making it significant to distinguish

the origins of TZS. However, traditional methods for TZS origin identification are

time-consuming, laborious, and destructive. To address this, two or three TZS

accessions were selected from four different regions of China, with each of these

resources including distinct quality grades of TZS samples. The visible near-

infrared (Vis/NIR) and short-wave infrared (SWIR) hyperspectral information from

these samples were then collected. Fast and high-precision methods to identify

the origins of TZS were developed by combining various preprocessing

algorithms, feature band extraction algorithms (CARS and SPA), traditional two-

stage machine learning classifiers (PLS-DA, SVM, and RF), and an end-to-end

deep learning classifier (DCNN). Specifically, SWIR hyperspectral information

outperformed Vis/NIR hyperspectral information in detecting geographic

origins of TZS. The SPA algorithm proved particularly effective in extracting

SWIR information that was highly correlated with the origins of TZS. The

corresponding FD-SPA-SVM model reduced the number of bands by 77.2%

and improved the model accuracy from 97.6% to 98.1% compared to the full-

band FD-SVM model. Overall, two sets of fast and high-precision models, SWIR-

FD-SPA-SVM and SWIR-FD-DCNN, were established, achieving accuracies of

98.1% and 98.7% respectively. This work provides a potentially efficient

alternative for rapidly detecting the origins of TZS during actual production.
KEYWORDS

Pseudostellaria heterophylla, geographical origin, hyperspectral imaging, machine
learning, deep learning
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1 Introduction

Pseudostellaria heterophylla (Miq.) Pax, also known as Tai-zi-

shen (TZS), is a perennial herbaceous plant belonging to the

Caryophyllaceae family (Li et al., 2016). Its roots have a long

history of use as medicinal and edible plants in Asian countries,

including China and Korea. This plant is renowned for its safety and

its content of polysaccharides, saponins, cyclopeptides, sterols, oils,

and other volatile oily substances, which contribute to enhancing the

human immune system (Wong et al., 1994). TZS is commonly

employed as a substitute for ginseng and American ginseng,

addressing issues such as loss of appetite and serving as a potent

tonic. Wild TZS resources are widely distributed in various provinces

of China, such as Fujian, Guizhou, Jiangsu, and Anhui. However, the

composition of TZS varies among different geographical origins. To

evaluate TZS quality based on polysaccharide and saponin content, it

is crucial to consider cultivated plants from specific regions, such as

Jiangsu Province and Fujian Province (Shi et al., 2013). Therefore,

distinguishing the origins of TZS is significant.

Most traditional methods used to identify the origins and grades

of herbs rely on external characteristics such as shape, color,

microstructure, and odor. However, the similarity of the external

features of TZS makes it difficult to detect their origins and grades,

especially after processing (Wu et al., 2018). Currently, the

identification of TZS is conducted through techniques like High-

Performance Liquid Chromatography, Gas Chromatography-Mass

Spectrometry, ninhydrin color, and other analytical methods that

aim to detect specific active components (Lin et al., 2011). However,

these methods are time-consuming, labor-intensive, expensive, and

require the use of large quantities of organic solvents, which can

potentially harm the environment. Thus, there is an urgent need for

a rapid and accurate analytical method to determine the origins

of TZS.

Today, hyperspectral imaging (HSI) is widely utilized in agri-

food product quality and safety control (Lu et al., 2020; Tian et al.,

2023). The HSI combines conventional imaging and spectroscopic

techniques to present a hypercube with one spectral dimension and

two spatial dimensions. This allows it to provide both spatial and

spectral information about the sample (Zareef et al., 2021). This

information is closely related to the chemical composition and

physical properties of the sample (Delwiche and Kim, 2000).

Therefore, the HSI technique has attracted considerable attention

in distinguishing between similar groups of biological materials

such as maize (Wang et al., 2022), wheat (Zhang et al., 2018; Zhang

et al., 2022b), wolfberries (Zhang et al., 2020a; Dong et al., 2022).

Artificial intelligence technology has assumed a crucial role in

numerous global domains. Machine learning (ML) is an essential

approach in studying artificial intelligence. In recent years, the ML

field has experienced a significant transformation owing to the

development of novel deep learning (DL) classifiers. DL, with its

capacity to comprehend intricate and representative patterns from

vast datasets, has found applications across diverse domains.

Shallow Convolutional Neural Networks (CNN), representative

algorithms for DL, have been proven by previous studies to be

ideal for analyzing and processing HSI data (Liu et al., 2020; Zhang

et al., 2022a). The complexity of traditional neural networks is
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reduced by a simple network structure. The “end-to-end” design

concept, coupled with the hidden-neuron network structure,

empowers us to autonomously extract relevant data features and

optimize large datasets for accurate target classification (Fu et al.,

2018). To the best of the researcher’s knowledge, the combination of

HSI and DL algorithms to recognize the geographical origins and

quality grades of TZS has not been reported yet.

Therefore, in this study, we utilized HIS combined with DL and

ML techniques for the evaluation of the geographical origins of

Pseudostellaria heterophylla (Miq.) Pax (TZS). The successive

projection algorithm (SPA) and competitive adaptive weighted

sampling (CARS) were employed to extract spectral information

that is highly correlated with the origins of TZS. ML methods, such

as partial least squares discriminant analysis (PLS-DA), random

forests (RF), and support vector machines (SVMs), were also

compared as modeling approaches alongside deep convolutional

neural network (DCNN) architectures.
2 Materials and methods

2.1 Sample preparation

The TZS samples utilized in this study were collected from four

distinct geographical regions in China, including Guizhou, Fujian,

Jiangsu, and Anhui Provinces. To improve the applicability of the

model, we attempted to increase the complexity of the sample

composition. Two or three germplasm resources for each

geographical region were selected for this reason, encompassing

different quality grades of TZS (Table 1). We randomly selected

3249 samples from the TZS accessions, covering all three quality

grades. The quality grades of TZS samples were determined

according to the commercial grades for Chinese materia medica-

PSEUDOSTELLARIAE RADIX (T/CACM 1021.127-2018).

Specifically, the first-grade samples were characterized by roughly

straight shapes, with diameters of the thickened root section greater

than or equal to 0.4 cm and individual weights greater than or equal

to 0.4 g. Similarly, the second-grade samples also had roughly

straight shapes, with diameters of the thickened root section greater

than or equal to 0.3 cm and individual weights greater than or equal

to 0.2 g. In contrast, the third-grade samples were classified as bent,

with diameters of the thickened root section below 0.3 cm and

individual weights below 0.2 g. Additionally, to capture

comprehensive spectral information of the TZS, both sides of

each sample were scanned using visible and near-infrared (Vis/

NIR) as well as shortwave infrared (SWIR) hyperspectral

instruments. Consequently, a total of 12996 hyperspectral images

of the TZS samples were obtained. Typical TZS images from

different origins and quality grades are shown in Figure 1.
2.2 Hyperspectral image acquisition
and correction

The hyperspectral imaging (HSI) system comprised

instruments for both Vis/NIR and SWIR spectral ranges. The Vis/
frontiersin.org
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NIR instrument consists of a GaiaField Pro-V10E spectrometer

(Specim, Spectral Imaging Ltd., Finland), a high-resolution camera

(Sichuan Dualix Spectral Imaging Technology Co., Ltd., China),

and two 150 W halogen light sources. The SWIR instrument is

composed of a GaiaField Pro-N17E-HR spectrometer (Specim,

Spectral Imaging Ltd., Finland), a shortwave infrared high-
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resolution camera (Sichuan Dualix Spectral Imaging Technology

Co., Ltd., China), and two 150 W tungsten halogen lamps. These

two instruments employed a sample stage that was electrically

positioned and controlled by a stepper motor. A computer

equipped with SpecView Software (Sichuan Dualix Spectral

Imaging Technology Co., Ltd., China) was provided. The
FIGURE 1

Typical TZS samples from Guizhou (GZ), Jiangsu (JS), Anhui (AH) and Fujian (FJ) Provinces. The numbers “1, 2, 3” on the left represent the different
quality levels of TZS.
TABLE 1 The geographical origins and quality grades of TZS.

Geographical origins Name Year
Number of samples in different quality grades

1 2 3

Fujian province

Zheshen 1 2022 96 82 80

Zheshen 4 2022 82 84 84

Landrace 1 2023 104 104 102

Guizhou province

Guishen 1 2023 92 92 92

Landrace 1 2023 96 88 90

Landrace 2 2023 81 90 92

Jiangsu province
Landrace 1 2023 132 132 132

Landrace 2 2023 132 136 134

Anhui province

Xuanshen 1 2023 92 90 92

Xuanshen 2 2023 92 90 90

Xuanshen 3 2023 92 90 92
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instruments mentioned above were enclosed within a box featuring

a black inner surface, thus constituting the HSI system.

To eliminate errors like baseline drift, the HSI system should be

preheated by powering it on for 30 minutes before image collection.

Subsequently, non-deformed three-dimensional hyperspectral

images (x, y, l), commonly known as “hypercubes”, were

obtained by placing the TZS samples on the platform. To obtain

high-quality hyperspectral reflectance images of the TZS samples,

the Vis/NIR-HSI image acquisition parameters of motor speed,

exposure time, and object distance were set at 1.18 cm/s, 7.2 ms, and

25 cm through several attempts. Similarly, the SWIR-HSI image

acquisition parameters of motor speed, exposure time, and object

distance were adjusted to 1.5 cm/s, 4.5 ms, and 25 cm after several

attempts. Hyperspectral image correction was then conducted by

using white and black references according to the method depicted

in Zhang et al. (2020b).
2.3 Spectral data extraction

Each TZS sample was then considered as a region of interest

(ROI) and was segmented from the black background by threshold

segmentation. The difference between the sample and the

background reflectance was maximum at the 801.05 nm band

(Vis/NIR) and 1005.67 nm band (SWIR), so every sample was

segmented at these bands separately. The spectra of pixels belonging

to the same TZS sample were averaged to derive average spectra,

which were then utilized for discrimination analysis purposes. The

head and tail bands were eliminated from the spectra to minimize

the effects of instability stemming from random noise.

Consequently, 673 bands from 400.20 nm to 999.75 nm for the

Vis/NIR and 482 bands from 900.96 nm to 1700.43 nm for the

SWIR hypercubes were utilized for future analysis.
2.4 Spectral data preprocessing

To minimize the potential effects of overlapping or light noise

across different spectral wavelengths (Alchanatis et al., 2005), as

well as to assess the impact of various pre-processing methods on

the classification of TZS origins, several spectral pre-processing

techniques were investigated and applied to the raw spectra. The

evaluated pre-processing techniques included standard normal

variate (SNV) (Barnes et al., 1989), Detrend (DT), and Savitzky–

Golay first derivative (FD) (Zhang et al., 2020b).
2.5 Multivariate data analysis

In this study, various machine learning algorithms were

employed, including traditional two-stage methods such as partial

least squares discriminant analysis (PLS-DA), support vector

machine (SVM), and random forest (RF), as well as an end-to-

end deep learning algorithm known as the deep convolutional

neural network (DCNN). The purpose of these algorithms was to

distinguish TZS samples into different origin groups.
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2.5.1 Traditional two-stage machine
learning algorithms

PLS-DA is a widely practiced classifier that is considered a

supervised technique that maximizes the distinction between

different groups of samples (Nie et al., 2019). RF is an ensemble

learning algorithm developed by Leo Breiman, inspired by the earlier

work of Amit and Geman (Breiman, 2001). RF offers several

advantages, including fast training speed, few tuning parameters,

and the ability to handle high-dimensional data effectively. At its core,

RF is a collection of decision trees that work together to make

predictions (Tian et al., 2021). SVM is a non-probabilistic, linear,

binary classifier used to classify linear and nonlinear data by learning

a hyperplane. In nonlinear classification, SVM uses a kernel function

to map original data to high-dimensional data and build hyperplanes

to optimally classify the closest training samples in different classes

(Burges and discovery, 1998; Wang et al., 2023). In this study, the

radial basis function (RBF) kernel was selected for the SVM algorithm

and the penalty coefficient c and kernel parameter g were optimized

by a grid search procedure in the range of 2−8–28 through five-fold

cross-validation.

2.5.2 Deep learning algorithms
The DCNN is a widely recognized deep learning architecture

that is inspired by the visual perception mechanisms found in living

organisms (Zhang et al., 2019). A one-dimensional DCNN was

developed as the primary classifier to process the data from each

source. The DCNN architecture consisted of three convolutional

blocks, one flattening layer, and five fully-connected layers. Each

convolutional block comprised convolutional, batch normalization,

maximum pooling, and dropout layers. To extract local features

from the spectral information effectively, while reducing its

dimensions and enhancing non-linearity, we utilized 1×3

convolution kernels with a stride and padding of 1 (Yu et al.,

2021). The first and second convolutional layers were configured

with 32, 64, and 128 filters, respectively.

Utilizing rectified linear units (ReLUs) in the DCNN resulted in

faster training and helped mitigate model overfitting compared to

networks using older units (Nie et al., 2019). To facilitate learning and

reduce the emphasis on initialization, batch normalization was

applied before each dense layer and after each convolutional layer

(Ioffe and Szegedy, 2015). The fully connected (Fc) layers were

composed of 512, 128, 64, 32, and 4 neurons, respectively. To

convert the DCNN output into probabilities for each category, a

softmax function was introduced to the activation function of Fc5

(Kumar et al., 2022). The categorical cross-entropy loss function was

employed to measure the distance between the probability

distribution of the DCNN output values and the true values. To

minimize the loss function, we utilized an adaptive moment

estimation algorithm with a learning rate of 0.001, beta_1 of 0.9,

and beta_2 of 0.99 (Yu et al., 2021).
2.6 Model implementation and evaluation

The sample data were randomly divided into training and

validation sets in a ratio of 7: 3. The classification accuracy, which
frontiersin.org
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was used to evaluate the performance of the models, was

determined by calculating the ratio of correctly classified samples

to the total number of samples. The diagrams were developed using

Origin Pro 9.0 (Origin Lab Corporation, Northampton, MA, USA).

MATLAB R2019b (The MathWorks, Natick, MA, USA) was

utilized for spectrum extraction, spectrum preprocessing, and ML

model development. The DCNN model was built using Keras, a

renowned deep-learning framework (https://keras.io/zh/).
3 Results and discussions

3.1 Reflectance spectral characteristics of
the samples

The raw reflectance spectra of all the TZS samples from

different origins were presented in Figure 2, covering the

spectral ranges of 400-1000 nm and 1000-2000 nm. For the

same spectral range, the TZS from different origins exhibited

similar trends in general. This was similar to the previous

researches conducted on discriminating maize varieties,

determining the geographical origin of wolfberries, and

assessing the quality of potatoes (López-Maestresalas et al.,

2016; Dong et al., 2022). Although the spectral curves exhibited

similar trends across various origins, there were variations in

reflectance intensities. This discrepancy suggested that while the

types of internal substances were similar, their concentrations

differed among the different origins.
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3.2 Preliminary principal component
analysis to explore natural clustering of
TZS samples

Two Principal Component Analysis (PCA) models were

initially developed using the Vis/NIR and SWIR spectra of the

TZS samples with the aim of observing the initial structure of the

data from different geographically originated samples and detecting

any anomalies among the samples. Three principal components

(PCs) were selected for the Vis/NIR range, which accounted for

98.4% of the total variance (Figure 3A). Similarly, three PCs were

chosen for the SWIR range, explaining 99.0% of the total variance

(Figure 3B). According to the analysis, significant overlap between

samples from different origins was observed in both spectral

regions. It was worth noting that the distribution patterns of

samples from different origins between the two spectral regions

varied to some extent. In the Vis/NIR range, the samples of TZS

from Jiangsu origin were slightly separated from the samples of

other origins. Yet, this was not observed in the SWIR region. These

differences provided a theoretical basis for further in-depth mining

of the data in the two spectral regions separately.
3.3 Classification models based on
full wavelengths

The PLS-DA, RF, SVM, and DCNN classification models were

constructed by combining the SNV, DT and FD algorithms based
B

C D

A

FIGURE 2

Raw and average spectra of TZS samples in the range of Vis/NIR and SWIR. (A) Raw spectra and (C) average spectra of TZS samples in the range of
Vis/NIR; (B) Raw spectra and (D) average spectra of TZS samples in the range of SWIR.
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on the spectral data from the Vis/NIR and SWIR regions as the

input matrices, respectively (Table 2). The loss and accuracy curves

for the optimal model were depicted in Figure 4. The loss value of

the discriminative model continuously decreased as the number of

iterations increased. Still, the precision increased and ultimately

stabilized, indicating that the FD-DCNN model converged

properly. In all cases, the discriminative performance of the

models using SWIR spectra was superior to those using Vis/NIR

spectra. The prediction accuracies of the models in the Vis/NIR
Frontiers in Plant Science 06
region were lower than 91.4%, while the SWIR models could reach

98.7% accuracies. The selection of sensor type (information source),

pretreatment methods, and classifier collectively influence the

discrimination accuracy of the models to varying extents.

Compared to the SNV and DT algorithms, the FD algorithm

exhibited superior preprocessing performance in both the visible

and near-infrared regions. This suggested that FD might be an ideal

preprocessing method to improve the signal-to-noise ratio of

spectra associated with the origin of TZS. Additionally, in the
BA

FIGURE 3

Scores scatter plots of Vis/NIR and SWIR spectra of TZS from four geographical origins. (A) Vis/NIR spectra; (B) SWIR spectra.
TABLE 2 Results of classification models based on individual spectral region datasets.

Ranges Models Treatments Parameters
Classification accuracy (%)

Training set Validation set

Vis/NIR

PLS-DA

Raw LV: 12 88.6 86.1

SNV LV: 9 84.3 82.9

DT LV: 6 66.6 66.7

FD LV: 10 88.3 85.7

RF

Raw T: 200; L: 1 100.0 71.1

SNV T: 200; L: 1 100.0 81.6

DT T: 200; L: 1 100.0 79.1

FD T: 200; L: 1 100.0 85.1

SVM

Raw
C: 1000000.0,
gamma: 0.0001

98.0 56.2

SNV
C: 100000.0,

gamma: 0.0001
98.1 80.5

DT
C: 1000000.0,
gamma: 1e-05

98.0 73.7

FD
C: 100000.0,
gamma: 1e-06

96.1 90.0

DCNN

Raw — 68.9 68.5

SNV — 64.7 63.4

DT — 70.5 69.4

FD — 94.8 91.4

(Continued)
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SWIR range, the model built with DCNN combined with FD

pretreatment algorithm exhibited the highest precision, achieving

98.7% discrimination accuracy for the four origins of the TZS

samples. Interestingly, the FD-SVM and FD-RF models also

obtained satisfactory classification accuracies with validation sets

of 97.6% and 96.8%, respectively. The confusion matrices of the

models for the SWIR region were illustrated in Figure 5, which

revealed that the FD-SVM and FD-DCNN models not only

achieved desirable accuracies in terms of total correctness, but

their accuracies were still high (>95.6%) for each origin category.

With regard to the application of the model, we sought to reduce

both the associated equipment costs and the time required for

model prediction. Consequently, further research was carried out to

extract a smaller number of feature bands from the SWIR spectra to

establish a more efficient discrimination method.
3.4 Selection of effective wavelengths

An appropriate wavelength selection method is crucial as it not

only reduces the number of wavebands but also helps eliminate

irrelevant, noisy, or collinear variables, thereby improving the

modeling precision (Liu et al., 2022). Moreover, different

wavelength selection methods are based on different algorithm

principles, which can lead to varying modeling results when

applied to different types of datasets. It is important to carefully
Frontiers in Plant Science 07
consider the characteristics of the dataset and choose a wavelength

selection method that best suits the specific needs. In this study,

CARS and SPA were utilized to select the effective wavelengths

(EWs) from the SWIR spectra that would potentially contain the

most valuable information regarding the geographical origins of

TZS samples.

The randomness of the Monte Carlo sampling resulted in

inconsistent results for every operation of the CARS approach

and the optimal results after 10 CARS selections were chosen to

obtain a relatively optimal combination of bands (Figure 6). Under

the exponential decay function, the number of bands decreases

rapidly at the beginning of the sampling, but with the sampling

number increasing, the rate of decrease of the band number slows

down gradually (Figure 6A). As shown in Figure 6B, the RMSECV

values showed an overall trend of decreasing and then increasing

with the sampling times, and the RMSECV values were the lowest

when the number of sampling times reached 47. Combined with

Figure 6C, it was observed that the RMSECV value was the smallest

at the 47th sampling (* denotes), meaning that the subset

containing 32 variables selected for this sampling was the key to

determining the origins of TZS. The SPA method establishes a

multiple linear regression model for different subsets of bands one

by one and calculates the RMSEP values when selecting the optimal

bands, where the subset corresponding to the smallest value is the

optimal subset of bands. As shown in Figure 6D, the RMSEP values

show an overall decreasing trend with the increase in the number of
TABLE 2 Continued

Ranges Models Treatments Parameters
Classification accuracy (%)

Training set Validation set

SWIR

PLS-DA

Raw LV: 7 86.6 87.8

SNV LV: 8 88.6 90.9

DT LV: 8 88.7 90.8

FD LV: 8 88.2 88.7

RF

Raw T: 200; L: 1 100.0 79.4

SNV T: 200; L: 1 100.0 91.5

DT T: 200; L: 1 100.0 90.9

FD T: 200; L: 1 100.0 96.8

SVM

Raw
C: 464158.8,
gamma: 1e-05

97.1 76.1

SNV
C: 100000.0,

gamma: 0.0001
98.9 68.8

DT
C: 10000000.0,
gamma: 1e-06

98.3 95.0

FD
C: 10000.0,
gamma: 1e-05

98.3 97.6

DCNN

Raw — 68.3 67.6

SNV — 93.0 93.4

DT — 94.9 94.1

FD — 99.6 98.7
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bands. When the number of bands reaches 110, the RMSEP value

minimizes to 0.444 and then slightly increases. The specific

descriptions of the EWs screened with the CARS and SPA

algorithms are listed in Table 3.
3.5 Classification models based on EWs

After applying the CARS and SPA algorithms to select the

essential wavelengths (EWs), simplified PLS-DA, RF and SVM

models were developed to determine the geographic origins of

TZS (Table 4 and Figure 7). The models exhibited different

performances, indicating that the choice of wavelength selection

method had varying effects on the discriminative models of TZS

origins. The performance of the CARS-RF and SPA-RF models

exhibited a slight degradation compared to the full-band FD-RF

model. Additionally, both SVM and RF models based on the CARS

method performed worse than the SPA-based SVM and RF models.

This discrepancy might be attributed to the limited number of EWs

selected by CARS, leading to the elimination of some EWs

containing crucial information about the TZS origins.

Remarkably, the SPA-SVM model based on 110 EWs obtained

the optimal discriminative accuracy with 98.4% for the training set

and 98.1% for the validation set. Although it was slightly worse than

the full-band FD-DCNN model (training set of 99.6% and

validation set of 98.7%), it outperformed the full-band FD-SVM

model (training set of 98.3% and validation set of 97.6%). These

results indicated that compared to CARS, the SPA algorithm is
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preferable for extracting the SWIR information that is highly

correlated with the TZS origins.

An additional analysis was performed on the extracted EWs

from SPA, as shown in Table 3. This analysis revealed that most of

the EWs were concentrated in specific regions of the spectra,

indicating a potential relationship between the origin and

chemical composition of TZS. The wavebands around 970 nm are

associated with O-H second overtone stretching vibration and C-H

stretching third overtone, which are related to sugar and cellulose,

respectively (Theanjumpol et al., 2013). The bands between 1050

nm and 1200 nm, as well as 1300 nm and 1500 nm, are the main

characteristic spectral regions that represent the 20 amino acids

found in proteins. The 1050-1200 nm region primarily consists of

the second overtone of C-H, while the 1300-1500 nm region is

mainly composed of the combined frequency of C-H, reflecting the

differences in amino acid composition among different samples

(Weinstock et al., 2006; Jin et al., 2022).
3.6 Optimal model validation
and visualization

Apart from the 3249 TZS samples used for modeling, an additional

320 samples (80 TZS per origin) were selected for external validation

and visualization of the optimal model (FD-DCNN). The visualization

of the validation results is shown in Figure 8. The origin of TZS was

marked with different colors, with red representing TZS identified by

the model as originating from Guizhou (GZ) Province, pink
FIGURE 4

The loss and accuracy curves of the FD-DCNN model based on the SWIR.
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representing TZS identified by the model as originating from Jiangsu

(JS) Province, purple representing TZS identified as originating from

Anhui (AH) Province, and blue indicating TZS identified as originating

from Fujian (FJ) Province. It can be seen that all TZS from Guizhou,

Jiangsu, and Fujian provinces were correctly recognized (100%). One

sample in the Anhui group was incorrectly identified as TZS from

Guizhou Province with a precision of 98.8%. The results of this external
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validation were consistent with the results of the FD-DCNN model,

indicating that the discrimination model developed in this study for

TZS had excellent robustness.

Previous studies on the discrimination of the origin of TZS are

based on only one variety from one origin (Wu et al., 2018;

Pan et al., 2020), overlooking the disturbances caused by the

genetic background and grade differences, which leads to the
FIGURE 5

The confusion matrices of the PLS-DA, SVM, RF and DCNN models on the prediction set using different preprocessed SWIR spectra.
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limited application of the model. Our methodology considered the

representativeness of the samples and the applicability of the

approach by selecting two or three germplasm resources for each

geographical region. Furthermore, each germplasm resource

included different quality grades of TZS (Table 1), enhancing the

comprehensiveness of the analysis.

In the analysis of the two spectral ranges used in this study, the

models within the range of 900.96~1700.43 nm demonstrated superior
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performance compared to the models within the 400.20~999.75 nm

range. The correct classification rates for the prediction set ranged from

67.6% to 98.1% for the 900.96~1700.43 nm range (Tables 2, 4), while

they ranged from 56.2% to 91.4% for the 400.20~999.75 nm range

(Table 2). This difference in accuracy can be attributed to the fact that

the spectra in the 900.96~1700.43 nm range provide information about

the stretching vibrations of C-H, O-H, and N-H, which are caused by

starch, protein, cellulose, and water in the TZS. On the other hand, the
TABLE 3 Specific description of the selected EWs by SPA and CARS.

Methods No. EWs

CARS 32

919.24 930.88 934.2 935.86 959.13 969.11 975.75 1117.03

1130.33 1131.99 1143.63 1148.61 1150.28 1168.56 1175.21 1245.02

1286.57 1341.42 1377.98 1381.31 1382.97 1384.63 1391.28 1407.9

1409.56 1417.88 1421.2 1434.5 1574.11 1632.29 1635.61 1640.6

SPA 110

907.61 909.27 910.93 922.57 924.23 929.21 934.2 940.85

945.84 947.5 949.16 954.15 955.81 959.13 965.78 969.11

987.39 989.05 990.71 1002.35 1004.01 1005.67 1007.33 1012.32

1017.31 1018.97 1020.63 1025.62 1027.28 1032.27 1033.93 1035.59

1043.9 1048.89 1050.55 1058.86 1062.18 1063.85 1065.51 1078.8

1080.47 1092.1 1093.76 1095.43 1105.4 1108.72 1110.38 1113.71

1115.37 1118.7 1120.36 1128.67 1131.99 1138.64 1145.29 1151.94

1158.59 1188.5 1213.44 1215.1 1218.42 1228.39 1230.06 1240.03

1241.69 1245.02 1256.65 1283.24 1284.91 1311.5 1313.16 1328.12

1329.78 1333.11 1341.42 1346.4 1349.73 1361.36 1364.69 1366.35

1369.67 1376.32 1377.98 1384.63 1391.28 1407.9 1414.55 1419.54

1431.17 1432.83 1436.16 1437.82 1446.13 1487.68 1489.35 1491.01

1492.67 1495.99 1502.64 1504.3 1505.97 1509.29 1510.95 1584.09

1600.71 1628.96 1638.94 1643.92 1645.58 1648.91
fr
B

C

D
A

FIGURE 6

The process of extracting EWs with CARS and SPA. (A) Number of preferred EWs with CARS; (B) The root mean square error of cross-validation
variation with CARS; (C) Regression coefficient path map with CARS; (D) Extraction of EWs with SPA.
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TABLE 4 Results of simplified classification models based on SWIR spectra.

Models EWs selection methods Number of EWs Parameters
Classification accuracy (%)

Training set Validation set

PLS-DA
CARS 32 LV: 7 86.1 87.9

SPA 110 LV: 9 89.2 90.9

RF
CARS 32 T: 50; L: 1 100.0 95.8

SPA 110 T: 50; L: 1 99.9 97.0

SVM

CARS 32
C:10000000.0,
gamma: 1e-06

97.6 84.7

SPA 110
C:10000.0,

gamma: 0.0001
98.4 98.1
F
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FIGURE 7

The confusion matrices of the simplified PLS-DA, SVM and RF models on the prediction set.
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wavelengths between 400.20 and 999.75 nm primarily reflect the color

and pigment information in the TZS. Hou et al. (2015) conducted an

analysis of the chemical compositions in P. heterophylla from different

origins using UPLC-Triple TOF-MS/MS. The study identified 21

distinct chemical components, including maltotriose, sucrose,

thyronine, inosine triphosphate, pseudostellarin A, pseudostellarin B,

pseudostellarin D, pseudostellarin F, heterophyllin A and sphinganine.

Compared with other origins, the levels of pseudostellarin D,

pseudostellarin E, pesudostellarin A, heterophyllin A, pseudostellarin

F, isobutyrylglycine in P. heterophylla from Fujian were higher. Sucrose,

ferulic acid, canthaxanthin, maltotriose, pseudostellarin D in P.

heterophylla from Guizhou were richer than those of other origins

(Sha et al., 2023). Hence, it is reasonable to hypothesize that spectral

differences resulting from variations in chemical composition, rather

than color and pigmentation information, may play a crucial role in

studying the traceability of the origin of Pseudostellaria heterophylla.

Notably, our work takes a novel approach by using hyperspectral

imaging (HSI) in conjunction with deep learning (DL) techniques to

assess the geographical origins of TZS. Wu et al. (2018) highlighted

the efficiency of using Raman spectroscopy combined with MSC-SG-

CARS-PLS-DA to discriminate P. heterophylla from different regions.

Similarly, Pan et al. (2020) demonstrated that NIR spectroscopy in

combination with Row-center-SG-CARS-PLS-DA could be effective

in distinguishing the P. heterophylla from different regions. Further to

this, this research conducted a comparison between two feature band

extraction algorithms, namely CARS and SPA. The results showed

that the SPA algorithm was preferable for extracting SWIR

information, which was highly correlated with the TZS origins

(Table 3 and Table 4). Furthermore, we compared the traditional

two-stage machine learning algorithms (PLS-DA, SVM, and RF) with

the end-to-end deep learning algorithm (DCNN). Our findings

demonstrated that both SVM and DCNN classifiers outperformed

PLS-DA and RF classifiers in terms of origin identification of TZS

(Table 2 and Figure 5). Several previous studies indicated that

nonlinear models, such as SVM, were superior to linear models in

solving the seed classifications (Qiu et al., 2018; Wakholi et al., 2018;
Frontiers in Plant Science 12
Zhao et al., 2018). For the first time, our work further argued this on

geographic origin recognition in TZS.
4 Conclusion
In this study, the visible near-infrared (Vis/NIR) and short-

wave infrared (SWIR) hyperspectral information from different

origins of TZS samples were collected. By combining various

preprocessing algorithms, feature band extraction algorithms,

traditional two-stage machine learning, and end-to-end deep

learning classifiers, we developed fast and high-precision

identification methods to discriminate TZS origins. The specific

conclusions drawn from this study are as follows:
1) The model accuracy based on SWIR HSI for identifying the

geographical origins of TZS was higher compared to that

based on Vis/NIR HSI. The best model accuracy using Vis/

NIR HSI was 91.4%, while the optimal model accuracy

using SWIR HSI could reach up to 98.7%.

2) The SPA algorithm was suitable for extracting SWIR

information, which was highly correlated with the origins

of TZS. The corresponding FD-SPA-SVM model not only

reduced the number of bands by 77.2% but also improved

the model accuracy from 97.6% to 98.1% compared to the

full-band FD-SVM model.

3) Two sets of fast and high-precision methods were developed

to distinguish between different geographic origins of TZS.

The traditional two-stage machine learning classifier

achieves optimal performance by employing the SVM

model with FD pretreatment and the variable selection

method of SPA. In contrast, the end-to-end deep learning

classifier achieves optimal discrimination by solely applying

FD preprocessing combined with DCNN. The total

accuracies of the SWIR-FD-SPA-SVM model and the
FIGURE 8

Detection visualization of TZS samples from Guizhou (GZ), Jiangsu (JS), Anhui (AH) and Fujian (FJ) Provinces.
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Fron
SWIR-FD-DCNN model for identifying TZS origins were

98.1% and 98.7%, respectively.
This work provides a potentially perfect tool for herbal

companies and market regulators to widely identify the origins of

TZS across various genetic backgrounds and quality grades.
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