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Editorial on the Research Topic

Woody oil crops: key trait formation and regulation
Woody oil crops are renewable forest resources to produce high-quality oils for food, feed

and industrial uses. They contain diverse fatty acids and valuable nutritional components.

They can be edible and/or industrial crops (Table 1). Edible woody oil crops include cocoa

(Medeiros de Azevedo et al., 2020), coconut (Deen et al., 2021), hazelnut (Crews et al., 2005),

idesia (Zhang et al., 2023), maple (Song et al., 2022), oil palm (Mancini et al., 2015), oil olive

(Battino et al., 2019), pecan (Scapinello et al., 2017), peony (Yang et al., 2017), pine (Zeng

et al., 2012), yellow horn (Liang et al., 2021; Zang et al., 2021), oil-tea camellia (Zeng et al.,

2014; Luan et al., 2020; Li et al., 2022; Song et al., 2023) and walnut (Rébufa et al., 2022).

Industrial woody oil crops include castor (Román-Figueroa et al., 2020), camelina (Berti et al.,

2016), crambe (Lalas et al., 2012), flax (Goyal et al., 2014) and Tung (Dyer et al., 2002;

Shockey et al., 2006; Cao et al., 2013; Zhang et al., 2014; Li et al., 2017; Liu et al., 2019; Zhang

et al., 2019). Many woody oil crops have special fatty acid composition (Table 1). Key traits of

woody oil crops are essential for breeding and production, such as fruit/seed yield, size,

weight, oil content, fatty acid and other valuable compositions, tolerance to drought, cold,

and low nutrition stresses. Compared to herbaceous oil crops, key trait formation and

regulation in woody oil crops are not well studied.

This Research Topic is aimed to summarize recent advances in key trait formation and

regulation in woody oil crops for facilitating breeding and production. Thirteen articles

have been published including 12 original research articles and one review article. Among

them, ten papers focus on Camellia oleifera, and one each on Pinus koraiensis, Paeonia ostii

and Carya cathayensis.
Genome and genetic diversity

Camellia oleifera genome is very complex. One article reviewed the “Genomic and

genetic advances of oiltea-camellia (Camellia oleifera)” (Ye et al.). The report summarized

the recent assembly of the reference genomes and identified putative genes related to

economic traits, disease resistance and environmental stress tolerances. To explore the
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genetic diversity of wild C. oleifera phenotypic traits, another article

reported “Characterization and comprehensive evaluation of

phenotypic characters in wild Camellia oleifera germplasm for

conservation and breeding” (Chen et al.). They used 143 wild C.

oleifera germplasm resources and identified 41 characters based on

the quantization of physical and chemical descriptors and digital

image analysis.
Flower bud formation

The number of flower buds is a main factor affecting the crop

yield. One investigation studied “Co-regulatory effects of hormone

and mRNA–miRNA module on flower bud formation of Camellia

oleifera” (Du et al.). The results showed that GA3, ABA, tZ, JA, and

SA contents in the buds were higher than those in the fruit and that

differentially expressed genes were notably enriched in hormone

signal transduction and the circadian system.
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Oil accumulation

Camellia oleifera oil quality is mainly determined by linoleic

acid (LA) and a-linolenic acid (ALA) content. One study reported

“Enhancing the accumulation of linoleic acid and a-linolenic acid
through the pre-harvest ethylene treatment in Camellia oleifera” (Li

et al.). The study confirms the role of ethylene in LA and ALA

regulation and provides new insights into the potential utilization of

ethylene as a LA and ALA inducer.
Nutrient deficiency

Phosphorus deficiency in the acidic soil poses severe

cha l l enges for the growth and product iv i ty . WRKY

transcription factors play important roles in plant responses to

biotic/abiotic stresses. One article reported “Genome-wide
TABLE 1 Woody oil crops and their oil content and major oil composition.

No.
Common
name

Species
Oil
content

Major component References

1 Camelina Camelina sativa 30–47%
30–40% a-linolenic acid, 15–
25% linoleic acid

(Berti et al., 2016)

2 Castor Ricinus communis 45–60% 90% ricinoleate (Román-Figueroa et al., 2020)

3 Cocoa Theobroma cacao 45–60% 58% linoleic acid (Medeiros de Azevedo et al., 2020)

4 Coconut Cocos nucifera 65–74% 40–50% lauric acid (Deen et al., 2021)

5 Crambe Crambe abyssinica 25–40% 55–64% erucic acid (Lalas et al., 2012)

6 Flax
Linum
usitatissimum

41% 39–60% a-linolenic acid (Goyal et al., 2014)

7 Hazelnut
Corylus heterophylla
Fisch.

50–75% 90% oleic and linoleic acids (Crews et al., 2005)

8 Idesia
Idesia polycarpa
Maxim.

21–44% 63–71% linoleic acid (Zhang et al., 2023)

9 Maple
Acer truncatum
Bunge

42–46%
54% w-9 and 31% w-6 fatty
acids

(Song et al., 2022)

10 Oil palm
Elaeis guineensis
Jacq.

50–55% 48% lauric acid (Mancini et al., 2015)

11 Olive Olea europaea 31–56% 73% oleic acids (Battino et al., 2019)

12 Pecan
Carya cathayensis
Sarg.

60–70%
49–77% oleic and 13–40%
linoleic acids

(Scapinello et al., 2017)

13 Peony
Paeonia suffruticosa
Andr

27–33% >38% a-linolenic acid (Yang et al., 2017)

14 Pine Pinus koraiensis 58–69%
30% a-terpineol, 24% linalool,
17% limonene,15% anethole

(Zeng et al., 2012)

15 Tea-oil tree
Camellia oleifera
Abel

47–60% 80% oleic acids
(Zeng et al., 2014; Luan et al., 2020; Li et al., 2022; Song et al.,
2023)

16 Tung
Vernicia fordii and
Vernicia montana

50–60% 77–80% a-eleostearic acid
(Dyer et al., 2002; Shockey et al., 2006; Cao et al., 2013; Zhang
et al., 2014; Li et al., 2017; Liu et al., 2019; Zhang et al., 2019)

17 Walnut Juglans regia 50–70% 50–74% linoleic acid (Rébufa et al., 2022)

18 Yellow Horn
Xanthoceras
sorbifolium Bunge

50–60%
28–41% linoleic acid and 27–
42% oleic acid

(Liang et al., 2021; Zang et al., 2021)
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identification of the WRKY gene family in Camellia oleifera and

expression analysis under phosphorus deficiency” (Su et al.). The

authors identified 89 WRKY proteins into three groups, detected

WRKY variants and mutations, and suggested that WRKYs play

a crucial role in the transportation and recycling phosphate

in leaves.
Cold and drought stresses

The molecular mechanisms of freezing tolerance are unresolved

in perennial trees. One investigation found that “Field plus lab

experiments help identify freezing tolerance and associated genes in

subtropical evergreen broadleaf trees: A case study of Camellia

oleifera” (Xie et al.). Combing transcriptome results from the field

and lab experiments, the common genes associated with freezing-

stress responses were identified. Drought stress is another major

obstacle in C. oleifera planting industry. The other investigation

reported that “Integration of mRNA and miRNA analysis reveals

the differentially regulatory network in two different Camellia

oleifera cultivars under drought stress” (He et al.). Their research

improves the understanding of the regulatory network response

to drought stress and variety-specific responses improving

drought tolerance.
Grafting

Camellia oleifera scion significantly affects the rootstock

properties after grafting and impacts the grafted seedling growth.

One study reported “Untargeted metabolism approach reveals

difference of varieties of bud and relation among characteristics

of grafting seedlings in Camellia oleifera” (Long et al.). They

detected 554 metabolites significantly different among four

varieties and 29 metabolic pathways significantly changed by

metabolomics analysis.
Disease resistance

Anthracnose outbreak severely affects oil tea camellia production in

China. One paper revealed that “Overexpression of dihydroflavonol 4-

reductase (CoDFR) boosts flavonoid production involved in the

anthracnose resistance” (Yang et al.). The results showed that CoDFR

may play an important role in flavonoid-mediated defensemechanisms

during anthracnose invasion in resistant C. oleifera. WRKY

transcription factor family members are vital regulators in plant

response to pathogen infection. Another paper reported

“Identification of Camellia oleifera WRKY transcription factor genes

and functional characterization of CoWRKY78” (Li et al.). They

identified 90 WRKY members, verified the expression patterns

between anthracnose-resistant and -susceptible cultivars, and

demonstrated that multiple candidate CoWRKYs can be induced

by anthracnose.
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Oil synthesis gene

Chinese hickory (Carya cathayensis) produces nuts with high-

quality edible oils rich in oleic acid. Stearoyl-ACP desaturase (SAD)

plays an important role in oleic acid accumulation by catalyzing the

first step converting stearic acid to oleic acid. One paper reported

the “Analysis of Delta(9) fatty acid desaturase gene family and their

role in oleic acid accumulation in Carya cathayensis kernel” (Si

et al.). The study identified five members of SAD genes, isolated the

full-length cDNAs, analyzed their expression, located them in the

chloroplast, and studied their function in Saccharomyces cerevisiae,

Nicotiana benthamiana, and walnut.
N and P nutrients

Pine (Pinus koraiensis) produces high-quality timber and high

value health-care nut oil. One article reported that “Large

investment of stored nitrogen and phosphorus in female cones is

consistent with infrequent reproduction events of Pinus koraiensis, a

high value woody oil crop in Northeast Asia” (Wu et al.). High

nutrient sink strength of cones and vegetative tissues of

reproductive branches suggested that customized fertilization

practices can help improve crop yield in Pinus koraiensis.
Non-structural carbohydrates

Non-structural carbohydrates (NSC) play important roles in

energy supply for normal growth and reproduction under

environmental stress. One article described the “Effects of NSC in

different organs and at different growth stages on the yield of oil

peony Fengdan with different ages” (Wang et al.). Results showed

that the biomass, yield (seed biomass), soluble sugars, starch, and

NSC reserve at the whole tree level increased with the increase in

age. NSC level, particularly the concentration of soluble sugars in

stems mainly influences Fengdan yield.
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