
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Dun Wang,
Northwest A&F University, China

REVIEWED BY

Olarik Surinta,
Mahasarakham University, Thailand
Guoxiong Zhou,
Central South University Forestry and
Technology, China

*CORRESPONDENCE

Wei Yao

YaoWei-hebau@hotmail.com

RECEIVED 31 October 2023
ACCEPTED 28 December 2023

PUBLISHED 30 January 2024

CITATION

Liu B, Wei S, Zhang F, Guo N, Fan H and
Yao W (2024) Tomato leaf disease
recognition based on multi-task
distillation learning.
Front. Plant Sci. 14:1330527.
doi: 10.3389/fpls.2023.1330527

COPYRIGHT

© 2024 Liu, Wei, Zhang, Guo, Fan and Yao.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 30 January 2024

DOI 10.3389/fpls.2023.1330527
Tomato leaf disease
recognition based on
multi-task distillation learning
Bo Liu1,2, Shusen Wei1,2, Fan Zhang1,2, Nawei Guo1,2,
Hongyu Fan1,2 and Wei Yao1,2*

1College of Information Science and Technology, Hebei Agricultural University, Baoding, China,
2Hebei Key Laboratory of Agricultural Big Data, Baoding, China
Introduction: Tomato leaf diseases can cause major yield and quality losses.

Computer vision techniques for automated disease recognition show promise

but face challenges like symptom variations, limited labeled data, and

model complexity.

Methods: Prior works explored hand-crafted and deep learning features for

tomato disease classification and multi-task severity prediction, but did not

sufficiently exploit the shared and unique knowledge between these tasks. We

present a novel multi-task distillation learning (MTDL) framework for

comprehensive diagnosis of tomato leaf diseases. It employs knowledge

disentanglement, mutual learning, and knowledge integration through a multi-

stage strategy to leverage the complementary nature of classification and

severity prediction.

Results: Experiments show our framework improves performance while

reducing model complexity. The MTDL-optimized EfficientNet outperforms

single-task ResNet101 in classification accuracy by 0.68% and severity

estimation by 1.52%, using only 9.46% of its parameters.

Discussion: The findings demonstrate the practical potential of our framework

for intelligent agriculture applications.
KEYWORDS

multi-task learning, knowledge distillation, tomato leaf diseases, disease classification,
severity prediction
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1 Introduction

Tomato is one of the most widely cultivated vegetables in the

world, with its versatility extending to various applications such as a

culinary ingredient (Kumar et al., 2022), an industrial raw material

(Botines ̧tean et al., 2015), a component in cosmetics (Septiyanti and

Meliana, 2020), and medicinal uses (Kumar et al., 2012). However,

tomato diseases can rapidly spread through a field if not identified

and managed in a timely manner, leading to substantial losses in

both yield and quality of the crop (Zhang et al., 2022). As symptoms

of many tomato diseases can appear on the leaves, leveraging

computer vision techniques for automated recognition of leaf

diseases has attracted widespread attention from researchers

(Boulent et al., 2019; Habib et al., 2020; Nanehkaran et al., 2020;

Roy and Bhaduri, 2021; Albahli and Nawaz, 2022; Harakannanavar

et al., 2022). Although these techniques effectively improve the

accuracy and speed of disease diagnosis, they also present

challenges. These include variations in disease symptoms and

lighting conditions (Zhang et al., 2018a), difficulty in collecting

enough disease samples (Zhang et al., 2021), varying levels of

disease severity (Wang et al., 2021), and limitations in computing

power (Bi et al., 2022). Such factors potentially influence the

applicability of the learning models.

Most of the computer vision-based leaf disease recognition

methods are mainly divided into two categories: hand-crafted

feature-based methods and deep learning-based methods.

Traditionally, hand-crafted features refer to the manual extraction

of specific features such as textures, colors, shapes, and sizes from

leaf images. These features are then used as input for training a

classifier to identify the presence of plant diseases. The utilization of

classical classifiers, such as support vector machines (SVM) (Cortes

and Vapnik, 1995) and random forests (RF) (Breiman, 2001), has

been instrumental in leaf disease identification, owing to their

robust nature in handling high-dimensional, noisy, and missing

data (Patil et al., 2017). Consequently, the research community has

significantly focused on developing improved methods for feature

extraction to enhance recognition performance. Mokhtar et al.

(2015) employed geometric features and histogram features for

classifying two tomato leaf viruses, achieving the highest accuracy of

91.5% using the Quadratic kernel function. Meenakshi et al. (2019)

improved plant leaf disease identification using exact Legendre

moments shape descriptors, with a high accuracy of 99.1% on

three tomato diseases (early and late blight and mosaic). In Rahman

et al. (2022), texture features from tomato leaf images were analyzed

using a gray level co-occurrence matrix (GLCM). In addition to

single-type features, hybrid features have been well-studied. Sharif

et al. (2018) proposed a hybrid method for automatic detection and

classification of six types of diseases in citrus plants, which used

color, texture, and geometric features combined in a codebook and

selected by PCA score, entropy, and skewness-based covariance

vector before being fed to a multi-class SVM. Similarly, Basavaiah

and Arlene Anthony (2020) recognized four main diseases in

tomato plants through the fusion of multiple features, including

color histograms, Hu Moments, Haralick, and local binary pattern,

resulting in 94% accuracy achieved by a RF classifier. In summary,

hand-crafted feature-based methods are highly valued for their
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simplicity and interpretability, as well as they have demonstrated

satisfactory performance on small to medium-sized datasets.

However, they struggle to scale up large and diverse datasets, and

fall short in coping with biases and noises in the data distribution,

leading to decreased accuracy and robustness in real-

world applications.

Recently, deep learning has revolutionized the field of computer

vision, resulting in significant improvements in detecting leaf

diseases (Sujatha et al., 2021; Shoaib et al., 2022). For instance, a

novel tomato leaf disease recognition framework was proposed,

which used binary Wavelet transform for image preprocessing to

remove noise, and both-channel residual attention network (B-

ARNet) for identification (Sujatha et al., 2021). Other types of

attention mechanisms are also incorporated to enhance the model’s

recognition capability. In Zhao et al. (2021), to adaptively

recalibrate channel-wise feature responses, a squeeze-and-

excitation (SE) module (Hu et al., 2018) is integrated into a

ResNet50 network (He et al., 2016), with an average identification

accuracy of 96.81% on the publicly available PlantVillage dataset

(Hughes et al., 2015).

Additionally, Bhujel et al. (2022) compared the performance

and computational complexity of different attention modules and

found that the convolutional block attention module (CBAM)

(Woo et al., 2018) was the most effective in enhancing

classification performance, resulting in an average accuracy of

99.69%. Despite the successes of these deep learning-based

methods, they face limitations such as the need for large amounts

of labeled data and substantial computational resources. To address

these challenges, researchers have proposed a series of strategies for

constructing lightweight networks, such as depthwise separable

convolutions (MobileNet (Howard et al., 2017)), channel shuffling

(ShuffleNet (Zhang et al., 2018a)), and a combination of network

scaling and architecture search (EfficientNet (Tan and Le, 2019)).

For example, Zeng et al. (2022) developed a lightweight CNNmodel

named LDSNet, which uses an improved dense dilated convolution

(IDDC) block and coordinated attention scale fusion (CASF)

mechanism to identify corn leaf diseases in complex backgrounds.

Similarly, Janarthan et al. (2022) utilized a simplified MobileNetV2

architecture and an empirical method for creating class prototypes,

requiring low processing power and storage space. Li et al. (2023)

explored a hybrid transformer-based architecture by integrating

shuffle-convolution and a lightweight transformer encoder. While

compact models achieve computational efficiency gains by reducing

the parameters, these gains may come at the cost of decreased

accuracy (Atila et al., 2021; Thai et al., 2023).

In addition to identifying the presence of a plant disease, it is

also crucial to estimate the severity of the disease, providing a

quantitative assessment for disease diagnosis (Ilyas et al., 2022; Ji

and Wu, 2022). The precise localization, size, and distribution of

infected regions in plant leaves can significantly enhance the

accuracy of disease classification, especially in field images with

complex backgrounds (Barbedo, 2019). Moreover, these factors are

vital for severity grading, disease progression monitoring, and

assessment of treatment efficacy. The process of estimating the

level of leaf diseases often involves two main steps: segmentation

and grading. Segmentation refers to the operation of separating
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infected regions from healthy areas of the leaf or plant. This can be

achieved through various methods such as morphological

operations (Gupta, 2022), k-means clustering and thresholding

(Karlekar and Seal, 2020; Singh et al., 2021), and deep learning-

based semantic segmentation (Wang et al., 2021; Liu et al., 2022;

Deng et al., 2023). Grading then assigns a numerical score or rating

to the severity of the disease, based on proportional area

measurement (Wu et al., 2022) or ordinal categories (Ozguven

and Adem, 2019; Pal and Kumar, 2023). Considering the

complementary nature of disease classification and severity

estimation, there is an emerging trend toward multi-task learning.

This approach aims to jointly optimize both tasks by leveraging

shared representations and correlations between them. For

example, Ji et al. (2020) presented a set of binary relevance-CNNs

that can simultaneously recognize 7 crop species, classify 10 crop

diseases (including healthy), and estimate 3 disease severity levels,

achieving the best test accuracy of 86.70% for recognition and

92.93% for severity estimation. Other techniques, such as

alternating training (Jiang et al., 2021) and weighting adjustment

(Wang et al., 2022), have been explored to enhance the accuracy of

the combined task. Although multi-task learning can lead to better

performance than individual tasks, it may also introduce increased

computational effort and suboptimal solutions due to the difficulty

in balancing tasks.

To address these challenges, we propose a novel multi-task

distillation learning framework for tomato leaf disease diagnosis

(MTDL). Unlike traditional distillation learning (Hinton et al.,

2015) that relies on one-to-one and one-way knowledge transfer

from a teacher model to a student model. Instead, our framework

considers tomato disease category identification and severity

prediction as a multi-task model that can be optimized

simultaneously, as well as two single-task models that can be

mutually informative. Accordingly, we develop a learning process

for knowledge decoupling and reorganization, facilitating the efficient

transfer of knowledge between the two tasks. Furthermore, this

process is designed to be integrated with deep networks of varying

complexity and architecture, making it adaptable to different disease

identification scenarios with diverse computational power

configurations and performance requirements.

Specifically, MTDL uses a multi-task model that contains

disease classification and severity estimation as the baseline. It

adopts a multi-stage learning strategy, including knowledge

disentanglement, single-task mutual learning, and knowledge

integrat ion , In this process , the goal of knowledge

disentanglement is to transfer the shared knowledge from the

original multi-task model to the corresponding single-task

models. This enables the specialization of task-specific models

and avoids negative transfer of knowledge between tasks. For

mutual learning between tasks, the goal is to fully exploit the

complementarity between different learning objectives. Finally,

through knowledge integration, the disentangled and mutually

learned knowledge components are re-combined and unified to

produce the refined high-quality multi-task model.

Furthermore, considering that multi-stage distillation learning

will lead to a dependency of the current student model on the

teacher model from the previous stage, we propose a decoupled
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teacher-free knowledge distillation (DTF-KD) strategy to simplify

the training process. DTF-KD introduces a virtual teacher,

replacing the traditional teacher model in the distillation process.

This approach allows for increased adaptability by applying

different learning intensities to target and non-target knowledge.

In the context of the classification problem addressed in this paper,

the target knowledge corresponds to the correct classification

assignment of the ground truth.

The main contributions of this paper are summarized

as follows:
1. We propose a novel multi-task distillation learning

(MTDL) framework for leaf disease identification. This

framework progressively decomposes and integrates the

inherent knowledge from two tasks: tomato disease

classification and severity prediction, through a

distillation process, thereby generating a robust multi-task

model for comprehensive disease diagnosis.

2. We propose a decoupled teacher-free knowledge

distillation (DTF-KD) method to simplify MTDL by

reducing the reliance on teacher models during the

learning process. A virtual teacher is introduced to guide

the learning process by providing separate instructions for

the correct class and non-correct classes.

3. The experimental results demonstrate that the proposed

framework effectively leverages the complementary

characteristics of tomato disease category identification

and severity prediction, reducing the model size while

improving the performance.
2 Materials and methods

2.1 Dataset

The dataset employed in this study is aggregated from three

distinct sources.The first source is drawn from the AI Challenger

2018 Crop Leaf Disease Challenge (Dataset AI Challenger, 2018),

encompassing 11 types of plants and 27 types of diseases. Some of

these diseases are further categorized into general and severe

degrees, resulting in a total of 61 categories. Specifically, the

dataset includes instances of leaf diseases for the following plants:

apple (2,765), grape (3,144), peach (2,146), potato (3,246), citrus

(4,577), pepper (1,929), strawberry (1,263), cherry (939), maize

(3,514), pumpkin (1,465), and tomato (11,610). For the purposes of

our study, we focus on the tomato subset. However, as the dataset

contains only three samples of Canker disease, we decide to exclude

this category from our analysis. The second source, the PlantDoc

dataset (Singh et al., 2020), consists of 2,598 data samples that

involve 13 types of plants and 27 categories (17 diseases, 11

healthy). These samples were mainly obtained from the internet

and manually annotated, with the tomato subset containing 8

categories. The third source is the Taiwan Tomato Disease dataset

(Huang and Chang, 2020), which is originally comprising 622

samples, was first employed in the study detailed in Thuseethan
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et al. (2022). In addition, it encompasses six distinct categories,

namely Bacterial Spotted (110), Leaf Mold (67), Gray Spot (84),

Health (106), Late Blight (98), and Powdery Mildew (157). We

choose this dataset for its diverse disease conditions and combine it

with larger datasets like AI Challenger 2018 and PlantDoc to further

enrich the diversity of our data. Figure 1 shows examples of different

tomato leaf diseases.
2.2 Data preprocessing

For the AI Challenger dataset, given the scarcity of data for the

canker disease category (only 3 instances), we excluded this data.

The dataset provided severity labels for most of the data, categorized

into three levels: healthy, moderate, and severe. In addition, we

supplemented the dataset with severity labels for the tomato spotted

wilt virus. For the PlantDoc dataset, due to the complexity of the

leaf background, we manually cropped the tomato leaf subset to

meet the needs of the disease identification task. Each image was

cropped to retain the main area of a single leaf while preserving

some background information from the plant. For the Taiwan

Tomato dataset, we used all the original data. For all three

datasets, we applied consistent severity labeling. Specifically, we

hired five agricultural experts to manually annotate the severity of

the disease. The final severity level was determined by a majority

vote. Table 1 summarizes the information about the three datasets

used in this study.

We divide the dataset into training, validation, and test sets in

an 8:1:1 ratio, ensuring a balanced and representative distribution

for each set. The division is performed randomly to maintain

fairness and diversity. Furthermore, we rigorously validate both

the results reported in the paper and the determination of

hyperparameters through 10-fold cross-validation.
2.3 Multi-task distillation framework

The proposed MTDL for tomato leaf disease diagnosis is

comprised of three components: two single-task models, one for

disease recognition and the other for severity prediction, and a

hybrid model that integrates these two tasks. As illustrated in

Figure 2, the MTDL pipeline enables mutual knowledge transfer
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between the two individual tasks, facilitating knowledge

disentanglement and integration to enhance performance. In

traditional distillation learning processes (Hinton et al., 2015), a

powerful teacher model transfer knowledge to a lightweight student

model. However, our MTDL framework emphasizes bidirectional

knowledge transfer between teacher and student models, allowing

for greater flexibility in their selection.
2.3.1 Problem formulation
Given a leaf disease dataset D = (xi, y

c
i , y

s
i )f gNi=1 containing N

images, where xi ∈ RC�H�W is the i-th leaf image with C, H, andW

denoting the number of channels, height, and width of the image,

respectively. Each image is labeled with two types of annotations:

yci ∈ 1, 2, · · ·,Kcf is the disease category label, with Kc being the

number of disease categories, and ysi ∈ 1, 2, · · ·,Ksf g is the disease

degree label, with Ks being the number of severity levels.

In MTDL, there are three basic tasks denoted as Tc for disease

category recognition, Ts for severity estimation, and Th for the

hybrid task that jointly performs Tc and Ts. As shown in Figure 2,

each task uses a standard ResNet50 (He et al., 2016) as the backbone

for feature extraction. In particular, the two single tasks Tc and Ts,

each uses a multi-layer perceptron (MLP) to output the logits of its

corresponding task, denoted as zci ∈  RKc and zsi ∈  RKs ,

respectively. For Th, two separate MLPs are used to perform two

tasks simultaneously on a shared backbone, and the output is

d e n o t e d a s zhi = ½zhci : zhsi � ∈  RKc+Ks , w h e r e zhci a n d zhsi
corresponding to the logits for the disease category and severity,

respectively. Usually, a softmax function is applied to the output of

each task to produce the predicted probabilities, pci ∈  RKc
, psi ∈

 RKs
and phi = ½phci : phsi � ∈  RKc+Ks , respectively. Guided by these

three basic tasks, MTDL employs a designed knowledge routing

mechanism to build a tomato disease diagnosis model. The process

begins with the distillation of multi-task knowledge from Th back to

the corresponding task models Tc and Ts (as shown in Figure 2A).

These two models then engage in mutual learning (as shown in

Figure 2B). Finally, the knowledge from these two models is

integrated to output an enhanced multi-task model, namely T 0
h

(as shown in Figure 2C). The detailed learning process is described

in the following sections, including, knowledge decomposition

(Section 2.3.2), mutual knowledge tranfer (Section 2.3.3), and

knowledge integration (Section 2.3.4).
FIGURE 1

Examples of tomato diseases from the datasets.
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2.3.2 Knowledge disentanglement
Multi-task learning has demonstrated its advantages in

leveraging shared information among related tasks to improve

performance on individual tasks. However, directly training a

multi-tasking model can be suboptimal, as the tasks may have

different levels of difficulty. For instance, the task of severity

estimation is more challenging than the leaf disease classification

task because it typically necessitates a finer analysis of the leaf and

disease spot attributes (Wang et al., 2017). Therefore, given a multi-

task model Th pre-trained on dataset D, as shown in Figure 2A, it is

reasonable to disentangle the shared knowledge and transfer it back

to the single-task models, i.e., Tc and Ts, using knowledge

distillation (Hinton et al., 2015). Specifically, when distilling

knowledge from Th to Tc, we first soften the probability phci by:
Frontiers in Plant Science 05
qhci,j =
exp   phci,j =T

� �
ojexp (p

hc
i,j =T)

(1)

where T is the temperature hyperparameter that controls the

sharpness of qhci , p
hc
i,j is the j-th element of phci , and qhci,j denotes

the softened probability distribution of the j-th class for the i-th

input data. The formulation of the knowledge distillation process

from Th to Tc involves minimizing the loss function Lh→c, which is

defined as follows:

Lh→c =
1
No

N

i=1
LCE(p

c
i , y

c
i ) + LKD(p

c
i , q

hc
i )

h i
(2)

where  LCE is the cross-entropy loss, which measures the

dissimilarity between the predicted probability distribution pci and
TABLE 1 Summary of main datasets used in the study.

Dataset AIChallenger2018 PlantDoc Taiwan Total

Class Healthy Moderate Severe Healthy Moderate Severe Healthy Moderate Severe

Health 1381 120 106 1607

Late Blight 302 1267 10 29 16 82 1706

Leaf Mold 371 384 40 67 22 45 929

Early Blight 287 505 22 86 900

Septoria Leaf
Spot Fungus

481 922 23 141 1567

Gray Spot 25 59 84

Yellowing
Varicose Leaf

1616 2790 35 88 4529

Bacterial Spotted 47 27 15 56 29 81 255

Mosaic Virus 104 194 26 43 367

Spider
Mite Damage

619 310 929

Powdery Mildew 47 110 157

Total 1381 3827 6399 120 171 510 106 139 377 13030
fronti
B CA

FIGURE 2

Architecture of the multi-task distillation learning (MTDL). The MTDL framework uses a three-stage distillation process involving single-task models
Tc and Ts, and a multi-task model Th. Initially, knowledge from Th is transferred to the single-task models. Then, Tc and Tsshare knowledge. Finally,

their knowledge is integrated back into Th, creating an improved multi-task model T0

h. For simplicity, sample indices are omitted from the symbols in
the figure. Additionally, the temperature parameter T in KD is fixed at t during the learning process. (A) Knowledge Disentanglement, (B) Mutual
Knowledge Transfer, (C) Knowledge Integration.
ersin.org
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the one-hot ground-truth label vector yci for the single-task model

Tc. It can be written as shown in Equation 3:

LCE(p
c
i , y

c
i ) = −o

Kc

j=1
yci,jlog p

c
i,j (3)

And LKD, the knowledge distillation loss, which quantifies the

divergence between qhci and pci , is defined as shown in Equation 4:

LKD(p
c
i , q

hc
i ) =o

Kc

j=1
qhci,j log 

qhci,j
pci,j

(4)

Similar to Equation 2, we can define a loss function from

Th to Ts, denoted as Lh→s, which is given by:

Lh→s =
1
No

N

i=1
LCE(p

s
i , y

s
i) + LKD psi , q

hs
i

� �h i
(5)

where qhsi is the probability distribution obtained by softening the

severity prediction output phsi from Th (referred to in Equation 1),

and psi is the output from Ts.

2.3.3 Mutual knowledge transfer
Upon completing the knowledge disentanglement process,

the shared knowledge from the hybrid tasks Th is individually

transferred back to the corresponding subtasks, i.e., Tc for

disease species classification and Ts for disease severity

identification. We then employ mutual distillation to further

investigate the complementarity of the two subtasks. Here, we

assume that Tc and Ts use the same backbones, such as ResNet50.

Motivated by Komodakis and Zagoruyko (2016), as shown in

Figure 2B, the commonality of knowledge between subtasks is

reflected in the consistency of attention maps from the middle

layer. Specifically, given two feature mappings, Fc
l and Fl

s, which

are the outputs of layer l of the models Tc and Ts, respectively, we

can calculate the attention maps, Ac
l and As

l , as shown in

Equation 6:

Ac
l (x, y) =

1
Ci
o
Ci

c=1
Fc
l (k, x, y), As

l (x, y) =
1
Ci
o
Ci

k=1

Fs
l (k, x, y) (6)

where Ci is the number of channels in the feature mappings of

Fc
l and Fs

l , and (k,x,y) specifies the location and channel of an

activation value within the feature mapping. The attention maps Ac
l

and As
l are computed by averaging the activation values across the

channels of the respective feature mappings, Fc
l and Fs

l . For stability

of optimization, we first reshape the Ac
l and As

l into a vector form as

acl = vec(Ac
l ) and asl = vec(As

l ), where vec(.) is an operation that

transforms a matrix into a vector by concatenating its columns.

Then, we normalize the vectors using l2 norm as shown in Equation 7:

â c
l =

acl
acl

�� ��
2

, â s
l =

asl
asl

�� ��
2

(7)

The attention transfer loss for layer l is written as shown in

Equation 8:

LAT (â
c
l , â

s
l ) = â c

l − â s
lk k22 (8)
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And the total loss for mutual learning between subtasks is

defined as follows:

Ls↔c =
1
No

N

i=1
LCE(p

c
i , y

c
i ) + LCE(p

s
i , y

s
i)� +

1
Lo

L

l=1

LAT (â
c
l , â

s
l )

" #
(9)

where L denotes the number of layers considered for attention

transfer loss.

2.3.4 Knowledge integration
The primary objective of the proposed MTDL is to enhance

multi-task learning capabilities. In the final step of this learning

framework, we consider the two sub-tasks after mutual learning, Tc

and Ts, and reintegrate them into the original multi-tasking model,

denoted as … As shown in Figure 2C, this reintegration process

results in an enhanced multi-task model T 0

h.The knowledge

integration loss is formulated as follows:

L c → h

s → h

=
1
No

N

i=1
LCE(p

hc
i , y

c
i ) + LKD(p

hc
i , q

c
i ) + LCE(p

hs
i , y

s
i) + LKD(p

hs
i , q

s
i)

h i

(10)

where qci and qsi represent the output of softened probability

distributions of Tc and Ts, respectively, which are obtained by

applying the process described in Equation 1. The whole process of

MTDL is summarized in Algorithm 1.
Require: Inputs: Single-task models   Tc, Ts and multi-

task model Th.

Ensure: Outputs: Enhanced multi-task model T 0

h.

1: Decompose Thinto two sub-tasks Tc and Tsusing

Equations 2 and Equation 5.

2: Perform mutual learning between Tc and Ts using

Equation 9.

3: Reintegrate Tc and Ts into the original multi-task

model Th to produce the enhanced model us T0

h using

Equation 10.
Algorithm 1. MTDL process.
2.4 Teacher-free based MTDL

In the staged learning process of MTDL, the current stage can

be considered the teacher model for subsequent stages. While this

approach fully utilizes the process of knowledge transfer, it also

leads to a dependency on the teacher model, thereby reducing the

flexibility of the framework. To overcome this limitation, inspired

by the work of Yuan et al. (2020) and Zhao et al. (2022), we propose

a decoupled teacher-free KD (DTF-KD) method. In the following

sections, we first present the general form of the DTF-KD, and then

demonstrate how it can be applied to MTDL.

In the absence of a teacher model, we introduce a virtual

teacher. We define the output of this virtual teacher as a
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categorical distribution, vi,j, given by:

vi,j =
a  if j = t

(1 − a)=(K − 1)  if j ∈ nt

(
(11)

where a is a predefined constant, typically ≥ 0.95, t is the correct

class or target class for the i-th sample, K is the total number of

classes, j represents the class index, and \t denotes all classes except

the correct class t. This definition ensures that the virtual teacher

assigns the highest probability to the correct class, while distributing

the remaining probability equally among the incorrect classes.

In our proposed DTF-KD method, we divide the information

distillation process into two parts: teacherfree based correct class

KD (CC-KD) and teacher-free based non-correct class KD (NCC-

KD). CC-KD focuses on the learning of target knowledge. It aims to

transfer knowledge that is particularly important or challenging for

the student model. In CC-KD, according to Equation 11, the binary

probability outputs the virtual teacher for the correct class t and the

K−1 non-correct classes are denoted as qvi =  ½qvi,t ,  qvi,nt �  ∈  R2.

These outputs are calculated using:

qvi,t =
exp   (a)

exp   (a) +oK
k=1,k≠texp   (vi,k)

, 

qvi,nt =
oK

k=1,k≠texp   (vi,k)

exp   (a) +oK
k=1,k≠texp   (vi,k)

(12)

Correspondingly, for the student model, we can obtain bi =

 ½bi,t , bi,nt�  ∈ R2, defined as:

bi,t =
exp   (zi,t)

oK
j=1 exp   (zi,j)

, bi,∖ t =
oK

k=1,k≠texp (zi,k)

oK
j=1 exp   (zi,j)

(13)

where zi,j represents the logit for the j-th class of i-th instance of the

student model. Therefore, combining Equations 12 and 13, the loss

function of CC-KD can be written as:

LCC−KD(bi, q
v
i ) = qvi,t log  

qvi,t
bi,t

+ qvi,∖ t log  
qvi,∖ t
bi,∖ t

(14)

In NCC-KD, we consider the probability outputs for the K−1

non-correct classes, denoted as ~qvi ∈ RK−1 for the virtual teacher

and ~pi ∈ RK−1 for the student model. For each m ∈ {1, 2,…,K}\{t},

we calculate these outputs as follows:

~qvi,m =
exp (vi,m)

oK
k=1,k≠t exp   (vi,k)

, ~pi,m =
exp   (zi,m)

oK
k=1,k≠t exp   (zi,k)

(15)

where vi,m is defined in Equation 11, and zi,m represents the logit for

the m-th class of the i-th instance from the student model.

According to Equation 15, the NCC-KD loss function is then

defined as:

LNCC−KD(~pi, ~q
v
i ) = o

K

j=1,j≠t
~qvi,j log  

~qvi,j
~pi,j

(16)

Combining Equations 14 and 16, the total loss of DTF-KD is

LDFK−KD(bi, q
v
i , ~pi, ~q

v
i ) = LCC−KD(bi, q

v
i ) + LNCC−KD(~pi, ~q

v
i ) (17)
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According to DTF-KD, we propose two variants of the MTDL

framework. The first variant, as shown in Figure 3A which we call

partially teacher-free MTDL (MTDL-PTF), eliminates the

knowledge disentanglement stage from the MTDL process,

thereby removing the dependency on the initial multi-task

teacher model, known as Th. To compensate for the absence of T
h, we introduce two virtual teacher models corresponding to the two

learning tasks of disease category recognition and severity

estimation, denoted as T v
c and T v

s , respectively. For T v
c , as

described in Equations 12, 13 and 15, we obtain qvci ∈  R2 and bci ∈
R2 for the distillation outputs for the correct class, as well as andeqvci ∈  RKc−1and epci ∈  RKc−1 the non-correct classes. Similarly, for

T v
s , we can obtain qvsi ∈  R2 and bsi ∈ R2 for the correct severity

level. For the non-correct severity levels, we can also obtain eqvsi ∈
 RKs−1 and epvsi ∈  RKs−1. Therefore, the mutual knowledge transfer

process in MTDL-PTF is given as shown in Equation 18:

Lv
s↔c = Ls↔c +

1
N o

N

i=1
LDFK−KD(b

c
i , q

vc
i , ~p

c
i , ~q

vc
i ) +o

N

i=1
LDFK−KD(b

s
i , q

vs
i , ~p

s
i , ~q

vs
i )

" #
(18)

where Ls↔c and LDFK−KD LDFK-KD are defined in Equations 9 and

17, respectively.

In the second variant of MTDL, named teacher-free MTDL

(MTDL-TF), we completely abandon the teacher model. The

process of MTDL-TF is illustrated in Figure 3B. Instead, we

directly introduce the distillation information from the virtual

teacher models T v
c and T v

s into Th, which is defined as shown in

Equation 19:

Lv
c → h

s → h

=
1
No

N
i=1

h
LCE(p

hc
i , y

c
i ) + LDFK−KD(b

hc
i , q

vc
i , ~p

hc
i , ~q

vc
i )

+LCE(p
hs
i , y

s
i) + LDFK−KD(b

hs
i , q

vs
i , ~p

hs
i , ~q

vs
i )

i
(19)

where bhci and bhsi are two binary probability outputs corresponding

to the correct class and non-correct classes for the disease category

recognition and severity estimation tasks, respectively, in the hybrid

model Th. They can be obtained via zhci and zhsi using Equation 13.

Accordingly, the output for the non-correct classes in Th, ephci andephsi , can be calculated by Equation 15.
3 Experimental results and discussion

3.1 Experimental setup

3.1.1 Model training
The MTDL framework consists of three main components:

knowledge disentanglement, subtask mutual learning, and

knowledge integration. To ensure simplicity and generality of the

framework, we employ a consistent training strategy for different

learning components. Specifically, the framework is trained using

the SGD optimizer with a batch size of 32 and a momentum of 0.9.

The initial learning rate is set to 0.001, and it is reduced by a factor
frontiersin.org

https://doi.org/10.3389/fpls.2023.1330527
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1330527
of 0.1 every 20 epochs. The weight decay is set to 1e-4. The

maximum number of training epochs is set to 100, and an early

stopping strategy is used based on the validation performance. If the

validation loss does not improve for 5 consecutive epochs, the

training process is stopped.

3.1.2 Hyperparameter settings
The MTDL framework involves three main stages of knowledge

distillation, which correspond to the objective functions in

Equations 2, 9, and 10. During the process, we use a temperature

parameter T to smooth the output of the teacher model. This

hyperparameter is determined through cross-validation using the

validation set. A comprehensive analysis of hyperparameter

selection can be found in Section 3.3.4.

3.1.3 Evaluation metrics
To evaluate the performance of the proposed MTDL method,

we employ four commonly used evaluation metrics, namely

Accuracy, Precision, Recall, and F1-score. Given true positives

(TP), true negatives (TN), false positives (FP), and false negatives

(FN), the specific definitions of these metrics are as shown in

Equations 20 and 21:

Accuracy =
TP + TN

TP + FP + FN + TN
,

 Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(20)

F1 − score = 2� Precision� Recall
Precision + Recall

(21)
3.1.4 Baseline methods
The MTDL framework is a flexible knowledge distillation

approach designed for tomato disease diagnosis. It aims to improve

the performance of recognition models while reducing their
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parameter size and can be combined with various existing neural

network architectures. To ensure the versatility of the MTDL

framework, we incorporate four conventional network models,

including ResNet101 (He et al., 2016), ResNet50 (He et al., 2016),

DenseNet121 (Huang et al., 2017), and VGG16 (Simonyan and

Zisserman, 2014), as well as four lightweight network models such

as EfficientNet (Tan and Le, 2019), ShuffleNetV2 (Zhang et al.,

2018b), MobileNetV3 (Howard et al., 2019), and SqueezeNet

(Iandola et al., 2016). Detailed information about these models can

be found in Table 2. These backbone models serve as the learning

components in different stages of the MTDL framework. We use the

original classification results of these models as a baseline and

compare the results before and after the multi-task distillation

process to validate the effectiveness of the proposed framework.
3.2 Results

3.2.1 Performance comparison
In this section, we report the results from two experimental

settings. The first setting, referred to as unified MTDL, employs the

same network architecture for teacher and student modules. This

setting aims to verify the effectiveness of the multi-stage distillation

architecture proposed in this paper. The second setting, termed

heterogeneous MTDL, involves using lightweight network

architectures for all student models within the MTDL framework.

This setting is designed to demonstrate the advantages of the proposed

architecture in achieving a balance between performance and

efficiency. As a reference, Table 2 lists the baseline results of the

initial two single tasks Tc and Ts, as well as the multi-task model Th,

where Thc and Ths correspond to the results of Th for disease

classification and severity estimation tasks, respectively. The results

in Table 2 demonstrate that the multi-task learning approach

effectively enhances performance across various network architectures.

The results for MTDL with a unified architecture are presented

in Table 3. We can observe that all models show improvement when

using MTDL for knowledge learning. This indicates that the MTDL
BA

FIGURE 3

Overview of the decoupled teacher-free (DTF) based MTDL. (A) Partially teacher-free MTDL (MTDL-PTF): Eliminating dependency on the multi-task
teacher model in the knowledge disentanglement stage. (B) Teacher-Free MTDL (MTDL-TF): Simplifying MTDL to only retain the final knowledge
integration stage with virtual teachers.
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framework effectively leverages the staged learning of knowledge

and the complementarity between different tasks. In terms of

specific models, ResNet101 achieves the highest performance in

both tasks under the MTDL setting, with Accuracy scores of 98.92%

for Tc and 95.32% for Ts, respectively. The corresponding F1-scores

are 98.78% and 96.32%, respectively. These results can be attributed

to both the ResNet101’s powerful feature extraction capabilities and

MTDL’s effective multi-task learning strategy. On the other hand,

SqueezeNet shows significant improvement with an increase of

1.08% and 2.53% in Accuracy of Tc and Ts respectively, and an

increase of 0.68% and 2.26% in F1-scoref or each task. This suggests

that the MTDL allows the lightweight model to learn more robust

and comprehensive features. Furthermore, Table 3 also provides a

comparison between the MTDL, MTDL-PTF, and MTDL-TF

methods across various architectures. The results indicate that

while the overall performance of MTDL-PTF and MTDL-TF

decreases when the dependence on the teacher model is reduced,

the introduction of a virtual teacher model significantly improves

the accuracy of both methods compared to the original multitask

learning. This indeed validates the effectiveness of the decoupled

teacher-free knowledge distillation approach that we proposed. We

also display the confusion matrices for results using ResNet50 as the

backbone. As shown in Figure 4, it is evident that our proposed

MTDLmethod either maintains or improves performance across all

individual classes for both disease classification and severity

estimation tasks. This demonstrates MTDL’s ability to achieve a

balanced enhancement in both overall performance and category-

specific outcomes.

Furthermore, to investigate the impact of using teacher and

student models with different architectures on the performance of

the MTDL framework, we employ complex models like DenseNet121

for the teacher and lightweight models such as EfficientNet for the

student. The results presented in Table 4 substantiate the effectiveness

of this heterogeneous MTDL approach. For instance, when using

ResNet101 as the teacher model, the SqueezeNet student model

shows an improvement of 1.95% and 3.07% in Tc and Ts
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respectively, which are higher than the result obtained under the

unified architecture MTDL setting. These results suggest that a more

powerful teacher model enriches the student model’s learning.

Finally, to ensure the effectiveness of our proposed method, we

conduct a comprehensive comparison with four well-established

approaches in the field to validate its performance:
(a) Dual-stream hierarchical bilinear pooling (DHBP) (Wang

et al., 2022): As a multi-task method initially developed for

crops and diseases classification, we adapt DHBP for both

disease classification and severity prediction tasks. This

comparison allows us to evaluate the performance of our

MTDL approach against a specialized multi-task learning

method within the same domain.

(b) Traditional knowledge distillation (KD) (Ghofrani and

Toroghi, 2022) and decouple knowledge distillation

(DKD) (Zhao et al., 2022): These two methods represent

the knowledge distillation category. We apply KD and its

enhanced version, DKD, to our disease recognition and

severity estimation tasks, providing a direct comparison

with standard and advanced distillation techniques.

(c) Attention transfer (AT) (Komodakis and Zagoruyko, 2016):

Differing from KD and DKD that focus on distilling

knowledge through predicted outcomes, AT utilizes

attention maps to transfer knowledge between the teacher

and student models. Including AT in our comparison

allows us to assess the efficacy of a distinct transfer

learning approach.
To ensure fair comparisons among KD, DKD, AT, and MTDL,

we consistently used ResNet-101 as the teacher and

MobileNetV3Small as the student model. This approach enables a

reliable assessment of knowledge distillation efficacy. Additionally,

we present MTDL results using ResNet-101 as both teacher and

student, aligning with DHBP’s backbone, to effectively demonstrate

its multi-tasking capabilities.
TABLE 2 Baseline results of single and multi-task models.

Methods Single Task
(Accuracy)

Multi Task (Accuracy) Single Task
(F1-score)

Multi Task
(F1-score)

Parameter FLOPs

Tc Ts Thc Ths Tc Ts Thc Ths (M) (G)

VGG16 96.68 93.34 96.76 (↑0.08) 93.43 (↑0.09) 96.57 94.34 96.82 (↑0.25) 94.53 (↑0.19) 253.864 15.699

ResNet101 98.11 93.61 98.56 (↑0.45) 94.33 (↑0.72) 97.72 94.51 98.14 (↑0.42) 95.13 (↑0.62) 42.529 7.832

ResNet50 97.21 93.43 97.75 (↑0.54) 93.70 (↑0.27) 97.20 94.43 97.41 (↑0.21) 94.69 (↑0.26) 23.537 4.109

DenseNet121 95.68 91.63 96.58 (↑0.90) 91.99 (↑0.36) 95.68 92.63 96.58 (↑0.90) 93.02 (↑0.39) 6.968 2.865

MobileNetV3Large 97.66 93.43 98.20 (↑0.54) 93.52 (↑0.09) 96.46 94.43 97.18 (↑0.72) 94.52 (↑0.09) 5.450 0.225

EfficientNet 97.75 93.88 98.11 (↑0.36) 93.97 (↑0.09) 96.65 94.78 97.11 (↑0.46) 94.97 (↑0.19) 4.025 0.398

MobileNetV3Small 97.03 91.72 97.21 (↑0.18) 92.35 (↑0.63) 96.01 92.62 96.21 (↑0.20) 93.34 (↑0.72) 2.123 0.059

ShuffleNetV2 96.58 91.63 96.76 (↑0.18) 91.99 (↑0.36) 95.37 92.62 95.76 (↑0.39) 92.79 (↑0.17) 1.268 0.148

SqueezeNet 94.15 90.37 94.33 (↑0.18) 90.45 (↑0.08) 94.35 91.37 94.53 (↑0.18) 91.75 (↑0.38) 0.743 0.738
fron
Tc and Ts represent the disease category recognition and severity estimation tasks in single-task models, respectively. Thc and Ths represent the corresponding tasks in multi-task models. The
symbol ↑ symbol indicates Accuracy or F1-score improvement from the single-task baseline.
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The results are shown in Table 5. In our experiments, MTDL

with ResNet-101 as both teacher and student models achieve the

best results, outperforming DHBP in disease classification by 0.53%

in Accuracy and 0.29% in F1-score, and in severity prediction by

0.86% in Accuracy and 1.08% in F1-score. These improvements

validate MTDL’s phased multi-task learning approach. Moreover,

when compared under the same teacher-student model setup with

other distillation methods (KD, DKD, AT), MTDL excelled,

particularly surpassing DKD by 0.37% in Accuracy and 0.16% in

F1-score for disease classification, and by 0.62% in Accuracy and

0.38% in F1-score for severity prediction. This indicates the

effectiveness of MTDL’s proposed mutual distillation learning

between teachers and students.

3.2.2 Significance analysis
In this subsection, we conduct a Wilcoxon Signed-Rank Test

(Corder and Foreman, 2014) to evaluate the significance of the
Frontiers in Plant Science 10
performance improvements across all CNN architectures. We

provide the detailed significance analysis corresponding to the

results originally presented in Tables 3 and 4 in the following

Table 6 and 7. In Table 6, we present a comparison of the

performance of our MTDL model and its variants against several

baseline CNN architectures. This table focuses on scenarios within

our MTDL framework where both the teacher and student models

utilize identical architecture. The results from this table

demonstrate statistically significant improvements across all

comparisons in both disease classification and severity prediction

tasks. The p-values obtained are consistently well below the 0.05

threshold, indicating robust enhancements attributed to our MTDL

approach. Similarly, Table 7 showcases the results in a

heterogeneous setting, where the MTDL model employs a more

complex architecture as the teacher model and a lightweight

network as the student model. In these comparisons, the results

again confirm significant improvements across all evaluated aspects.
TABLE 3 Performance of MTDL and its variants in a unified architecture.

Methods (Accuracy) MTDL MTDL-PTF MTDL-TF

T 0
hc T 0

hs T v
hc T v

hs T v
hc T v

hs

VGG16 97.75 (↑0.99) 94.15 (↑0.72) 97.48 (↑0.72) 94.24 (↑0.81) 97.12 (↑0.36) 93.70 (↑0.27)

ResNet101 98.92 (↑0.36) 95.32 (↑0.99) 98.65 (↑0.09) 94.87 (↑0.54) 98.65 (↑0.09) 94.78 (↑0.45)

ResNet50 98.20 (↑0.45) 94.87 (↑1.17) 98.11 (↑0.36) 94.60 (↑0.90) 97.93 (↑0.18) 94.34 (↑0.64)

DenseNet121 97.30 (↑0.72) 93.79 (↑1.80) 97.30 (↑0.72) 93.79 (↑1.80) 97.30 (↑0.72) 92.35 (↑0.36)

Average Improvement ↑0.63 ↑1.17 ↑0.47 ↑1.01 ↑0.34 ↑0.43

MobileNetV3Large 98.74 (↑0.54) 94.60 (↑1.08) 98.65 (↑0.45) 94.24 (↑0.72) 98.56 (↑0.36) 93.97 (↑0.45)

EfficientNet 98.74 (↑0.63) 94.78 (↑0.81) 98.47 (↑0.36) 94.33 (↑0.36) 98.56 (↑0.45) 94.24 (↑0.27)

MobileNetV3Small 97.48 (↑0.27) 93.16 (↑0.81) 97.84 (↑0.63) 93.16 (↑0.81) 97.30 (↑0.09) 92.53 (↑0.18)

ShuffleNetV2 97.21 (↑0.45) 93.52 (↑1.53) 97.21 (↑0.45) 93.70 (↑1.71) 96.94 (↑0.18) 93.07 (↑1.08)

SqueezeNet 95.41 (↑1.08) 92.98 (↑2.53) 96.40 (↑2.07) 93.07 (↑2.62) 95.14 (↑0.81) 91.63 (↑1.18)

Average Improvement ↑0.59 ↑1.35 ↑0.79 ↑1.24 ↑0.38 ↑0.63

Methods (F1-Score) MTDL MTDL-PTF MTDL-TF

T 0
hc T 0

hs T v
hc T v

hs T v
hc T v

hs

VGG16 97.85 (↑1.03) 95.15 (↑0.62) 97.47 (↑0.65) 95.24 (↑0.41) 96.96 (↑0.14) 94.77 (↑0.24)

ResNet101 98.78 (↑0.64) 96.32 (↑1.19) 98.46 (↑0.32) 95.86 (↑0.56) 98.49 (↑0.35) 95.68 (↑0.38)

ResNet50 97.52 (↑0.32) 95.87 (↑1.44) 98.11 (↑0.70) 95.58 (↑0.89) 97.59 (↑0.18) 95.24 (↑0.55)

DenseNet121 97.11 (↑0.53) 94.80 (↑1.78) 97.11 (↑0.53) 94.60 (↑1.58) 97.03 (↑0.45) 93.34 (↑0.32)

Average Improvement ↑0.63 ↑1.26 ↑0.55 ↑0.86 ↑0.28 ↑0.37

MobileNetV3Large 97.65 (↑0.47) 95.60 (↑1.08) 97.41 (↑0.23) 95.24 (↑0.72) 97.25 (↑0.07) 94.56 (↑0.04)

EfficientNet 97.95 (↑0.84) 95.78 (↑0.81) 97.52 (↑0.41) 95.33 (↑0.36) 97.36 (↑0.25) 95.24 (↑0.27)

MobileNetV3Small 97.41 (↑1.20) 94.16 (↑0.82) 97.28 (↑1.07) 94.16 (↑0.82) 97.14 (↑0.93) 93.36(↑0.02)

ShuffleNetV2 97.01 (↑1.25) 94.52 (↑1.73) 97.01 (↑1.25) 94.60 (↑1.81) 96.74 (↑0.98) 94.27 (↑1.45)

SqueezeNet 95.21 (↑0.68) 94.01 (↑2.26) 96.52 (↑1.99) 94.27 (↑2.52) 94.97 (↑0.81) 92.63 (↑0.88)

Average Improvement ↑0.89 ↑1.34 ↑0.99 ↑0.76 ↑0.61 ↑0.53
f

T 0
hc and T 0

hs represent MTDL’s performance, while T v
hc and T v

hs are for MTDL-PTF and MTDL-TF with a virtual teacher. The ↑ symbol indicates Accuracy and F1-score improvement,
referencing the multi-task baseline from Table 2.
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In addition, we also perform the significance of the results in

comparison with other multi-task and distillation learning methods.

with the results recorded in Table 8. It can be seen that in most

cases, the MTDL framework shows statistically significant

differences when compared with methods like DHBP, KD, DKD,

and AT, with p-values well beneath the 0.05 significance threshold.

However, there is one exception to note: in the case of MTDL

(ResNet101-MobileNetV3Small) vs DHBP for severity prediction,

the p-value is slightly above the conventional threshold for

significance. This exception likely stems from MTDL employing

lightweight MobileNetV3Small as the distillation target, whereas

DHBP uses the more substantial ResNet101 as its base model.
3.3 Discussion

3.3.1 The effectiveness of multi-stage
distillation learning

We assess the effectiveness of the three stages in our MTDL

framework: knowledge disentanglement, mutual knowledge transfer,

and knowledge integration. To do so, we employ single-task and multi-

task models as our baselines and incorporate the results obtained after
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each stage of learning. As illustrated in Figure 5, the results in terms of

Accuracy and F1-score align with our expectations. The results clearly

demonstrate that each stage of learning contributes to the final

performance improvement, thereby validating the effectiveness of

staged distillation in the MTDL framework.

3.3.2 Trade-off between performance
and efficiency

We investigate the balance between performance and efficiency

within the context of our MTDL framework. Performance is

measured by Accuracy, while efficiency is represented by the

number of parameters and floating-point operations (FLOPs). We

use the single-task ResNet101 model and the multi-task ResNet101

model as baselines due to their superior performance across all

single-task and multi-task models, as shown in Table 3. The results

are presented in Figure 6, and the size of each model’s marker in the

figure represents the number of parameters used by the model.

It can be observed that there is a similar trend in both task of

disease classification (Figure 6A) and disease severity estimation

(Figure 6B). Our MTDL-enhanced ResNet101 notably surpasses the

single-task baseline with an Accuracy improvement of 0.81% for

disease classification and 1.71% for severity estimation, and it
B

C D

A

FIGURE 4

Performance improvement through multi-stage distillation in MTDL. (A) Disease classification without MTDL, (B) Disease classification with MTDL, (C)
Severity estimation without MTDL, (D) Severity estimation with MTDL.
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outperforms the multi-task baseline with 0.36% and 0.99%

improvements respectively. When using MobileNetV3Large as the

MTDL-optimized model, we achieved significant performance

gains with reduced parameter count and FLOPs, while still

enhancing Accuracy over both baselines. For example, the

MobileNetV3Large model, enhanced by our MTDL framework,

outperforms the ResNet101 baseline by 0.63% and 1.44% in the two

tasks, respectively. Remarkably, this is achieved with only 12.81% of

the parameters (5.450M vs. 42.529M) and 2.87% of the FLOPs

(0.225G vs. 7.832G). These findings highlight the MTDL

framework’s capability to improve performance significantly while

maintaining computational efficiency, thereby reinforcing its

advantage over conventional models.
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Therefore, we need to select the appropriate distillation model

for each specific scenario. The choice depends on balancing

computational resources and performance. Typically, complex

teachers like ResNet101 outperform compact students such as

MobileNet, owing to deeper architectures. MTDL promotes

mutual learning between teachers and students, simultaneously

enhancing both models. With abundant resources, an MTDL-

optimized teacher offers substantial performance gains. In

contrast, for limited-resource scenarios like mobile inference,

MTDL can distill a lightweight yet performant student model.

Additionally, the teacher-free MTDL-TF variant reduces

dependency on complex teachers, offering an alternative when

resources are constrained.
TABLE 4 Performance evaluation of MTDL under a heterogeneous setting.

Methods (Accuracy) MTDL Methods (Accuracy) MTDL

Teacher Student T 0
hc T 0

hs Teacher Student T 0
hc T 0

hs

VGG16

MobileNetV3Large 98.74 (↑0.54) 94.51 (↑0.99)

ResNet50

MobileNetV3Large 98.92 (↑0.72) 94.42 (↑0.90)

EfficientNet 98.47 (↑0.36) 94.54 (↑0.57) EfficientNet 98.74 (↑0.63) 94.51 (↑0.54)

MobileNetV3Small 97.48 (↑0.27) 93.52 (↑1.17) MobileNetV3Small 97.66 (↑0.45) 94.15 (↑1.80)

ShuffleNetV2 97.57 (↑0.81) 93.07 (↑1.08) ShuffleNetV2 97.66 (↑0.90) 93.07 (↑1.08)

SqueezeNet 95.95 (↑1.62) 92.62 (↑2.17) SqueezeNet 96.04 (↑1.71) 92.98 (↑2.53)

Average Improvement ↑0.72 ↑1.20 Average Improvement ↑0.88 ↑1.37

ResNet101

MobileNetV3Large 98.92 (↑0.72) 95.05 (↑1.53)

DenseNet121

MobileNetV3Large 98.38 (↑0.18) 94.51 (↑0.99)

EfficientNet 98.79 (↑0.68) 95.13 (↑1.16) EfficientNet 98.47 (↑0.36) 94.87 (↑0.90)

MobileNetV3Small 97.93 (↑0.72) 94.24 (↑1.89) MobileNetV3Small 97.87 (↑0.66) 93.34 (↑0.99)

ShuffleNetV2 98.02 (↑1.26) 93.97 (↑1.98) ShuffleNetV2 97.48 (↑0.72) 93.79 (↑1.80)

SqueezeNet 96.28 (↑1.95) 93.52 (↑3.07) SqueezeNet 96.17 (↑1.84) 92.80 (↑2.35)

Average Improvement ↑1.07 ↑1.93 Average Improvement ↑0.75 ↑1.41

Methods (F1-Score) MTDL Methods (F1-score) MTDL

Teacher Student T 0
hc T 0

hs Teacher Student T 0
hc T 0

hs

VGG16

MobileNetV3Large 98.54 (↑1.36) 95.24 (↑0.72)

ResNet50

MobileNetV3Large 98.72 (↑1.54) 95.62 (↑1.10)

EfficientNet 97.98 (↑0.80) 95.36 (↑0.39) EfficientNet 98.46 (↑1.35) 95.51 (↑0.54)

MobileNetV3Small 97.46 (↑1.25) 94.52 (↑1.18) MobileNetV3Small 97.66 (↑1.45) 94.10 (↑0.76)

ShuffleNetV2 97.27 (↑1.51) 94.29 (↑1.50) ShuffleNetV2 97.66 (↑1.45) 93.98 (↑1.19)

SqueezeNet 95.76 (↑1.23) 93.42 (↑1.67) SqueezeNet 96.04 (↑1.51) 93.67 (↑1.92)

Average Improvement ↑0.83 ↑1.09 Average Improvement ↑1.46 ↑1.10

ResNet101

MobileNetV3Large 98.62 (↑1.44) 95.85 (↑1.33)

DenseNet121

MobileNetV3Large 98.38 (↑1.20) 94.97 (↑0.45)

EfficientNet 98.54 (↑1.43) 96.03 (↑1.06) EfficientNet 98.27 (↑1.16) 95.62 (↑0.65)

MobileNetV3Small 97.72 (↑1.51) 94.94 (↑1.60) MobileNetV3Small 97.87 (↑1.66) 94.34 (↑1.00)

ShuffleNetV2 98.22 (↑2.46) 94.87 (↑2.08) ShuffleNetV2 97.28 (↑1.52) 94.09 (↑1.30)

SqueezeNet 96.28 (↑1.75) 93.52 (↑1.77) SqueezeNet 96.17 (↑1.64) 93.70 (↑1.95)

Average Improvement ↑1.72 ↑1.57 Average Improvement ↑1.44 ↑1.07
f

The ↑ symbol indicates an improvement in Accuracy and F1-score, as compared to the results listed in Table 2, where both teacher and student models use a unified lightweight network for
multi-task learning.
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3.3.3 Visual analysis for multi-task learning
In this section, we use Grad-CAM (Selvaraju et al., 2017) for

visual analysis to gain deeper insights into the learning process of our

MTDL framework. We examine three severity levels of Early Blight:

healthy, general, and severe. Visualizations for single-task and multi-

task models, as well as for each stage of MTDL learning, are provided.

Figure 7 shows that the model’s attention shifts toward task-relevant

areas as it learns. For healthy leaves, the MTDL-enhanced model

more precisely identifies the leaf as a whole, aligning with human

visual systems. For leaves at a general severity level, the model focuses

on localized disease spots for classification but expands its attention

to surrounding regions for severity estimation. In cases of severe

disease levels, the disease spots typically exhibit a widespread

distribution across the leaf area. The knowledge integration model,

in its pursuit to accurately recognize both the disease type and

severity, tends to produce a Grad-CAM sensitivity map covering

the entire leaf area. This comprehensive coverage contrasts with the

single-task model, which primarily focuses on localized diseased

regions, and the multi-task model, which, although it expands the

area of interest, does not distribute sensitivity intensity as effectively.

Moreover, the distribution of sensitivity intensity in the knowledge
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integration model offers a more realistic representation of the

disease’s extensive impact, thereby enhancing the model’s

explanatory power for Severe Early Blight. This analysis

highlights the MTDL framework’s adaptability in shifting its focus

based on the task and severity, thereby improving performance

and interpretability.

3.3.4 Parameter sensitivity analysis
The temperature parameter T adjusts the softmax output in

the neural network, smoothing the probability distribution and

revealing more nuanced information about the model ’s

predictions. This is crucial for knowledge distillation, where it

aids in transferring detailed information from a teacher to a

student model. This concept is introduced and utilized in

Equation 1. To assess the sensitivity of our model to T, we vary

T within the interval [0.1,50] and record the Accuracy of the

disease classification and severity estimation tasks for each value.

The results of nine common network architectures are shown in

Figure 8. Despite the differences in architecture, a similar trend is

observed: as T increases, the model’s performance improves, but

rapidly declines when T exceeds 10. Notably, the model’s
TABLE 5 Comparative performance analysis of MTDL with other distillation-based and multi-task learning methods for disease classification and
severity prediction.

Methods Teacher Student Disease Classification Severity Prediction

Accuracy F1-score Accuracy F1-score

DHBP (Wang et al., 2022) ResNet101 98.39 98.49 94.46 95.24

KD (Ghofrani and Toroghi, 2022) ResNet101 MobileNetV3Small 97.30 97.28 93.16 93.96

DKD Zhao et al. (2022) ResNet101 MobileNetV3Small 97.56 97.56 93.62 94.56

AT Komodakis and Zagoruyko (2016) ResNet101 MobileNetV3Small 97.39 97.46 93.28 94.09

MTDL
ResNet101
ResNet101

MobileNetV3Small
ResNet101

97.93
98.92

97.72
98.78

94.24
95.32

94.94
96.32
TABLE 6 Wilcoxon Signed-Rank Test results for MTDL variants’ Accuracy in a unified architecture.

Task Model vs VGG16 vs ResNet101 vs ResNet50 vs DenseNet121

Disease Classification MTDL 1.953 × 10−3 1.367 × 10−2 1.953 × 10−3 1.172 × 10−2

MTDL-PTF 1.953 × 10−3 1.065 × 10−2 1.953 × 10−3 1.953 × 10−3

MTDL-TF 1.953 × 10−3 2.066 × 10−2 4.980 × 10−2 1.953 × 10−3

Severity Prediction MTDL 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-PTF 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-TF 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

Task Model vs MobileNetV3Large vs EfficientNet vs MobileNetV3Small vs ShuffleNetV2 vs SqueezeNet

Disease Classification MTDL 1.151 × 10−2 1.953 × 10−3 3.906 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-PTF 1.172 × 10−1 1.079 × 10−2 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-TF 4.206 × 10−2 1.065 × 10−2 3.906 × 10−3 1.953 × 10−3 1.953 × 10−3

Severity Prediction MTDL 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-PTF 1.953 × 10−3 3.906 × 10−3 1.953 × 10−3 1.953 × 10−3 1.953 × 10−3

MTDL-TF 1.278 × 10−2 2.734 × 10−2 1.079 × 10−2 1.953 × 10−3 1.953 × 10−3
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TABLE 7 Wilcoxon Signed-Rank Test results for MTDL variants’ Accuracy under heterogeneous settings (‘()’ indicate teacher models).

Task Model
vs

MobileNetV3Large
vs

EfficientNet
vs

MobileNetV3Small
vs

ShuffleNetV2
vs

SqueezeNet

Disease
Classification

MTDL (VGG16) 7.632 ×10−3 1.162 ×10−2 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet101) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet50) 1.953 ×10−3 1.953 ×10−3 3.906 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL
(DenseNet121)

1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

Severity Prediction

MTDL (VGG16) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet101) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL (ResNet50) 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3

MTDL
(DenseNet121)

1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3 1.953 ×10−3
F
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FIGURE 5

Performance improvement through multi-stage distillation in MTDL. (A) Accuracy for identifying disease types, (B) Accuracy for assessing disease
severity, (C) F1-score for identifying disease types, (D) F1-score for assessing disease severity.
TABLE 8 Results of the Wilcoxon Signed-Rank Test for MTDL and its variants versus other methods (The first in ‘()’ is the teacher model and the
second is the student model).

Task Model vs DHBP vs KD vs DKD vs AT

Disease Classification MTDL (ResNet101-ResNet101) 1.507×10−2 1.953×10−3 1.953×10−3 1.953×10−3

MTDL (ResNet101-MobileNetV3Small) 1.953×10−3 1.953×10−3 1.953×10−3 1.953×10−3

Severity Prediction MTDL (ResNet101-ResNet101) 1.953×10−3 1.953×10−3 1.953×10−3 1.953×10−3

MTDL (ResNet101-MobileNetV3Small) 9.219×10−2 1.953×10−3 1.953×10−3 1.953×10−3
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BA

FIGURE 6

Trade-off between performance and efficiency. (A) Task for disease classification, (B) Task for disease estimation.
FIGURE 7

Visual analysis of attention shifts in MTDL framework across severity levels.
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performance remains relatively stable for T within the interval

[3,8]. This indicates that our model is robust to the choice of T

within this range, providing flexibility in practical applications.

One the other hand, the selection of a batch size of 32,

momentum of 0.9, and learning rate decay factor of 0.1 was

guided by a combination of empirical conventions and

experimental validation aimed at striking a balance between

computational efficiency and model performance. To validate

the impact of different parameter settings on performance, we

analyzed MTDL and its variants on the validation set for

varying batch sizes (Figures 9A, B), momentum (Figures 9C,

D), and learning rate decay factors (Figures 9E, F), detailing their

effects on Accuracy. We can see that Accuracy remains relatively

stable across batch sizes that varies (8, 16, 32, 64, 128), with the

optimal average Accuracy achieved at 32. This is likely because a

moderate batch size balances gradient estimation Accuracy and

the beneficial noise of stochasticity, optimizing learning. As

momen t um i n c r e a s e s f r om 0 . 1 t o 0 . 9 , A c c u r a c y

generally improves. A higher momentum, like 0.9, effectively

uses past gradients to accelerate convergence and navigate

through local minima, leading to better performance compared

to a lower setting like 0.1. Moreover, increasing decay factors tend

to lower Accuracy, potentially due to a swift reduction in the

learning rate and premature convergence. An optimal decay
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factor is one that slowly decreases the learning rate, facilitating

precise adjustments as the model converges to the best solution.
4 Conclusion

In this work, we present the multi-task distillation learning

(MTDL) framework, a specialized solution for diagnosing tomato

diseases. The framework comprises three key stages: knowledge

disentanglement, mutual knowledge transfer, and knowledge

integration. Using this staged learning approach, we leverage the

complementary aspects of different tasks to enhance performance

across various network architectures. Moreover, our framework

adeptly balances performance with efficiency, underlining its

potential for practical applications. Although MTDL enhances

traditional knowledge distillation with bidirectional knowledge

transfer between teacher and student models, it extends training

time due to a progressive, multi-stage learning approach. To

mitigate this, we introduce MTDL-PTF and MTDL-TF variants

for efficiency, though they may slightly underperform compared to

the original MTDL.

Furthermore, our current framework has some limitations.

First, although the framework is designed for outdoor

environments, it has stringent requirements for the subject being
F1-score for identifying disease types.                F1-score for assessing disease severity.

Accuracy for identifying disease types. Accuracy for assessing disease severity.

B

C D

A

FIGURE 8

Sensitivity analysis of temperature hyperparameter T in MTDL framework. (A) Accuracy for identifying disease types, (B) Accuracy for assessing
disease severity, (C) F1-score for identifying disease types, (D) F1-score for assessing disease severity.
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photographed, focusing mainly on recognizing single subjects in

images. Second, the severity level classification is relatively basic,

encompassing only three levels, including a healthy state. In future

work, we plan to integrate object localization techniques into the

distillation process to facilitate the identification of multiple leaves

in images. Additionally, we aim to refine the classification of disease

severity levels, focusing especially on the early detection of diseases.

These planned enhancements will contribute to the development of

more sophisticated and nuanced solutions in the field of tomato

disease diagnosis, offering a robust framework for sustainable and

intelligent agriculture.
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