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The roles of small RNAs in rice-
brown planthopper interactions

Shengli Jing, Jingang Xu, Hengmin Tang, Peng Li, Bin Yu*

and Qingsong Liu*

College of Life Sciences, Xinyang Normal University, Xinyang, China
Interactions between rice plants (Oryza sativa L.) and brown planthoppers

(Nilaparvata lugens Stål, BPHs) are used as a model system to study the

molecular mechanisms underlying plant-insect interactions. Small RNAs

(sRNAs) regulate growth, development, immunity, and environmental

responses in eukaryotic organisms, including plants and insects. Recent

research suggests that sRNAs play significant roles in rice-BPH interactions by

mediating post-transcriptional gene silencing. The focus of this review is to

explore the roles of sRNAs in rice-BPH interactions and to highlight recent

research progress in unraveling the mechanism of cross-kingdom RNA

interference (ckRNAi) between host plants and insects and the application of

ckRNAi in pest management of crops including rice. The research summarized

here will aid in the development of safe and effective BPH control strategies.
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Introduction

Rice (Oryza sativa L.) is a globally-important staple food which is susceptible to

damage from hundreds of insect herbivores throughout its lifecycle (Du et al., 2020). One

of the most destructive of these insect herbivores is the brown planthopper (Nilaparvata

lugens Stål, BPH), which is responsible for severely reduced rice yields and substantial

economic losses each year (Shi et al., 2021; Shi et al., 2023). Once outbreaks, the insects can

completely destroy crops, an effect called “hopperburn” (Backus et al., 2005).

Plants have evolved an intricate, double-layered defense system to effectively resist and

respond to herbivorous pests. The first layer is referred to as pathogen-associated molecular

pattern (PAMP)-triggered immunity (PTI) (Jing et al., 2017). PTI activates downstream

defense-related signaling cascades, such as the phytohormone-mediated defense response

pathway (Erb and Reymond, 2019; Wang et al., 2023). The second layer is known as

effector-triggered immunity (ETI), which is a robust resistance (R) protein-mediated

defense response (Jones and Dangl, 2006; Takken and Tameling, 2009; Rodriguez et al.,

2017). Recent research suggests that plants respond to herbivory through a series of

defense-related processes, including phytohormone signaling and secondary metabolite

biosynthesis, many of which are regulated by small RNAs (sRNAs) (Sattar and

Thompson, 2016).
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sRNAs are eukaryotic non-coding RNA molecules,

approximately 20-30 nucleotides (nt) in length, which regulate

gene expression via RNA silencing (Zamore and Haley, 2005;

Chapman and Carrington, 2007). According to their precursor

structures and associated genetic pathways, plant sRNAs are

classified into two major classes: microRNAs (miRNAs) and small

interfering RNAs (siRNAs) (Bartel, 2009; Chen, 2009; Katiyar-

Agarwal and Jin, 2010). Likewise, insect sRNAs are divided into

three major classes: miRNAs, endogenous-siRNAs (endo-siRNAs),

and piwi-interacting RNAs (piRNAs) (Golden et al., 2008). In both

plants and animals, miRNAs are 20-24 nt single-stranded non-

coding RNAs which mediate post-transcriptional gene silencing by

binding to mRNAs containing specific complementary base pairs

(Zhang et al., 2006; Bartel, 2009; Ghini et al., 2018). Global sRNA

sequence profiling of rice and BPH has enabled the identification

and characterization of many sRNAs, particularly miRNAs,

involved in rice-BPH interactions (Zha et al., 2016; Wu et al.,

2017; Nanda et al., 2020). The focus of this review is to explore the

roles of sRNAs in rice-BPH interactions and to highlight recent

research progress in unraveling the mechanism of cross-kingdom

RNA interference (RNAi) between host plants and insects. The

research summarized here will aid in the development of safe and

effective BPH control strategies.
Rice-derived sRNAs involved in
BPH resistance

In plants, sRNAs play significant roles in growth, development,

abiotic and biotic stress responses (Khraiwesh et al., 2012; Duan

et al., 2015; Yue et al., 2017; Chen et al., 2019; Kryovrysanaki et al.,

2022). Several studies have utilized RNA and sRNA profiling to

identify sRNAs in rice. Functional validation experiments indicate

that these sRNAs fine-tune plant innate immunity by integrating R

gene-mediated resistance, phytohormone signaling, callose

deposition, reactive oxygen species (ROS) production, and

secondary metabolite biosynthesis (Wu et al., 2017; Ge et al.,

2018; Dai et al., 2019; Tan et al., 2020; Lü et al., 2022; Shen

et al., 2023).

To date, approximately 17 BPH-resistance (R) genes have been

identified in both wild and cultivated rice (Wang et al., 2023).

Considerable research has been conducted to characterize the

mechanism by which R genes confer BPH resistance (Jing et al.,

2017; Zheng et al., 2021). Through miRNA sequencing, Wu et al.

(2017) identified 23 and 674 differentially expressed miRNAs

(DEMs) (including 464 known and 183 novel miRNAs) between

resistant (carrying BPH-resistance gene Bph15) and susceptible rice

varieties before and after BPH infestation, respectively. The

identified DEMs were primarily involved in basal defense and

BPH-specific resistance. Similarly, an integrated miRNA and

mRNA analysis identified 217 DEMs between Bph6-carrying

transgenic rice lines and wild type plants after BPH infestation

(Tan et al., 2020). Of these, nine miRNAs were specifically

expressed in transgenic rice lines, suggesting their involvement in

Bph6-mediated resistance to the BPH. In addition, both Nanda et al.

(2020) and Lü et al. (2022) identified an array of BPH-responsive
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miRNAs between resistant and susceptible rice varieties. Although

these findings suggest that miRNAs likely participate in the BPH

defense response, the involvement of only a few miRNAs has been

experimentally verified (Table 1).

It is well known that the phytohormone signaling plays an

important role in rice defense against BPH (Zhou et al., 2009).

Recent research suggests that miRNAs regulate rice resistance to

BPH by post-transcriptionally regulating the expression of target

genes involved in phytohormone signaling. For example, Osa-

miR156 negatively regulates BPH resistance by modulating

jasmonic acid (JA) signaling (Ge et al., 2018). Osa-miR156-

silenced plants (MIM156) exhibited increased resistance to BPH

via upregulated expression of OsMPK3 and OsMPK6 and

downregulated expression of OsWRKY70, a transcription factor

which positively regulates JA signaling. Furthermore, the expression

of the JA biosynthesis gene OsHI-LOX and the contents of JA and

bioactive jasmonoyl-isoleucine (JA-Ile) were significantly reduced

in MIM156 plants. Altogether, it appears that Osa-miR156 regulates

JA biosynthesis and BPH resistance via the MAPK cascade in rice.

In addition, Osa-miR162a is strongly induced by BPH herbivory in

rice seedlings (Chen et al., 2023). Functional verification indicated

that Osa-miR162a regulates BPH resistance in rice by inhibiting the

a-linolenic acid metabolism pathway, which itself regulates JA

biosynthesis (Chen et al., 2023).

In rice, secondary metabolites have been shown to inhibit both

the feeding and development of BPH. Furthermore, miRNAs can

regulate the expression of genes involved in secondary metabolite

biosynthesis to modulate BPH resistance. For example, OsmiR396

was found to negatively regulate BPH resistance via the OsmiR396–

growth-regulating factor 8 (OsGRF8)–OsF3H–flavonoid module

(Dai et al., 2019). Transgenic plants over-expressing growth-

regulating factor 8 (OsGRF8), the target gene of OsmiR396,

exhibit enhanced BPH resistance due to downregulation of

OsmiR396. Overall, it appears that OsmiR396-OsGRF8 modulates

BPH resistance by regulating the expression of the flavanone 3-

hydroxylase (OsF3H) gene, which is involved in flavonoid

biosynthesis (Dai et al., 2019). More recent research indicated

that OsmiR159 negatively regulates BPH resistance through the

OsmiR159–OsGA-MYBL2 module and the OsmiR159–

OsGAMYBL2–GS3 signaling pathway (Shen et al., 2023). Despite

these advancements, the molecular mechanism underlying miRNA-

mediated BPH resistance in rice is still poorly understood.
The roles of sRNAs in BPH physiology

Advances in genomics have greatly expanded our

understanding of the roles sRNAs play in BPH physiology and

environmental response (Sattar and Thompson, 2016; Zha et al.,

2016). Emerging evidence suggests that sRNAs participate in BPH

metamorphosis, wing polyphenism, molting, and reproductive

development (Chen et al., 2013; Xu et al., 2013; Chen et al., 2018;

Ye et al., 2019; Xu et al., 2020; Li et al., 2021; Wang et al., 2022).

Combing transcriptomic and genomic data, Xu et al. (2013)

identified key genes involved in the BPH siRNA and miRNA

pathways. RNAi knockdown of these genes severely affected BPH
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TABLE 1 The sRNAs involved in rice-BPH interactions.

miRNA Origin Target Acquire method Reference

Osa-miR156 Oryza sativa
Squamosa promoter binding protein-like gene3/11/12/13/
14 (SPL3/SPL11/SPL12/
SPL13/SPL14)

sRNA sequencing and experiment
validation

Ge et al., 2018

Osa-
miR160f-5p

Oryza sativa Auxin response factor 16 (ARF16) sRNA sequencing Wu et al., 2017

Osa-
miR167a-5p

Oryza sativa NB-ARC domain containing protein (NB-ARC) sRNA sequencing Wu et al., 2017

OsmiR396 Oryza sativa Growth regulating factor 8 (OsGRF8)
sRNA sequencing and experiment
validation

Dai et al., 2019

OsmiR159 Oryza sativa OsGAMYBL2 Experiment validation Shen et al., 2023

Osa-
miR812s

Oryza sativa Pectin methylesterase inhibitor (PEMI) sRNA sequencing Nanda et al., 2020

Osa-
miR530-5p

Oryza sativa Allene oxide synthase (AOS) sRNA sequencing Nanda et al., 2020

Osa-
miR3980a-
5p

Oryza sativa Squamosa promoter binding protein (SBP) sRNA sequencing Nanda et al., 2020

Osa-
miR156l-5p

Oryza sativa No apical meristem (NAM) sRNA sequencing Nanda et al., 2020

Osa-
miR2118g

Oryza sativa NB-ARC domain containing protein (NB-ARC) sRNA sequencing Nanda et al., 2020

Osa-miR435 Oryza sativa a/b hydrolase sRNA sequencing Nanda et al., 2020

Osa-
miR2871a-
3p

Oryza sativa Glycosyltransferase family protein (GTF) sRNA sequencing Nanda et al., 2020

Osa-
miR172a

Oryza sativa AP2/EREBP family transcription factor (AP2/ERE) sRNA sequencing Nanda et al., 2020

Osa-
miR156b-3p

Oryza sativa GDSL-like lipase (GDSL) sRNA sequencing Tan et al., 2020

Osa-
miR169i-
5p.2

Oryza sativa Leucine rich repeat family protein (LRR) sRNA sequencing Tan et al., 2020

Nlu-miR-14-
3p

Nilaparvata
lugens

NlInR genes sRNA sequencing Xu et al., 2020

Nlu-miR-9a-
5p

Nilaparvata
lugens

NlInR genes sRNA sequencing Xu et al., 2020

Nlu-miR-
315-5p

Nilaparvata
lugens

NlInR genes sRNA sequencing Xu et al., 2020

Nlu-miR-
1000-1-3p

Nilaparvata
lugens

Ultrabithorax (NlUbx) sRNA sequencing Xu et al., 2020

Nlu-mir-9a
Nilaparvata
lugens

Ultrabithorax (NlUbx) Experiment validation Li et al., 2021

Nlu-miR-8-
5p

Nilaparvata
lugens

Membrane-bound trehalase (Tre-2) sRNA sequencing Chen et al., 2013

Nlu-miR-2a-
3p

Nilaparvata
lugens

Phosphoacetylglucosamine mutase (PAGM) sRNA sequencing Chen et al., 2013

Nlu-miR-
4868b

Nilaparvata
lugens

N. lugens glutamine synthetase (NlGS)
sRNA sequencing and experiment
validation

Fu et al., 2015

Nlu-miR-
173

Nilaparvata
lugens

N. lugens Ftz-F1 (NlFtz-F1)
sRNA sequencing and experiment
validation

Chen et al., 2018

(Continued)
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development and morphology, suggesting that siRNAs and

miRNAs may play a crucial role in BPH development and

metamorphosis (Xu et al., 2013).

In BPH, wing polyphenism is determined by environmental

cues such as the nutritional status of host rice plants, population

density, and photoperiod (Xu et al., 2020; Li et al., 2021). These

environmental cues affect wing polyphenism by way of several

complex regulatory pathways, including insulin/IGF-1 signaling

(IIS), juvenile hormone (JH), and 20-hydroxyecdysone (20E)

signaling (Xu et al., 2015). Research suggests that these signaling

pathways are modulated by an array of miRNAs. For example, RNA

sequencing of long wing (LW) and short wing (SW) BPH strains

identified a complicated miRNA network which may modulate

wing morphological plasticity in a growth-stage dependent manner

(Xu et al., 2020). Three miRNAs (Nlu-miR-14-3p, Nlu-miR-9a-5p,

and Nlu-miR-315-5p) have been confirmed to interact with NlInR

genes, which are the part of IIS signaling pathway (Xu et al., 2020).

In addition, Nlu-miR-34 has been shown to modulate wing

polyphenism by targeting NlInR1 and mediating the cross-talk

between the IIS, JH, and 20E signaling pathways via a positive

autoregulatory feedback loop (Ye et al., 2019). Both Nlu-miR-1000-

1-3p (Xu et al., 2020) andNlu-mir-9a (Li et al., 2021) were predicted

to target the wing development regulatory gene Ultrabithorax

(NlUbx), and both were found to be differentially expressed

between LW and SW BPH. Finally, the NlInRs/Nlu-mir-9a/NlUbx

regulatory cascade appears to control wing dimorphism by

regulating the host’s nutritional status (Li et al., 2021).

Molting is crucial to normal insect development, and is at least

partially controlled by the chitin biosynthesis pathway and 20E

signaling (Chen et al., 2013). Through deep miRNA sequencing of

BPH instars at specific stages and during four molting periods, 21

(Chen et al., 2013) and 36 (Chen et al., 2018) specific mature

miRNAs were identified, respectively. Among them, Nlu-miR-8-5p,

Nlu-miR-2a-3p, and Nlu-miR-173 were found to target genes in the

chitin biosynthesis pathway, as well as transcription factorNlFtz-F1.

All three miRNAs appear to regulate molting and chitin

biosynthesis through 20E signaling (Chen et al., 2013; Chen et al.,

2018). The expression of chitin synthase gene A was downregulated

when its specific siRNA and its regulated miRNA (Nlu-miR-2703)

were injected into BPH, reducing both chitin biosynthesis and

molting success (Li et al., 2017).
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sRNAs have also been found to regulate BPH fecundity by

modulating the expression of genes associated with reproductive

development. For example, injecting Nlu-miR-34-5p mimics can

decrease BPH fecundity by reducing vitellogenin (Vg) expression

(Wang et al., 2022). The biosynthesis of Vg is crucial for oocyte

accumulation and successful reproduction (Wang et al., 2022).

Glutamine synthetase (NlGS), a protein involved in ovary

development which regulates Vg accumulation, has been

identified as a target of Nlu-miR-4868b (Zhai et al., 2013; Fu

et al., 2015). NlGS expression was downregulated following

injection of the Nlu-miR-4868b mimic, but upregulated following

injection of the Nlu-miR-4868b inhibitor. Additionally,

overexpression of Nlu-miR-4868b reduced both insect fecundity

and Vg expression.

Finally, miRNAs play important regulatory roles in

environmental responses such as the adaptation to resistant rice

varieties. Zha et al. (2016) constructed and sequenced two sRNA

libraries using two BPH populations exhibiting different levels of

virulence: biotype 1, which only survives on the susceptible rice

variety ‘Taichung Native 1 (TN1)’, and biotype Y, which is able to

survive on the resistant rice variety ‘YHY15’ (carrying BPH-

resistance gene Bph15). The researchers identified 26 DEMs

between these two BPH populations, suggesting that these BPH

miRNAs may regulate adaptability to resistant rice varieties.

However, the precise functions of these miRNAs require

further confirmation.
Cross-kingdom RNAi in the
rice-BPH interaction

Research suggests that sRNAs can be transferred between host

plants and interacting organisms, thereby inducing gene silencing

via a mechanism known as “cross-kingdom RNAi” (Huang et al.,

2019). This scenario was first reported in the interaction between

plants and fungi. For example, gray mold (Botrytis cinerea)-derived

sRNAs were found to be able to control the Arabidopsis thaliana

RNAi system by binding to AGO1, ultimately silencing genes

involved in plant immunity (Weiberg et al., 2013). Cross-

kingdom RNAi has also been observed in the rice-BPH

interaction (Shen et al., 2021; Lü et al., 2022). Rice-derived
TABLE 1 Continued

miRNA Origin Target Acquire method Reference

Nlu-miR-
2703

Nilaparvata
lugens

N. lugens chitin synthase gene A Experiment validation Li et al., 2017

Nlu-miR-34-
5p

Nilaparvata
lugens

Hormone receptor 4 (HR4)/Caspase-1 (Cp-1) and
Spermatogenesis-associated protein 20 (SPATA20)

sRNA sequencing and experiment
validation

Wang et al., 2022

Osa-
miR162aa

Oryza sativa N. lugens target of rapamycin (NlTOR)
Conserved miRNA function prediction and
experiment validation

Shen et al., 2021;
Chen et al., 2023

Osa-
miR5795a

Oryza sativa N. lugens vitellogenin (NlVg)
sRNA sequencing and experiment
validation

Lü et al., 2022
a: Rice-derived sRNAs that function with cross-kingdom RNA interference to the brown planthopper.
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sRNAs may be ingested when BPH feed on rice plants, allowing

them to regulate BPH gene expression.

Recently, rice-derived Osa-miR162a, a conserved plant miRNA,

was found to effectively silence NlTOR (Target of rapamycin)

expression in BPH through the cross-kingdom RNAi mechanism

(Shen et al., 2021). Both ingestion and injection of Osa-miR162a

mimics result in reduced female BPH fecundity and Vg activity,

which is regulated by the TOR signaling pathway. In addition,

allowing BPH adults to feed on Osa-miR162a- or Osa-miR162a-m1

(a modified derivative of Osa-miR162a)-overexpressing transgenic

rice lines consistently resulted in reduced egg production and

hatching success. These results suggest that these miRNAs confer

resistance to BPH in rice, and that Osa-miR162a may be a potential

target for BPH control (Shen et al., 2021; Chen et al., 2023).

Another rice-derived miRNA, Osa-miR5795, has also been

found to impact BPH fecundity (Lü et al., 2022). By sequencing

and analyzing sRNAs from six rice varieties exhibiting variable BPH

resistance, 45 resistance-related DEMs were identified between

BPH-susceptible and BPH-resistant rice varieties prior to BPH

infestation, as well as 144 feeding-induced DEMs. Twenty-five of

these DEMs were shared between both groups and were found to be

directly involved in the rice-BPH interaction. In addition, seven

potential cross-kingdom miRNAs were identified, and their targets

were primarily involved in fecundity, feeding, digestion, and

detoxification. Based on their predicted binding sites, two of these

cross-kingdom miRNAs were selected to verify their function in

BPH fecundity. Consequently, BPH oviposition was significantly
Frontiers in Plant Science 05
reduced following injection with Osa-miR5795mimics targeting the

fecundity marker gene NlVg (Lü et al., 2022).

Both of these rice-derived miRNAs (Osa-miR162a and Osa-

miR5795) appear to play an important role in rice-BPH interactions

through cross-kingdom regulation of NlTOR and NlVg expression,

both of which regulate fecundity in BPH (Table 1). However, to date

no sRNAs, particularly BPH-derived miRNAs, appear to be

involved in rice-BPH interactions through cross-kingdom

RNAi trafficking.
Application of cross-kingdom RNAi in
crop protection

miRNA-mediated gene regulation has emerged as a novel

strategy to improve insect resistance in crop plants, including

rice. Host-induced gene silencing (HIGS) is a novel concept based

on the cross-kingdom RNAi mechanism. HIGS involves

overexpressing insect-targeted double-stranded RNAs (dsRNAs)

or artificial miRNAs in host plants to specifically block the

expression of feeding- and survival-related genes in target pests

and pathogens (Huang et al., 2019; Jiang et al., 2023; Mahanty et al.,

2023) (Figure 1A). A growing number of studies have demonstrated

the successful application of HIGS in crop protection (Escobar et al.,

2001; Seemanpillai et al., 2003; Zha et al., 2011; Van et al., 2014;

Coleman et al., 2015; Shivakumara et al., 2017; Panwar et al., 2018).

In this context, we will use the application of HIGS to manage BPH
A B

FIGURE 1

Schematic models for brown planthoppers control through host induced gene silencing (HIGS, A) and spray induced gene silencing (SIGS, B). In
HIGS (A), transgenic plants produce exogenous dsRNA or miRNA, or external spraying (B) delivers exogenous dsRNA. These dsRNA are processed
into small interfering RNAs (siRNAs) by rice Dicer-like (DCL) proteins. The siRNAs are then transferred to brown planthopper (BPH) cells and bind to
complementary sequences on BPH target mRNA. Through the assistance of the RNA-induced silencing complex (RISC), the target transcripts are
silenced. Additionally, exogenous dsRNA and miRNAs produced by transgenic plants can be directly absorbed by BPH, resulting in gene silencing.
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as an example. Two salivary proteins secreted by BPH are mucin-

like protein (NlMLP) and salivary protein 1 (NlSP1). Ectopic

expression of these genes in tobacco (Nicotiana benthamiana)

leaves induced the expression of defense-related genes and callose

deposition, suggesting that these two proteins function as elicitors

(Shangguan et al., 2018; Huang et al., 2020). Compared to controls

which received no injection or were injected with dsGFP, insects

injected with dsNlMLP or dsNlSP1 exhibited significantly reduced

weight gain and survival rates, suggesting that NlMLP and NlSP1

are essential for BPH survival (Shangguan et al., 2018; Huang et al.,

2020). Similarly, BPH feeding on transgenic plants constitutively

expressing dsNlMLP or dsNlSP1 also exhibited reduced weight gain

and survival rates compared to insects feeding on wild type plants

(Shangguan et al., 2018; Huang et al., 2020). Although allowing

insects to feed on plants overexpressing exogenous dsRNA was not

as effective as injecting insects directly, HIGS remains a promising

pest control strategy. However, the implementation of HIGS

depends on the generation of transgenic plants, which is both

time-intensive and costly (Jiang et al., 2023; Mahanty et al., 2023).

These limitations have so far hampered the application of HIGS to

BPH control in rice.

Recently, a novel RNAi-based crop protection strategy called

“spray-induced gene silencing (SIGS)” has been developed (Jiang

et al., 2023; Mahanty et al., 2023). As the name implies, SIGS does

not require genetic modification and instead involves simply

spraying crop plants with synthesized exogenous dsRNA to

selectively knock down insect or pathogen genes (Figure 1B). This

technology has been successfully used to control rice blast disease

(Magnaporthe oryzae) by spraying dsRNA targeting the fungal

pathogenicity gene MoDES1 (Sarkar and Roy-Barman, 2021).

Recently, a nanocarrier-dsRNA spray delivery system was

developed to control the white-backed planthopper (WBPH)

(Sogatella furcifera) under laboratory conditions (Guo et al.,

2023a, and Guo et al., 2023b). The results demonstrated the

efficacy of the nanocarrier spray system for inducing RNAi-

mediated knockdown of WBPH genes, including SfTH, SfEGFR,

Sfzfh-2, SfAbd-A, and SfAbd-B. In addition, the treatment resulted

in significant phenotypic defects and increased mortality in WBPH

(Guo et al., 2023a, and Guo et al., 2023b). These promising results

lay a foundation for the further development and application of

SIGS to control rice pests, including BPH.
Perspectives and challenges

A growing body of research has revealed the involvement of

sRNAs in the interaction between rice and BPH. The majority of

these sRNAs have been predicted and/or identified through multi-

omics analyses, and their targets have been predicted

computationally. However, many of these results still require

experimental validation. Moreover, the molecular mechanisms

underlying sRNA-mediated rice-BPH interactions remain poorly

understood. The pathways of sRNA transfer between rice and BPH

should also be comprehensively evaluated. Our growing
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understanding of cross-kingdom RNAi has paved the way for the

development of promising agricultural pest control strategies,

including HIGS and SIGS. Nevertheless, HIGS and SIGS face

several technical challenges. The stability and uptake efficiency of

dsRNA and sRNA need to be strengthened and off-target activities

must be avoided. We predict that the development and application

of environmentally-friendly RNAi-based technology will become an

agronomic research focus, and that the communication of cross-

kingdom sRNAs will emerge as a hot research topic.
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