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network on stained
microsections for quantitative
wood anatomy
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and José Miguel Olano1
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Forests are critical in the terrestrial carbon cycle, and the knowledge of their

response to ongoing climate changewill be crucial for determining future carbon

fluxes and climate trajectories. In areas with contrasting seasons, trees form

discrete annual rings that can be assigned to calendar years, allowing to extract

valuable information about how trees respond to the environment. The

anatomical structure of wood provides highly-resolved information about the

reaction and adaptation of trees to climate. Quantitative wood anatomy helps to

retrieve this information by measuring wood at the cellular level using high-

resolution images of wood micro-sections. However, whereas large advances

have been made in identifying cellular structures, obtaining meaningful cellular

information is still hampered by the correct annual tree ring delimitation on the

images. This is a time-consuming task that requires experienced operators to

manually delimit ring boundaries. Classic methods of automatic segmentation

based on pixel values are being replaced by new approaches using neural

networks which are capable of distinguishing structures, even when

demarcations require a high level of expertise. Although neural networks have

been used for tree ring segmentation on macroscopic images of wood, the

complexity of cell patterns in stained microsections of broadleaved species

requires adaptive models to accurately accomplish this task. We present an

automatic tree ring boundary delineation using neural networks on stained

cross-sectional microsection images from beech cores. We trained a UNETR, a

combined neural network of UNET and the attention mechanisms of Visual

Transformers, to automatically segment annual ring boundaries. Its accuracy was

evaluated considering discrepancies with manual segmentation and the

consequences of disparity for the goals of quantitative wood anatomy

analyses. In most cases (91.8%), automatic segmentation matched or improved

manual segmentation, and the rate of vessels assignment to annual rings was

similar between the two categories, even when manual segmentation was

considered better. The application of convolutional neural networks-based
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models outperforms human operator segmentations when confronting ring

boundary delimitation using specific parameters for quantitative wood

anatomy analysis. Current advances on segmentation models may reduce

the cost of massive and accurate data collection for quantitative

wood anatomy.
KEYWORDS

image segmentation, neural networks, quantitative wood anatomy, tree ring,
UNETR, xylem
1 Introduction

Forests are critical to terrestrial carbon fluxes and play a crucial

role in the future evolution of atmospheric carbon dioxide

concentration (Pan et al., 2011; Cabon et al., 2022). Therefore, it

is of key importance to understand the responses of trees to

environmental conditions for predicting their behavior in future

climate scenarios (Seidl et al., 2017). Fortunately, forests can

contribute to decipher these questions through the information

stored in wood (Olano et al., 2021; Martinez del Castillo et al.,

2022). Xylem anatomical adjustments to climate conditions at

different time scales (Garcıá-Cervigón et al., 2020; Olano et al.,

2022) provide basic information to understand the response of trees

to climate change and its interaction with intrinsic processes

(Piermattei et al., 2020). Tree xylem constitutes a temporal record

of individual tree growth and provides a set of characteristics that

store information on how environmental factors influenced wood

formation. Therefore, studies of time-resolved information stored

in annual tree rings have become a powerful tool to predict the

impact of global change on terrestrial ecosystems (Wilmking et al.,

2020; Sangüesa-Barreda et al., 2021).

The study of tree ring formation using dendrochronology

involves a number of techniques to extract the information stored

in the wood (Schweingruber, 1996). Recent technical advances in

dendrochronological studies have improved data collection and

processing using a wide range of tools, ranging from the traditional

macroscopic to microscopic perspectives (von Arx et al., 2016;

Garcia-Hidalgo et al., 2022). Initially, tree ring studies focused on

observing wood samples using a stereoscopic set to determine total

ring width and eventually early and latewood measurements, when

this annual subdivision could be established, resulting in annually

resolved time series of tree growth investment (Schweingruber et al.,

2005). Advancements in microsectioning and wood staining along

with the recent development of high-resolution digitization tools

have facilitated the integration of the microscopic world into the

digital realm. This has opened up new avenues of research that

concentrate on identifying and quantifying xylem cells at the

intraannual level, presenting a plethora of possibilities and
02
research objectives (Fonti et al., 2010; Olano et al., 2013). The

term quantitative wood anatomy (QWA) was coined to describe

this approach, which gathers comprehensive data on xylem

anatomy and provides exciting opportunities to explore

intraannual variation and analyze xylem functional properties.

Specifically, QWA provides effective information from

measurable features of conductive xylem vessels (e.g., lumen area,

cell wall dimension, cell pattern), but also from other wood cells

(parenchyma, fibers, resin ducts, etc.), and related properties (e.g.,

density fluctuations) (Anadon-Rosell et al., 2018; Arzac et al., 2018).

By means of these anatomical features, QWA produces precise and

valuable measurements, expanding dendrochronology to a deeper

knowledge of functional tree traits, such as tree physiology or

ecophysiology (Cuny et al., 2012; Pérez-de-Lis et al., 2022).

Furthermore, these traits can be transformed into functional

features (Hérault et al., 2011; Borghetti et al., 2020). As a time-

resolved data, the precise assignment of tree growth to calendar

years constrains the use of QWA. However, as secondary tree

growth occurs sequentially, annual rings can usually be identified

by the cessation of growth when a limiting season occurs. When

rings are properly identified and dated, each measured wood feature

can be related to extrinsic sources of time-resolved data (e.g,

climatic features, environmental disturbances, water availability)

(Takahashi et al., 2005; Zhang et al., 2021; Anderson-Teixeira

et al., 2022).

Anatomical features in wood are currently studied using digital

images obtained from wood-stained microsections according to

standardized protocols (von Arx et al., 2016; Prislan et al., 2022).

Software advances at QWA analyses allow the transition from

measuring individual cell traits to semi-automated identification

and quantification of large numbers of cells (e.g., 20, 600 xylem

vessels in just one core), increasing the validity of the data obtained.

Furthermore, some of the available software offers automatic ring

boundary detection (Resente et al. in prep., von Arx & Carrer, 2014),

but there is still ample room for improvement in this task.

Currently, most implementations of automatic ring boundary

segmentation compute the variation in pixel value through a

selected path across the sample image and find the points that
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exceed an arbitrary threshold. This approach has been widely used

for macroscopic wood samples (e.g., increment cores or wood

slides) with satisfactory results (Fabijanska et al., 2017; Kim et al.,

2023). However, these techniques are less accurate for wood

microsections, and in most cases, thorough expert supervision is

required. In fact, the low reliability associated with automatic

segmentation forces most experts to segment ring boundaries

from scratch due to time-consuming amendments.

The recent development of novel hardware (e.g., Graphic

Processing Units, GPUs) facilitates the high computational tasks

required for image segmentation and high-resolution image analysis,

leading to remarkable applications for dendrochronological samples.

Out of the wide range of techniques, convolutional neural networks

(CNNs) are widely used for image segmentation and achieve

remarkable results in different fields (Sultana et al., 2020; Singh et al.,

2022). CNNs not only consider the individual pixel value, but also pixel

positions and their relationships with the surrounding pixels. Thus,

CNNs extract complex information throughout sequential processes

(e.g., convolutions, pooling), allowing complex and more abstract

information to segment images (Sultana et al., 2020).

CNNs methods accomplish a remarkable ring boundary

detection rate for macroscopic samples (Fabijanska & Danek,

2018). Further developments in annual ring recognition and

model validation for dendrochronological samples were recently

addressed considering ring boundaries as polygons instead of

polylines (Poláček et al., 2023) or tree rings as instance

segmentations (Gillert et al., 2023). Although these approaches

have yielded remarkable results in automated ring boundary

segmentation for dendrochronological samples, QWA focuses on

cellular and anatomical characteristics of tree rings and requires

specific segmentation models and robust methods for model

evaluation. Consequently, due to the large differences between

diverse kinds of wood, specific models should take into account

cell pattern characteristics to achieve high ring segmentation

accuracy. Considering QWA purposes, ring boundary evaluation

should follow specific criteria according to the image properties at

microscopic scales, where discrepancies in segmentation could

affect the general methods for segmentation evaluation.

To circumvent these limitations, we suggest investigating the

opportunity of supervised learning methods in identifying ring

boundaries in microsections of stained wood. However, CNNs

have limited ability to capture global relationships between

different image regions, as their operations are mainly local and

translation-invariant. Recently, Visual Transformers addressed this

limitation by introducing the transformer architecture into the

visual domain (Khan et al., 2022). These transformers use self-

attention mechanisms to capture long-range dependencies between

elements in an image, and effectively model the global relationships

(Lin et al., 2022).

To fill this gap in QWA, we aim to generate a neural network

model (NN) for automatic ring boundary delimitation on stained

microsections of wood using attention mechanisms to improve

segmentation accuracy, and evaluate whether the validity of NN-

based delineations for QWA analyses correspond with manually

created delineations. Such an approach would significantly reduce

the effort to obtain QWA data.
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2 Materials and methods

European beech (Fagus sylvatica L.) is a deciduous tree species

widespread throughout Europe, which represents the broadleaved

tree with the highest economic importance for European forestry

(Geßler et al., 2007). This species has attracted much interest in

dendrochronological studies, including QWA (Sánchez de Dios

et al., 2021; Zimmermann et al., 2021) due to the vast distribution

range, its economical relevance (forestry) and the dieback that has

recently affected this species. Rings usually show a semi-ring-porous

vessel distribution i.e. the decreasing lumen diameter in xylem

vessels across the annual ring, with distinct rings identifiable by a

band of narrower fibers in this species (Figure 1).

We developed a UNETRmodel trained using a collection of 214

transverse microsections of tree cores taken at different climate

conditions and elevations derived from previous research (Olano

et al., 2022). These microsections were stained with safranin and

Alcian blue according to the standard procedures (Garcia-Pedrero

et al., 2018) and digitized as RGB images using a Nikon D90 digital

camera on a Nikon Eclipse 50i optical microscope at 40x

magnification, resulting in a resolution of 1.63 µm per pixel.

Individual images were stitched using PTGUI v8.3.10 Pro (New

House Internet Services B.V., Rotterdam, The Netherlands).

Two different operators manually delineated ring boundaries on

214 digitized samples using ROXAS software in accordance with the

general standards and guidelines for QWA (von Arx et al., 2016).
2.1 Data preprocessing

To feed the models, we cropped the images into 256 x 256

pixels, hereafter referred to as data patches. Data augmentation

techniques were performed over these patches during training to

increase data variability. These procedures included horizontal

flipping operations (left-to-right flipping) and rotation with −20°

and 20° angles. Furthermore, the patches were randomly blurred

with a maximum and a minimum Gaussian kernel size of 3 and 10,

respectively. Finally, each data patch was normalized in the range

[0, 1]. Data augmentation was performed using the Albumentations

library (Buslaev et al., 2020).

Finally, the delimited ring boundaries were binarized to obtain

masks where the number 1 corresponded to the pixels belonging to

the ring boundary and 0 to the pixels of the background. These

masks were subjected to the same processes as the data patches,

except for normalization, so that the lines matched the rings.

Preprocessing steps are illustrated at Figure 2.
2.2 NN model

To distinguish whether a pixel belongs to the ring boundary or

to the background, we considered the UNEt TRansformer

(UNETR) semantic segmentation model (Hatamizadeh et al.,

2022), which is a state-of-the-art neural network for semantic

segmentation. Semantic segmentation assigns a class label (i.e.,

belonging to ring boundary or not) to each pixel and allows the
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detection of different regions in an image, in our case ring

boundaries. UNETR combines the well-known UNET network

(Ronneberger et al., 2015) with Visual Transformers (ViT)

(preprint Dosovitskiy et al., 2020) (Figure 3). ViT outperforms

the state-of-the-art CNNs in terms of accuracy and computational

efficiency. It uses mechanisms of attention by differentially

weighting the importance of each part of the image

independently. Considering the small number of pixels belonging

to ring border in the complete image of the sample, this self-
Frontiers in Plant Science 04
attention mechanisms should be useful for tree ring boundary.

Transformers consist of multiple layers of self-attention. The ViT

self-attention layer (Vaswani et al., 2017) allows global embedding

of information throughout the image. ViT divides an image into

fixed-size patches, linearly embeds each of them, and adds position

embedding as input to the Transformer Encoder. In this way, the

model learns the training data to encode the relative position of the

image patches and to reconstruct the full image structure.

The transform encoder included three layers:
FIGURE 1

Stained cross microsections from beech (Fagus sylvatica) wood cores. 4x image with three full tree rings (left) and 40x detail image with ring limit in
yellow (right).
FIGURE 2

Data preprocessing sequential steps. After cropping the image into N patches of 256x256 pixels, data augmentation consisted of +20° and -20°
patch rotation, and blurring using maximum and minimum kernel size of 3 and 10, respectively. The sample image was then normalized in the range
[0,1] to train the model associated to the corresponding mask.
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Fron
1. Multi-head Self-attention Layer: This layer linearly

concatenates all attentional outputs into the appropriate

dimensions. The numerous attention heads help to train

the local and global dependencies of an image.

2. Multilayer Perceptron Layer (MLP): It contains two layers

of neurons with a Gaussian error linear unit (GELU)

(preprint by Hendrycks & Gimpel, 2016).

3. Norm Layer: It is added before each block as it contains no

new dependencies between the training images. This helps

to improve training time and overall performance.
In UNETR (Figure 3), input data is divided into a sequence of

uniform, nonoverlapping patches and projected into an embedding

space, using a linear layer, and projected into an embedding space

by means of a linear layer. The sequence is then added with a

positional embedding and used as input to a transformer model.

The encoded representations of the different layers of the

transformer are extracted and merged with a decoder through

hopping connections to predict the final segmentation. The

output sizes are given for a patch resolution P = 16 (for a total of

256 patches) and an embedding size K = 768.

To train the neural model, we used Focal Tversky Loss

(Abraham & Khan, 2019) as the loss function given as follows:

L(Y , Ŷ ) = 1 − oiyibyi
oiyibyi + aoiyi(1 − byi) + boi(1 − yi)byi + ϵ

� �g

where yi ∈ Y and yî ∈ Y ̂ denote the ground truth and the predicted

image of the ith pixels for the class C (c∈ {ring, no ring}) respectively,
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a and b are the penalty parameters, and ϵ is a smoothing factor used

to avoid zero division error. In this work, the following values were

used: a = 0.7, b = 0.3, g = 0.75, and ϵ = 1e−12. The network was

trained over 25 epochs, cycles in which the complete training dataset

was seen by the network.
2.3 Post-processing

Each high-resolution image was split into N small sub-images,

each of the same size than a data patch, Figure 4. The sub-images

were created using an overlap-tile strategy to an extent of 90% (Ma

et al., 2018). To improve the detection of ring boundaries, a test-time-

augmentation (TTA) strategy was applied (Gonzalo-Martıń et al.,

2021). Geometric transformations belonging to the dihedral group of

order 4 were used as TTA augmentations, yielding eight different

versions of the same sub-image. The probability that a pixel belongs

to a ring boundary is found by computing the maximum response of

the eight values that correspond to the location of the same pixel. This

value is normalized to be in the range [0,1]. A pixel is considered to

belong to a ring boundary if it exceeds a threshold of 0.2

(estimated experimentally).

Since prediction networks tend to draw thicker ring boundaries

than manually drawn ones, a skeletonization process was performed.

This process reduces binary objects to 1-pixel wide representations,

providing more appropriate lines for ring boundary delineation

(Zhang & Suen, 1984). Because skeletonization generally produces

noisy or redundant branches (spurs), a pruning process was
FIGURE 3

UNETR architecture. Modified from (Ronneberger et al., 2015). The yellow block represents a 3x3 convolution layer, followed by a batch
normalization and a ReLU layers. Green Block represents a 2x2 deconvolution layer, blue block represents a 2x2 deconvolution layer, followed by a
3x3 convolution, a batch normalization and a ReLU layers. Finally, the gray block represents a 1x1 convolution.
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performed using the Discrete Skeleton Evolution (DSE) model to

preserve only the “trunk” lines with much information (Bai &

Latecki, 2007). DSE iteratively eliminates the last branches of the

skeleton with less relevance according to their contribution to the

shape reconstruction. In this work, branches with an area smaller

than 100 pixels were removed. All experiments were performed using

an NVIDIA RTX3090 GPU with 10,496 CUDA cores and 24 GB

of memory.
2.4 Evaluation

To evaluate the results obtained by the segmentation model, a 3-

fold cross-validation was performed. In this prospective evaluation,
Frontiers in Plant Science 06
we selected 39 images with both objective and specialist-based

analysis of ring boundary delineation. We analyzed 13 images

from each fold, including varied parts of the tree trunk from pith

to bark and varied lighting.

Ring boundary are linear paths of 1.63 µm width (1 pixel)

delimiting tree rings of 1 110 ± 780 µm width. Thus, pixel by pixel,

the discrepancies between the linear paths of ring delimitations

severely degrade the results. For example, two complete, equally

segmented lines 1 pixel apart result in a 0% match, although the

range of error with manual segmentation is commonly larger and

practical results for QWA would be equivalent. To enhance the

accuracy of the validation method, we compared each ring

boundary derived from manually segmented images with those

segmented by the NN model according to four criteria (Figure 5).
FIGURE 4

Postprocessing procedures. Images were split into 256x256 pixel patches. Test Time Augmentation (Gonzalo-Martıń et al., 2021) was then applied
for each patch using an order 4 dihedral group before image normalization [0,1]. Pixels with P > 0.2 on each set of images were considered as
boundary. The output segmentation was skeletonized to obtain thin boundaries.
FIGURE 5

Images of European beech (Fagus sylvatica) cross microsections with ring delineations using manual (green) and model (yellow) approaches. Right:
Detailed image showing mean ring center (cross), distance between mean ring centers (stripped segment), and vessel with mismatched center (light
yellow area with black contour).
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(1) We compared pixel coincidence between tree ring boundaries at

the pixel level, according to standard image segmentation

assessment methods. In a second step, (2) we calculated the mean

position of each segmentation for each ring boundary and

calculated their spacing. (3) We counted the number of

mismatched vessels depending on the ring bordering strategy.

Finally, (4) we counted with an expert on QWA to assess which

of the ring delimitations performed better according to the ring

growth with a trinomial criterion: 0 = better performance of manual

delimitation, 1 = no differences, 2 = better performance of NN

model delimitation.
3 Results

Two different operators manually segmented 5,928 ring

boundaries on 214 images used to train and test the model. The

test set correspond to 1,329 ring segmentations from 39 randomly

selected images, with an image width of 1,468 ± 13.74 pixels (mean

± SE), and a mean height of 23,975 ± 48.61 pixels.

The comparison between segmented boundaries, considering

pixel value match, revealed extremely low results (< 1%) as

expected. However, the overall mean ring boundary position

distance between manual and artificial segmentation was 35.85 ±

3.93 pixels, equivalent to 58.43 ± 6.4 mm. Such a small difference

was reflected in the small discrepancy in vessel attribution between

delimitation methods, with a mean discrepancy in vessel

assignment between models of about a vessel per ring (1.18 ±

0.07 vessels). Expert assessment of the results revealed a solid

performance of the NN prediction (Table 1), which was better

than manual segmentation in 601 (45.22%) cases. In fact, manual

segmentation improved the NN in only 108 (8.1%) of the ring

delineations. Furthermore, the NN was able to segment 31 borders

that were not manually segmented, while failing to detect 16 rings

that were segmented by the operators.

Discrepancy between the mean ring boundary centers was

higher (41.8 ± 7.02) when the segmentations were considered

similar by the expert. Meanwhile, ring boundary center difference

was 34.97 ± 8.76 pixels when manual delimitation was considered

better, and 21.89 ± 1.54 pixels when NNmodel was judged superior.

The largest vessel mismatch between segmentations occurred when

the NN model prediction was considered better. In these cases, the

trained model included 1.9 ± 0.13 more vessels than manual
Frontiers in Plant Science 07
segmentation. On the other hand, there was less than one vessel

mismatch (0.97 ± 0.17) when manual segmentation was

considered better.

A separate analysis by folds confirmed the best performance of

the NN model segmentation in all the folds (Table 2). In fact, the

higher performance of manual segmentation was marginal in all the

folds, ranging from 6.06% to 9.4% of the segmented

ring boundaries.
4 Discussion

The application of NNs in the automation of QWA analyses has

been progressive since the development of different cell delimitation

models (Garcia-Pedrero et al., 2018, Garcia-Pedrero et al., 2019;

Resente et al., 2021). The training and processing effort required of

any operator makes it necessary to develop useful methods for ring

boundary delimitation on images from microsections. Our model

performed equal or better than manual tree ring boundary

delimitation on stained wood microsections in 91.79% of the cases.

Beech ring boundaries are characterized by the presence of a

band of narrower fibers at the end of the growing season, intersected

by parenchyma rays that have less distinct borders. This boundary

can be clearly delineated at first glance (at least for the fibers), but

conventional manual ring boundary segmentation is not performed

pixel by pixel following each cell wall limit, but rather using

polylines consisting of segments connecting multiple points

marked by the operator. Therefore, the ring boundaries differ

slightly between operators, or even between different attempts of

a given operator, depending on where the segment limits are placed.

This is not a problem with most QWA approaches since most of the

effort is based on the assignment of vessels to each ring.

Furthermore, these differences are small in terms of percentage of

ring or vessel adscription area and subsequently do not affect the

robustness or reproducibility of QWA analyses. In this way, our

results showed an average spacing of 35.85 (SE = 3.93) pixels with

less than one vesse l mismatch between manual and

automatic delimitations.

The evaluation of a segmentation usually compares ground

truth with the predicted boundary at pixel value level (boundary vs.

non-boundary). However, this approach has not been widely used

in dendrochronological studies, that focus just on tree ring

boundary identification. The evaluations usually consider

adequate ring boundary detection through visual assessment or

partial intersection to identify tree ring boundary (Fabijanska and

Danek, 2018). In this way, models achieve remarkable results when

applied to macroscopic samples. Higher widening of tree ring

border for model evaluation has been proposed as an advance

(Poláček et al., 2023) to a finer analysis of segmentations through

spatial overlap-based metrics (Taha & Hanbury, 2015).

The particularities of the QWA analysis reinforces the need of a

more exhaustive evaluation method. Tree ring boundaries at a

single point fix the boundary on a horizontal line, but ring

boundaries rarely show this arrangement, resulting in a notable

mismatch in the attribution of anatomical structures (vessels,

fibers…) to actual rings, i.e. calendar years. On the other hand,
TABLE 1 Results of the analysis of discrepancies between segmentations
according to expert classification of the best segmentation.

Best ring
segmentation
(expert
decision)

Number
of
rings (%)

Mean ring
center differ-
ence (SE)
in pixels

Mean
vessel
mismatch
(SE)

Manual 108 (8.12%) 34.97 (8.76) 0.97 (0.17)

Similar 619 (46.57%) 41.8 (7.02) 0.55 (0.6)

Model 601 (45.22%) 21.89 (1.54) 1.9 (0.13)
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comparisons at the exact pixel value can lead to a low evaluation of

the results when model agreement at pixel level is not exact, even if

there are neither vessel nor cell assignment differences. Moreover, a

manual ring boundary is usually a polyline linking the different

points marked by the operator, whereas the NN model defines

boundaries that run through the image pixel by pixel. These

contrasting ways of drawing the line, and the serious drawbacks

of comparing lines pixel by pixel, requires the use of complementary

approaches to evaluating ring boundary detection for QWA.

Therefore, we considered the extraction of the mean position of

the pixels belonging to each ring boundary as a valuable metric to

compare manual and automatic segmentation but complemented

with dendrochronological features.

The discrepancies between the predicted and the manually

delineated tree ring boundaries were within the expected

deviations between different delineations of the same ring,

providing a valuable framework for QWA analysis, and allowing

the study of tree responses to environmental conditions. The

extremely small discrepancy in the number of vessels assigned to

a ring (about 1 vessel center discrepancy on average), considering

the average of 120 vessels per ring from this data set (Olano et al.,

2022), means a very small divergence (<1%). Moreover, the NN was

able to identify a significant number of rings that were missed by

human experts, while a smaller number were missed.

Using NN-based models in stained images with similar

characteristics of wood samples could be useful for broad QWA

applications. NNs are sensitive to image properties, primarily

resolution and pixel pattern, and require a considerable number of

segmented images to learn and modulate the species-specific

parameters to achieve optimal results. The growing datasets of wood

microsections for QWA open the opportunity for accurate models to

segment and, therefore, capture the wide range of cell patterns and

wood ring characteristics, including the major anatomical patterns of

wood (Wheeler et al., 1989). Furthermore, the differences in tree-ring
Frontiers in Plant Science 08
delimitation between operators and the wide range of wood types

highlight the importance of considering not only pixel value but also

other relevant metrics for QWA, including expert examination. The

compilation of different parameters proposed in this manuscript helps

to confront different segmentation methods for QWA.

The proposed UNETR model was developed using beech

images following standard microsectioning and data collection

protocols. However, there are inherent disparities in image

characteristics due to the individualities of trees or even core

samples and, similarly, to image capture with a camera on a

microscope. Thus, although we followed the standard protocol for

QWA samples, NNs can show some degree of bias associated to the

training data. In order to apply the proposed model with images

different from those obtained for this experiment, we recommend to

calibrate the model parameters with a subset of the samples.

Our results show that NNs provide results that have the same or

even better accuracy than manual segmentation of ring boundaries,

with a slight divergence in vessel mismatch in the marginal cases

when NNs models are outperformed by the manual operator. The

superior results of NNs can be partially explained by the inherent

limitation of manual delineation by polylines, whereas NN can

closely match annual tree-ring boundaries to pixel value and

pattern. Nonetheless, the great development on the application of

NNs at image segmentation in other areas (e.g. biomedical, remote

sensing, on-field applications in agroforestry, etc.) reflects that there

is still much room for improvement for more specific models

according to the wood anatomical patterns, the staining

procedures, and the different approaches to model evaluation (i.e.,

considering the complete ring between two limits as a polygon and

examining differences in the segmented area), or even using

retraining options with human-corrected results to improve

model accuracy. Further advances through this avenue require the

compilation of large data banks of images with delineated annual

rings on a wide variety of microscopic wood samples.
TABLE 2 Deviations between tree ring boundaries for each fold in the evaluation.

Fold Best ring segmentation
(expert decision)

Number of
rings

(inner fold %)

Mean ring center difference (SE)
in pixels

Mean vessel
mismatch

(SE)

1

Manual 42 (9.4%) 33.56 (3.89) 1.3 (0.33)

Similar 177 (39.6%) 52.56 (1.51) 0.1 (177)

Model 226 (50.7%) 25.88 (1.33) 2.13 (0.23)

Overall 446 37.54 (5.42) 1.36 (0.13)

2

Manual 43 (8.53%) 8.78 (1.34) 0.7 (0.22)

Similar 255 (50.6%) 18.86 (7.45) 0.4 (0.07)

Model 206 (40.87%) 9.58 (1.35) 1.6 (0.19)

Overall 504 14.5 (3.92) 0.89(0.09)

3

Manual 23 (6.06%) 71.74 (32.82) 1 (0.31)

Similar 187 (49.34%) 64.15 (17.91) 0.84 (0.12)

Model 169 (44.59%) 56.93 (13.06) 1.96 (0.25)

Overall 379 61.41 (10.74) 1.34 (0,13)
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5 Conclusions

CNNmodels can significantly reduce costs in QWA ring boundary

segmentation and have the potential to outperform human operators.

Advances in NNs application and the development of specific

evaluation methods for wood ring boundary segmentation in QWA

could enable the massive collection of accurate data on tree function

and response to ongoing global change.
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de recherches sur la (2005). Growth rings in herbs and shrubs: Life span, age
determination and stem anatomy Vol. 79 (Switzerland: Swiss Federal Research
Institute WSL Birmensdorf).

Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G.,
et al. (2017). Forest disturbances under climate change.Nat. Climate Change 7 (6), 395–
402. doi: 10.1038/nclimate3303

Singh, S., Mittal, N., Thakur, D., Singh, H., Oliva, D., and Demin, A. (2022). Nature
and biologically inspired image segmentation techniques. Arch. Comput. Methods Eng.
29 (3), 1415–1442. doi: 10.1007/s11831-021-09619-1

Sultana, F., Sufian, A., and Dutta, P. (2020). Evolution of image segmentation using
deep convolutional neural network: A survey. Knowledge-Based Syst. 201–202, 106062.
doi: 10.1016/j.knosys.2020.106062

Taha, A. A., and Hanbury, A. (2015). Metrics for evaluating 3D medical image
segmentation: analysis, selection, and tool. BMC Med. Imaging 15 (1), 1–28.
doi: 10.1186/s12880-015-0068-x

Takahashi, K., Tokumitsu, Y., and Yasue, K. (2005). Climatic factors affecting the
tree-ring width of Betula ermanii at the timberline on Mount Norikura, central Japan.
Ecol. Res. 20, 445–451. doi: 10.1007/s11284-005-0060-y

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

von Arx, G., and Carrer, M. (2014). ROXAS - A new tool to build centuries-long
tracheid-lumen chronologies in conifers. Dendrochronologia 32 (3), 290–293.
doi: 10.1016/j.dendro.2013.12.001

von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K., and Carrer, M. (2016).
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