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Respiratory burst oxidase homolog (Rboh) generates reactive oxygen species

(ROS) as a defense response during biotic and abiotic stress. In Aquilaria plants,

wounding and fungal infection result in biosynthesis and deposition of secondary

metabolites as defense responses, which later form constituents of fragrant

resinous agarwood. During injury and fungal invasion, Aquilaria tree generates

ROS species via the Rboh enzymes. Despite the implication of Rboh genes in

agarwood formation, no comprehensive genomic-level study of the Rboh gene

family in Aquilaria is present. A systematic illustration of their role during stress

and involvement in initiating signal cascades for agarwood metabolite

biosynthesis is missing. In this study, 14 Rboh genes were retrieved from

genomes of two Aquilaria species, A. agallocha and A. sinensis, and were

classified into five groups. The promoter regions of the genes had abundant of

stress-responsive elements. Protein–protein network and in silico expression

analysis suggested their functional association with MAPK proteins and

transcription factors such as WRKY and MYC2. The study further explored the

expression profiles of Rboh genes and found them to be differentially regulated in

stress-induced callus and stem tissue, suggesting their involvement in ROS

generation during stress in Aquilaria. Overall, the study provides in-depth

insight into two Rboh genes, AaRbohC and AaRbohA, highlighting their role in

defense against fungal and abiotic stress, and likely during initiation of agarwood

formation through modulation of genes involved in secondary metabolites

biosynthesis. The findings presented here offer valuable information about

Rboh family members, which can be leveraged for further investigations into

ROS-mediated regulation of agarwood formation in Aquilaria species.
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GRAPHICAL ABSTRACT
1 Introduction

The evolution of plants as sessile organisms presents a unique

set of challenges. They are constantly exposed to various

environmental stresses, both biotic (infection by bacteria, fungi,

nematodes, etc.) and abiotic (drought, heavy metals, radiation,

salinity, etc.), which can profoundly impact plant growth and

yield (Wang et al., 2020; Mahalingam et al., 2021). Plant cells

resist or respond to such stresses by promoting accumulation of

reactive oxygen species (ROS). These species regulate almost all

biological processes associated with developmental stages, stresses,

and immunity responses (Castro et al., 2021). Although, ROS were

once considered toxic by-products inside the cells because of

cellular aerobic metabolism (Inupakutika et al., 2016). Recent

studies affirm that they act as crucial signaling molecules to

activate signal transduction cascades related to stress responses

(Hu et al., 2018; Hawamda et al., 2020). However, beyond a specific

threshold level, accumulation of ROS species can cause abnormal

and irreparable metabolic changes and cell damage (Liu and He,

2016; Cheng et al., 2020; Wang et al., 2020). In plants, hydrogen

peroxide (H2O2) is primary ROS species produced during C2 cycle

in peroxisome (photorespiration) (Liu and He, 2016). In addition,

as a by-product of photosynthesis and respiration, the

photosynthesizing chloroplast and respiring mitochondria

produce superoxide and hydrogen peroxide (Navathe et al., 2019).

Superoxide anion (O−
2) first generated from apoplastic molecular

oxygen (O2) by the enzyme respiratory burst oxidase homolog

protein (Rboh), which is next conFIGverted to H2O2 through

superoxide dismutation reaction by the enzyme superoxide
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dismutase (Navathe et al., 2019). The different Rboh isoforms,

also known as Nicotinamide Adenine Dinucleotide Phosphate

Hydrogen (NADPH) oxidase in plasma membrane, transfer

electrons from cytosolic NADPH/Nicotinamide Adenine

Dinucleotide (NAD) + Hydrogen (H) (NADH) to apoplastic

oxygen, producing the ROS in the cells (Yu et al., 2020). Plant

Rboh is an intrinsic protein with six conserved transmembrane

helices containing two basic helix-loop-helix calcium-binding

structural domains (EF-hands) that are directly controlled by

Ca2+ ions (Yu et al., 2020). Plant Rboh proteins share structural

and functional domains with the mammalian homolog catalytic

unit gp91phox, with the exception of an extended N-terminal

sequence (Cheng et al., 2013; Cheng et al., 2019). The extended

N-terminal region of plant Rboh contains two potential calcium-

binding sites regulated by Ca2+ ion. The hydrophilic C-terminal

domain has cytosolic-facing flavin adenine dinucleotide (FAD) and

NADPH-binding sites. At the apoplast, heme groups are necessary

for electron transport across the membrane to oxygen (O2, the

electron acceptor) through FAD (Mahalingam et al., 2021).

Rboh of plants are a small multigene protein family (Marino

et al., 2012). To date, genes encoding the Rboh proteins have been

investigated and delineated in several plant species, namely, Citrus

sinensis (Zhang et al., 2022); Capsicum annuum (Zhang et al., 2021);

Hordeum vulgare (Lightfoot et al., 2008; Mahalingam et al., 2021);

Nicotiana tobacum (Yu et al., 2020); Prunus avium, Prunus dulcis,

Malus domestica Rubus occidentalis, Fragaria vesca, and Rosa

chinensis (Cheng et al., 2020); Tritium aestivum (Hu et al., 2018;

Navathe et al., 2019); Glycine max (Liu et al., 2019); Oryza sativa

(Wong et al., 2007; Yamauchi et al., 2017); Malus domestica
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(Cepauskas et al., 2015); Vitis vinifera (Cheng et al., 2013);Medicago

truncatula (Marino et al., 2011); Zea mays (Lin et al., 2009);

Arabidopsis thaliana (Torres and Dangl, 2005; Torres et al.,1998);

and Lycopersicon esculentum (Sagi and Fluhr, 2001). The rice

OsRbohA was the first Rboh protein identified in plants (Navathe

et al., 2019). The model plant Arabidopsis thaliana genome has 10

numbers of AtRboh genes, and, as per GeneVestigator microarray

datasets (Zimmermann et al., 2004), of these, AtRbohH and AtRbohJ

are involved with the growth of tip of pollen tube, whereas AtRbohA,

AtRbohB, AtRbohC, AtRbohG, AtRbohE, and AtRbohI are expressed

in root tissues; AtRbohD and AtRbohF are expressed across all A.

thaliana tissues (Hawamda et al., 2020). On the other hand, AtRbohB

was responsible for seed ripening and root hair formation, whereas

AtRbohC controlled growth of the root hair cell (Navathe et al., 2019).

Expression of AtRbohD and AtRbohE was also induced by plant

hormone jasmonic acid, indicating their role in stress response and

signaling (Maruta et al., 2011). AtRbohE was also reported to regulate

the tapetal programmed cell death (PCD) and pollen formation in

wheat (Hu et al., 2018).

In Aquilaria plants, as a result of biotic and abiotic stress,

heartwood of the tree transforms into worthy resinous dark wood

known as agarwood (Das et al., 2021). In general, Aquilaria species

are diploid in nature. The genome size of A. sinensis is 726.5 Mb

(Ding et al., 2020) and of A. agallocha is 736 Mb (Chen et al., 2014).

Agarwood is well-known around the world for its usage as a primary

ingredient in perfume, incense, and medicine (Monggoot et al., 2017).

It has been traded and utilized for centuries to create perfume, which

is still employed in religious and cultural ceremonies (López-

Sampson and Page, 2018; Barden et al., 2000). Global agarwood

prices can range from US$ 20 to US$ 6,000/kg for wood chips,

depending on quality, or US$ 10,000/kg for the actual wood (Abdin,

2014). Agarwood essential oil can also fetch up to US$ 30,000/kg.

According to estimates, the agarwood market in the world is worth

between $6 and $8 billion annually (Tan et al., 2019). Among all the

species of this genus, A. agallocha and A. sinensis, are known for

producing high quality agarwood (Kristanti et al., 2018). When the

tree is physiologically triggered by physical wound, followed by insect

invasion or microbial infection, it activates defense-related signal

transduction pathways, leading to accumulation of fragrant

metabolites (Liu et al., 2013; Mohamed et al., 2014; Tan et al.,

2019). Sesquiterpenes and 2-(2-phenylethyl)chromones are the two

prominent chemical types found to be deposited in agarwood (Naef,

2011; Yang et al., 2021; Zhang et al., 2013). In addition, H2O2 burst

(ROS production) is known to occur in wounded Aquilaria trees,

leading to deposition of resins loaded with these metabolites (Zhang

et al., 2013). Also, in plants, H2O2 is known to play a role in the

regulation of the biogenesis of the secondary metabolites, viz.,

capsodiol, phenolics, and b-coumaroyl octopamine in tobacco,

carrot, and potato, respectively (Matsuda et al., 2001). Previous

studies have established role of Rboh gene families in ROS

molecules accumulations after microbial invasion in plants

(Morales et al., 2016; Chang et al., 2020; Pacheco-Trejo et al.,

2022). Because agarwood resin formation in Aquilaria tree is an

outcome of microbe-mediated stress, it leads us to hypothesize that,

during microbial infections, Aquilaria trees accumulate ROS through

the action of Rboh proteins. The ROS produced initiate a cascade of
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biochemical reactions that activate the defense-related signal

transduction processes, eventually activating secondary metabolite

biosynthetic genes for defense responses (Xu et al., 2016; Tan et al.,

2019; Das et al., 2021).

To the best of our knowledge, a comprehensive genome-level

illustration of the Rboh family members and their role during stress,

and relation with downstream cascades leading to secondary

metabolite biosynthesis is missing in A. agallocha. Therefore, this

study aims to systemically identify, characterize, and analyze the

expression of the Rboh genes in stress-induced tissues, which will

likely identify the key members involved in ROS generation. In

addition, findings in this current study will lay the foundation for

understanding the molecular basis and regulatory mechanisms of

Aquilaria species Rboh genes and their possible involvement in

secondary metabolite biosynthesis and agarwood resin deposition.
2 Materials and methods

2.1 Sequence retrieval and identification of
Rboh genes

The genomic sequence data of A. agallocha and A. sinensis were

collected from previous annotation projects (Das et al., 2021 and

Ding et al., 2020). Following that the sequence alignment of

respiratory burst NADPH oxidase (PF08414), ferric reductase-like

transmembrane component (PF01794), FAD-binding (PF08022),

and ferric reductase NAD (PF08030) were obtained from the Pfam

database and were used to build hidden Markov model (HMM)

profile utilizing hmmbuild in the software HMMER 3.3.2 (Potter

et al., 2018). Subsequently, the hmmsearch program was utilized to

identify the putative AaRbohs and AsRbohs proteins, and the

redundant protein sequences were discarded. All the putative

sequences were further confirmed through Pfam database (http://

pfam.xfam.org/) and SMART database (http://smart.embl-

heidelberg.de/) for the presence of conserved NADPH_Ox

(PF08414) domain (Cheng et al., 2020; Zhang et al., 2023). The

physiological properties such as molecular weight (kDa), isoelectric

point (pI), instability index (II), aliphatic index Ai), and the grand

average of hydropathicity (GRAVY) were calculated by using the

ExPASy-ProtParam tool (http://web.expasy.org/protparam/). The

subcellular location of the Rboh proteins was predicted using online

web server CELLO version 2.5 (http://cello.life.nctu.edu.tw/).
2.2 Multiple sequence alignments and
phylogenetic analysis

Sequences of Rboh proteins of Solanum tuberosum, Arabidopsis

thaliana, Hordeum vulgare, Oryza sativa, and Glycine max were

downloaded from UniProtKB and aligned with predicted AaRboh

and AsRboh protein sequences in the MEGA-X program (https://

www.megasoftware.net/). The sequence alignment was presented

with ESPrit 2.2-ENDscript 1.0 (Robert and Guoet, 2014). A

phylogenetic tree was constructed on the basis of the alignment

in the MEGA-X program using neighbour-joining method with
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parameter set as P distance model and 1,000 bootstrap replicates

(Kumar et al., 2016).
2.3 Gene structure, cis-acting
elements analysis

The intron–exon structure of individual Rboh genes was

predicted utilizing genomic DNA and complete coding sequence

(CDS) in Gene structure Display Server GSDS v2to.0 (http://

gsds.cbi.pku.edu.cn) (Hu et al., 2015). The cis-acting regulatory

elements were identified in 2.4 kb upstream of each gene using

PlantCARE database.
2.4 Conserve motif in the proteins and
homology modeling

Conserved motifs in the Rboh genes were predicted utilizing the

MEME suite (http://meme-suite.org/). The analysis parameters

were configured to identify the top 10 conserved motifs, whereas

the remaining settings were kept at their default (Bailey et al., 2009)

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)

(Lescot et al., 2002). Homology modeling was employed to

determine the 3D structures of the Rboh proteins using Swiss

Model web server (https://swissmodel.expasy.org/). Structure

assessment of the modeled structures was done considering the

Ramachandran Plot and Stereochemistry (MolProbity score) and

Clash score parameters (https://swissmodel.expasy.org/assess).

Geometric and energetic validation of the structures was done

using ERRAT server of SAVES v6.0 (https://saves.mbi.ucla.edu/).
2.5 Synteny and duplication analyses

To identify synteny blocks within the two Aquilaria genomes

and with other plants (A. thaliana and S. tuberosum), blastp and

Quick MCScanX Wrapper were employed and later visualized with

the Dual Synteny plotter in TBtools (Chen et al., 2020). Duplicated

genes were identified using DupGen-finder software (https://

github.com/qiao-xin/DupGen_finder) using A. thaliana as

outgroup and subsequently classified into duplication type

following default parameters as per the user manual (Qiao et al.,

2019). The non-synonymous substitution rate (Ka), synonymous

substitution rate (Ks), and Ka/Ks ratio were calculated with TBtools

(Wang et al., 2010). Divergence duration for duplication of paralogs

pairs of the gene was calculated as per the formula T = Ks/2l (where
l indicates the clock-of-like rate of 6.96 synonymous substitutions

per 10−9 years) (Lopez-Ortiz et al., 2019).
2.6 Functional predictions and protein–
protein interactions

Probable functions of Rboh proteins were predicted on the basis

of assignment of Gene Ontology (GO) terms and Kyoto
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Encyclopedia of Genes and Genomes (KEGG) annotations with

e-value cutoff < 10−5. Regulatory network and their functional

partners were identified through STRING v11.5 program with the

following terms: databases, experimental evidences, gene

neighborhood, gene co-occurrence gene fusion, co-expression,

textminig, co-expression, and protein homology parameters

utilizing Arabidopsis homologous proteins as reference.
2.7 The expression patterns of the AaRboh
and AsRboh genes

To study transcript abundance of Rboh genes, RNA-seq data

were downloaded from NCBI-SRA webs i te (ht tps : / /

www.ncbi.nlm.nih.gov/sra). The transcript abundance of AaRboh

genes in agarwood (SRX4149019-SRX4149021) and healthy

(SRX4184708-SRX4184710) wood tissues were calculated and

compared. Similarly, transcript abundance of AsRboh genes in the

different tissues/organs, viz., aril (SRX6871071 and SRX6871068),

seed (SRX6871057 and SRX6871070), flower (SRX6871060 and

SRX6871063), bud (SRX6871059 and SRX6871062), leaf

(SRX6871066 and SRX6871058), salinity stressed callus

(SRX1495981 and SRX1495736), flower (SRX6871059 and

SRX6871062) , and wounded stem (SRX6871056 and

SRX6871064), was accessed. First, the short reads were aligned to

the genome using HISAT2 (Kim et al., 2015), following the reads

were assembled and quantified using StringTie (Kovaka et al.,

2019). Differentially expressed genes were then identified using

DESeq2 software (Love et al., 2014).
2.8 Plant material, growth, and treatment

A. agallocha calli were induced from leaves on Murashige–

Skoog (MS) medium supplemented with dichlorophenoxyacetic

acid (6 mg/L) and kinetin (2 mg/L). The calli were transferred to

fresh MS medium every month until the formation of friable calli.

To induce stress, the calli were put into an MS medium containing

10 mM H2O2 and exposed to 5 mM dimethylthiourea (DMTU; an

H2O2 scavenger) and combination of H2O2 with DMTU separately

(Wang et al., 2018). Calli, without any treatment, were considered

as control. After treatment, the samples were harvested at 0 h, 1 h,

2 h, 6 h, 12 h, 24 h, and 48 h.

Healthy saplings of A. agallocha maintained in pots at the

Bioengineering and Technology Department of Gauhati University

were selected for stress treatments as per standard methodology (Lv

et al., 2019). The lateral stems were cut with scissors, and 1 cm from

the apical end of the cut lateral stems was immersed separately in

distilled H2O, H2O2, and DMTU solutions for stress treatments.

The healthy Aquilaria lateral stems were taken as a control. After

that, the portions immersed in treatment solutions were discarded,

and the remaining treated stems (approximately 2 cm) were

exposed to air for sample harvesting. Samples were harvested

after 0 h, 1 h, 2 h, 6 h, 12 h, 24 h, and 48 h of air exposure.

Treatment of seedlings after cutting refers to physical wounding.

Wood samples (resin-embedded infected wood and healthy wood
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of A. agallocha) from Hoollongapar Gibbon Sanctuary in Jorhat,

Assam, India, were collected following the methodology described

by Islam et al. (2020) to analyze the AaRboh transcripts abundance.

All sample sets were rapidly immersed in the liquid nitrogen and

stored at −80°C until experiments were done.
2.9 RNA extraction and real-time reverse
transcription PCR analysis

Total RNA from stem tissues was extracted following the RNA

extraction method outlined by Islam and Banu (2019) and from

callus tissues using the RNeasy Plant Mini Kit (Qiagen). The quality

and concentration of extracted RNA were assessed with 1% agarose

gel electrophoresis and estimated with the Multiskan Sky

Microplate Spectrophotometer (Thermo Fisher Scientific, USA),

respectively. One micrograms of RNA was used to synthesize the

first strand of cDNA with SuperScript III Reverse Transcriptase

(Thermofisher). The qRT-PCR was carried out using a

QuantStudio™ 3 real-time PCR system (Applied Biosystems,

USA) and the PowerUp SYBR Green Master Mix (Applied

Biosystems). Seven AaRbohs gene-specific primer pairs were

designed with PrimerQuest software of IDT (https://

sg.idtdna.com/pages/tools/primerquest/) and are enlisted at

Supplementary Table 1. The standardized GAPDH primer was

utilized as the internal control (Islam et al., 2020). For each

biological replicate, the analyses were performed with three

technical replicates, each containing 20 µl of reaction volume in

optical stripes, the temperature pattern of 95°C for 1 min, followed

by 40 cycles at 95°C for 10 s and 60°C for 30 s, was followed as

thermal cycler profile. Fold change in the gene expression was

measured by the 2DDCt method (Ding et al., 2021).
2.10 ROS determination of treated
plant materials

The endogenous ROS production was determined according to

Wang et al. (2018) with minor modifications. Plant samples (3 g of

fresh weight) were subjected to individual and combined treatments

with H2O2 and DMTU. The treated samples were homogenized in 3

mL of pre-cooled acetone using a mortar and pestle on ice.

Obtained mixtures were centrifuged at 3,000 rpm for 10 min at

4°C. The supernatant obtained (0.1 mL) was quickly mixed with 0.1

mL of 5% TiSO4 and 0.2 mL of NH4OH was added to it. The

resulting mixtures were centrifuged at 3,000 rpm for 10 min at 4°C

to separate the titanium–hydroperoxide complex precipitate, and

the supernatants were discarded. After three washes with pre-

cooled acetone, the precipitates were dissolved in 2 mL of H2SO4

(2 mol/L). Absorbance of solution at 415 nm was monitored to

quantify H2O2 content. Obtained absorbances were compared with

the calibration curve derived from known concentrations of H2O2

(30%) (Wang et al., 2018; Zhang et al., 2021).
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2.11 Statistical analysis

Three each biological and technical replicate were used for each

control and treatment samples. T-test was performed to validate the

expression differences of the Rboh genes in the different treated

conditions. The P-value cutoff ≤ 0.05 was considered to be

statistically significant test result. The methodology followed in

the current study was respresented as Supplementary Figure 1.
3 Results

3.1 Identification of Rboh Genes in
A. agallocha and A. sinensis

Seven genes each from A. agallocha (AaRboh) and A. sinensis

(AsRboh) were identified and characterized (Supplementary

Figure 2). The AsRboh genes were distributed on to four

chromosomes (Chr02, Chr04, Chr06, and Chr07) and AaRbohs

on seven scaffolds (KK901300.1, KK899295.1, KK902390.1,

KK900302.1, KK899913.1, KK900079.1, and KK899008.1). The

length of the protein varied, i.e., the shortest and the longest

Rboh belonged to A. agallocha. For example, AaRbohJ had 663

amino acids (shortest), and AaRbohA had 946 amino acids

(longest) (Table 1). Molecular weights varied from 75.72 kDa

(AaRbohJ) to 107.77 kDa (AsRbohA) and pI from 8.93

(AsRbohC2) to 9.45 (AaRbohA). GRAVY values, representing the

grand average of hydropathicity of the Rboh proteins were found to

be < 0, which indicated their hydrophilic nature.
3.2 Multiple sequence alignment and
phylogenetic analysis

To determine the phylogenetic positions, a tree was build using

14 Aquilaria Rboh and 5, 12, 16, and 16 Rboh proteins of S.

tuberosum, A. thaliana, H. vulgare, and Glycine max, respectively.

Interestingly, RbohA-E were found in both the species, whereas

RbohF and RbohJ were found in A. agallocha and RbohH in A.

sinensis, respectively. In addition, A. sinensis had two members of

RbohC, whereas A. agallocha had only one. The members of six

plant species were majorly grouped into five major clades (Figure 1).

The highest numbers of Rboh members were present in Group 1

(19), followed by Group 3 (17), Group 2 (15), Group 4 (12), and

Group 5 (11). Group 1 composed of two AaRboh (AaRbohD

and AaRbohC) and three AsRboh (AsRbohD, AsRbohC1, and

AsRbohC2) proteins. Whereas, Group 2 composed of one each of

AaRboh (AaRbohB) and AsRboh (AsRbohB). Similarly, Group 3

had one each of AaRboh (AaRbohA) and AsRboh (AsRbohA).

Group 4 included two AaRboh proteins (AaRbohE and AaRbohF),

one AsRboh (AsRbohE), one AaRboh (AaRbohJ), and one AsRboh

(AaRbohH). All five groups contained at least one member from

each of the six plant species, including A. agallocha and A. sinensis.
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3.3 Subcellular location and gene structure

The results of subcellular location prediction indicated that all

Rboh proteins are localized to the plasma membrane. Furthermore,

the structural organization of exon–intron sequences in the clustered

genes displayed notable similarities, suggesting a close evolutionary

relationship among them. They exhibited varying numbers of exons,

ranging from eight (AaRbohD and AsRbohD) to 15 (AaRbohE). Most

Rboh genes, on the other hand, contained either 12 (AaRbohB,

AaRbohA, and AsRbohC1) or 14 (AaRbohF, AsRbohB, AsRbohC2,

AsRbohA, and AsRbohE) exons (Figure 2). In terms of intron

composition, the members showed variability in both the number

and types of introns, where AaRbohE had the maximum intron.

Phase 0 introns were the most abundant, totaling 81, followed by

phase 2 introns being 42 and phase 1 introns being 31. The presence

of phase 0 introns ranged from two to nine in each member, whereas

phase 1 introns varied from one to three and phase 2 introns varied

from two to three, with the exception of AsRbohJ (Figure 2).
3.4 Cis-acting elements of the putative
Rboh promoter

A total of 56 types of cis-acting elements were identified on the

2.4-kb region upstream of the translational start site of each Rboh

genes (Supplementary Table 2). These elements were categorized

into four major functional groups: hormone regulation, stress

response, and metabolism-responsive and development-related

cis-acting elements. Stress and defense responsiveness cis-acting

elements were ARE (cis-acting elements for anaerobiosis), MBS
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(drought response), LTR (low-temperature responsive cis-acting

element), TC-rich repeats (defense), and WUN motif (wound

stress) (Figure 3). In addition, six types of plant hormone

regulatory elements were salicylic acid response element (TCA-

element and SARE); Gibberellin response element (TATC-box, P-

box, and GARE); Auxin response element (AuxRR-core and TGA-

element); Ethylene response element (ERE); Abscisic acid (ABA)

response element (ABRE); and methyl jasmonate response elements

(TGACG-motif and CGTAC-motif) (Figure 3A). The promoters

also had cell differentiation and developmental processes elements

such as RY-elements and CAT box cis-elements. Interestingly, the

numbers of defense and stress responsiveness elements were

observed in all Rbohs gene’s promoter in highest numbers,

ranging from 6 (AaRbohE) to 14 (AaRbohA) (Figure 3B).
3.5 Gene location, synteny block analysis,
and Ka/Ks calculation

The seven Rboh genes of A. agallocha were distributed in seven

different scaffolds (Figure 4A), and AsRboh genes were distributed in

Chromosome 2 (AsRbohA), Chromosome 4 (AsRbohE),

Chromosome 6 (AsRbohB), Chromosome 7 (AsRbohC1 and

AsRbohD), and ContigUN (AsRbohC2) (Figure 4B). The syntenic

analysis unveiled a collinear relationship between five AaRboh genes,

namely, AaRbohA, AaRbohB, AaRbohC, AaRbohF, and AaRbohE in

A. agallocha and their counterparts in A. sinensis (Figure 4C).

AaRbohE was found to be associated with two syntenic gene pairs

in A. sinensis. The AaRbohD and AaRbohJ genes exhibited no

collinear relationships with genes in A. sinensis. Furthermore,
TABLE 1 Details of A. agallocha Rboh (AaRboh) and A. sinensis Rboh (AsRboh) identified in the genomes and properties of their deduced proteins.

Gene
name

Chromosome/
scaffold
position

Start
position

End
position

Protein
length
(aa)

Molecular
weight
(kDa)

pI
Instability
index

Aliphatic
index

Asp +
Glu

Arg +
Lys

Grand average of
hydropathicity

(GRAVY)

AsRbohC1 Chr07 52648308 52656837 918 102.97 9.02 37.19 65.36 101 115 −0.253

AsRbohC2 ContigUN 1179685 1188148 884 99.34 8.93 37.72 66.51 97 111 −0.247

AaRbohC KK899295.1 190500 198939 675 76.57 9.3 36.8 64.3 66 87 −0.139

AsRbohD Chr07 35508180 35511918 874 99.09 9.15 41.29 73.43 92 110 −0.222

AaRbohD KK902390.1 39399 43132 874 98.98 9.15 40.36 71.57 91 109 −0.21

AsRbohB Chr06 2272107 2276522 887 101.08 9.34 42.8 76.26 91 115 −0.279

AaRbohB KK900302.1 52418 56833 764 87.41 9.4 44.85 80.3 80 103 −0.283

AsRbohA Chr02 62487359 62495094 946 107.77 9.3 51.06 92.82 99 122 −0.249

AaRbohA KK899913.1 205958 213711 854 97.89 9.45 50.61 91.77 85 111 −0.265

AsRbohE Chr04 77333078 77338035 926 104.915 9.07 47.25 85.43 98 113 −0.217

AaRbohE KK899008.1 71417 76374 826 93.42 9.42 48.15 86.88 83 106 −0.18

AaRbohF KK900079.1 48552 57956 777 88.94 9.2 49.85 90.5 72 90 −0.19

AsRbohH Chr04 16169597 16174544 880 100.53 9.35 43.44 77.53 82 111 −0.183

AaRbohJ KK901300.1 65448 70313[ 663 75.72 9.22 45.33 81.44 69 86 −0.25
Rboh, respiratory burst oxidase homolog; AaRboh, Aquilaria agallocha respiratory burst oxidase homolog; ROS, reactive oxygen species; DMTU, dimethylthiourea; HMM, hidden Markov
model; CDS, coding sequence; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes database.
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AaRbohA and AaRbohC displayed a collinear relationship with genes

in A. thaliana, whereas AaRbohE exhibited synteny with

S. tuberosum. The member AsRbohC2 exhibited synteny with genes

present in both S. tuberosum and A. thaliana. The syntenic blocks
Frontiers in Plant Science 07
with their genome location were summarized in Supplementary

Table 3. Duplication analysis indicated that, in A. sinensis, one gene

pair AsRbohC1 and AsRbohC2 undergone segmental duplication,

whereas AsRbohD emerged from the parental gene AsRbohC1
FIGURE 2

Schematic representation of structures of 14 putative Rboh genes in two Aquilaria species. The exons and introns are indicated with pink rectangles
and black color lines, respectively, on the right of phylogenetic tree. The numbers (0, 1, and 2) on the gene structures indicate the intron phases.
FIGURE 1

Phylogenetic relationship between the Rboh proteins of (A) agallocha, (A) sinensis, (A) thaliana, (G) max, (H) vulgare, and S. tuberosum. Molecular
phylogenetic tree constructed using MEGA-X with NJ method–based P distance substitutions model. Bootstrap values used to assess the tree. Five
group are shown as Groups 1–5 with different colors.
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through transposed duplication (TRD). Interestingly, in A. agallocha,

three pairs of TRD genes were detected, where AaRbohB, AaRbohC,

and AaRbohE duplicated from the parent gene AaRbohA. The Ka/Ks

ratio of the duplicated gene pair was found to be < 1 (Supplementary

Table 4). The divergent time of the duplicated members ranged from

1.4 to 227.85 million years ago (MYA).
3.6 Amino acid sequence and
characteristic domain analysis of
Rboh proteins

MEME suite tool identified 10 consensus motifs in the Rboh

proteins based on degree of conservation amino acid residues. The

motifs, viz., motif 1 (except AaRbohJ), motif 2, motif-3 (except

AaRbohE), motif 4, motif 5, motif 6, motif 7, and motif 8, existed in
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all Rboh proteins (Figure 5A). Whereas, both motif 9 and motif 10

were missing in Aquilaria RbohB, RbohC, and RbohJ. The four

conserved motifs typically found in Rboh proteins existed in the

Aquilaria Rboh members (Figure 5B). The most conserved amino

acid within these motifs were represented by higher bits size

(Figure 5C). Multiple sequence alignment revealed the presence

of characteristics conserved domains, i.e., NADPH oxidase

(PF08414), EF hand, Ferric reductase (PF01794), FAD binding

(PF08022), and NAD binding (PF08030) (Figure 6). However,

NAD-binding domain was missing in AaRbohB, AaRbohF, and

AaRbohJ, and Ca2+-binding EF-hand domain in AaRbohF. The

Rboh protein’s motif analysis revealed that motif 7, motif 4, motif 2,

motif 5, motif 8, and motif 3 are parts of the NADPH oxidase

(PF08414); motif 8 and motif 3 are part of the transmembrane helix;

motif 9 is a part of the FAD binding PF08022); and motif 10, motif

6, and motif 1 are parts of the NAD binding (PF08030)
B

A

FIGURE 3

Distribution of major cis-acting elements in the promoter of AaRboh and AsRboh genes. (A) Cis-acting regulatory elements predicted in the 2.4-kb
upstream regions of AaRboh and AsRboh genes, indicating with different color rectangular boxes. (B) The number of hormone responsiveness and
defense-related cis-acting regulatory elements of AaRboh and AsRboh genes.
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(Supplementary Table 5). Overall, few motifs in the Rboh members

(except RbohA and RbohC) of A agallocha were missing.
3.7 Secondary and tertiary structures

The secondary structures (SSs) of the Rboh proteins consisted

of a-helix, coils, turns, and b-sheet (Supplementary Figure 3).
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Among all, a-helices were seen to be most dominant. The

conserved motifs were identified in the models, where

NADPH_Ox, EF-hand, and Ferric-reduct appeared as a-helix.
More than one type of SS was found in a few motifs. For

example, NAD_binding_6 consisted of both a-helices and coils,

and FAD_binding_8 composed of a b-strand and coils. Note that

the results of assessment parameters of the tertiary structures

suggested a good quality of the models. For instance, the Mol
B

C

A

FIGURE 4

Overview of evolutionary relationship of Rboh of A. agallocha, A. sinensis, A. thaliana, and S. tuberosum. (A) Synteny analysis of AaRboh.
(B) Synteny analysis of AsRboh and AsRboh (green line shows duplicate genes). (C) Synteny analysis among A. agallocha and A. sinensis; A. agallocha
and A. thaliana; A. agallocha and S. tuberosum; A. sinensis and A. thaliana; and A. sinensis and S. tuberosum. Gray lines represent all collinearity
blocks, whereas red lines show orthologous gene pairs among two species.
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Probity and Clash scores ranged from 0.96 to 1.98 and from 0.39 to

4.69. In addition, all the structures were Ramachandran favored

with % above 92. The quality factor of the models calculated using

ERRAT ranged from 84.13 to 96.5, indicating an acceptable quality

of the constructed models.
3.8 Functional analysis and protein–
protein interaction

GO terms were assigned to the Aquilaria Rboh members, and

their participation in biological processes (BP), molecular function

(MF), and cel lular component (CC) were elucidated

(Supplementary Table 6). The string network model that
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consisted of 26 nodes and 121 edges (P = 1.0e−16) helped identify

their functional partners (Figure 7). In addition, functional

information pulled from KEGG database revealed their

involvement in signal transduction pathways [mitogen-activated

protein kinase (MAPK) signaling], plant–pathogen interaction, and

plant hormone. In plant–pathogen interaction, AaRbohA,

AaRbohB, AaRbohC, AaRbohD, and AaRbohE were directly

involved and interacted with their functional partners, namely,

MPK3, CPK28, CDPK1, WRKY33, and EFR. Similarly, the five

Rboh proteins mentioned above were involved in MAPK signaling

and interacted with their partners MKP2, MPK3, WRKY3, ABI1,

ABI2, and OST1. AaRbohA and AaRbohD were possibly involved

in hormone transduction and interacted with BRI1, ABI1, ABI2,

OST1, ABF2, HAB1, and PP2CA (Figure 7).
B

C

A

FIGURE 5

Conserved motifs distribution of AaRboh and AsRboh protein sequences. (A) Ten types of conserved motifs of AsRboh and AaRboh. (B) Four
particular characteristics of motif of AsRboh and AaRboh. (C) Sequence logos of the NADPH_Ox, Ferric_reduct, FAD_binding_8, and
NAD_binding_6 motif.
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3.9 In silico expression analysis of the Rboh
genes and their functional partners in
A. agallocha and A. sinensis tissues

Quantification of transcripts accumulation of the Rboh genes in

A. agallocha showed differential upregulation of AaRbohA (0.7

log2FC) and AaRbohC (1.5 log2FC) in agarwood tissue. In

contrast, AaRbohB, AaRbohE, and AaRbohF significantly
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downregulated by 1.3, 0.9, and 0.3 log2FC, respectively. At the

same time, AaRbohD and AaRbohJ showed no change in expression

(Figure 8A). The genes that act as transcription factors (MYC2 and

WRKY), in MAPK signaling cascade (MAPK, MAPKK, and

MAPKKK) and in terpene backbone biosynthesis (DXS, HMGR,

MVK, GGPS, and FPS), were significantly upregulated in agarwood

tissue as shown in Figures 8B–D; Supplementary Table 7. In

addition, expression of AsRboh in RNA-seq data of different
FIGURE 6

Multiple protein sequence alignment and domain structure of Rboh proteins of A. agallocha and A. sinensis. Highly conserved amino acids indicate
with red shading, and low amino acid levels represent with lighter shading. The NADPH_ox (PF08414), EF-hand domain, Ferric_reduct (PF01794),
FAD_binding_8(PF08022), and NAD_binding_6 (PF08030) were indicated with blue, black, violet, brown, and yellow color, respectively.
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B C D

E

A

FIGURE 8

Expression profile of AaRboh and AsRboh genes of different types tissues of A. agallocha and A. sinensis. (A) AaRboh gene expression patterns in
agarwood tissue. X-axis represents the AaRboh members, and Y-axis represents the log2 fold change value. (B) Expression patterns of genes
involved in terpenoid biosynthesis genes where DXS indicates 1-deoxy-D-xylose-5-phosphate synthase, HMGR indicates 3-Hydroxy-3-
methylglutaryl-coenzyme A reductase, MVK indicates mevalonate kinase, GGPS indicates geranylgeranyl diphosphate synthase, and FPS indicates
farnesyl pyrophosphate synthase.(C) Expression patterns of mitogen-activated protein kinase (MAPK) signaling cascades genes. (D) Expression
pattern of transcription factors. (E) AsRboh gene expression patterns in the six different tissues compared to aril tissue. * indicates p-value less than
0.05, and ** indicates p-value less than 0.01.
FIGURE 7

Protein interaction network of AaRboh in A. agallocha based on Arabidopsis orthologs. The potential AaRboh with their functional partners [MPK3
(mitogen-activated protein kinase 3), CPK28 (calcium-dependent protein kinase 28), CDPK1, WRKY33 (WRKY transcription factor 33), ERF (EF-TU
receptor), BRI1 (brassinosteroid-insensitive 1), ABI1(abscisic acid–insensitive 1), ABI2, OST1(open stomata 1), ABF2 (abscisic acid–responsive element–
binding factor 2), HAB (hypersensitive to ABA1), and PP2CA (protein phosphatase 2CA)] in each enriched pathway are displayed in a network model
of proteins where the lines of various colors indicate the type of interactions between the potential AaRboh and their functional partners. The solid
and dotted lines represent connections within the same and different clusters.
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tissues was estimated using aril tissue as control. Interestingly,

AsRbohA was found to be significantly upregulated in all the

tissues including wounded stem, callus, leaf, flower, and seed in

the range of 4–8 log2FC (Figure 8E), whereas AaRbohC1 and

AaRbohC2 upregulated only in wounded stem, callus, and flower

in the range of 2–4 log2FC. Similarly, AsRbohB was comparatively

higher in wounded stem (9 log2FC) and callus (15 log2FC),

and AsRbohE in wounded stem (7.1 log2FC) and callus (7.3

log2FC). However, expression of AsRbohD and AsRbohH in the

different tissues was either insignificant or had no difference

(Supplementary Table 8).
3.10 Validation of the expression of
AaRboh genes in H2O2-treated callus
and stem

To evaluate the impact of hydrogen peroxide (H2O2) on the

transcript levels of AaRboh genes, calli tissues were subjected to

treatments involving H2O2, DMTU (a ROS scavenger), and

combination of them (H2O2 + DMTU). In calli, the exposure to

H2O2 resulted in the upregulation of AaRboh genes. Specifically, the

expression of AaRbohA peaked at 2 h, showing a 4.15-fold increase.

Similarly, the expression of AaRbohB, AaRbohC, and AaRbohE

reached their peaks at 6 h, exhibiting 6.07-fold, 24.40-fold, and 5.26-

fold increases, respectively. It is worth noting that there was a

subsequent decline in the expression of these genes from 6 h to 48 h
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(Figure 9). When subjected to a combination of H2O2 and DMTU,

the expression of these genes also increased, although not to the

same extent as when induced by H2O2 alone. In contrast, treatment

with DMTU alone resulted in lower expression compared to the

control. Interestingly, there were no significant variations in the

expression levels of the three genes, AaRbohD, AaRBohF, and

AaRbohJ, when compared to the control across the different

time periods.

In the wounded stem treated with H2O2, H2O, and DMTU,

separately, the transcript levels of AaRbohA and AaRbohC

experienced significant increase in H2O2-treated stem, reaching

6.82-fold and 6.05-fold, respectively, within the first hour

(Figure 10). Subsequently, after 2 h, their expression levels

returned to the initial baseline. However, at the 6-h time point,

both genes exhibited a remarkable surge in expression, with

AaRbohA and AaRbohC showing increase of 21.64-fold and

40.21-fold, respectively. This heightened expression subsided from

12 h and progressively declined during the 48 h of air exposure. In

contrast, the treatment with water (H2O) resulted in a peak in the

level of both genes, AaRbohC and AaRbohA, at 6 h, and their

expression had not reverted to pre-treatment levels even after 48 h.

However, when wounded stems were treated with DMTU, the

expression of both genes decreased by about three-fold and four-

fold compared to wounded stems treated with H2O2 (Figure 10).

Meanwhile, AaRbohB, AaRbohD, AaRbohF, and AaRbohJ exhibited

no significant deviations in their expression patterns compared to

the control.
FIGURE 9

Relative expression levels of AaRboh genes in treated calli of A. agallocha. Relative transcripts abundance of seven AaRboh genes were measured in
calli tissue transferred to MS media with H2O2, H2O2 + DMTU, DMTU, respectively, and calli without any treatment considered as control condition
and samples harvested at 0 h, 1 h, 2 h, 6 h, 12 h, 24 h, and 48 h. Transcript abundances were measured using A. agallocha GAPDH as internal
control. Asterisk (*) denotes a significant difference compared with healthy samples at 0.05 or **P < 0.01 (Student’s t-test). Data represent means ±
SE off three independent experiments.
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3.11 ROS determination

The treatment with (H2O2) led to an increase in endogenous

H2O2 content in both calli and actively growing wounded pruned

stem tissues. In calli, a transient rise in H2O2 levels was observed at

6 h, reaching 2.96 mmol/g, after which it gradually decreased to 1.26

mmol/g by 48 h (Figure 11A). Moreover, treatment with DMTU
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alone resulted in a decrease in the accumulation of H2O2, which

remained relatively constant throughout the study period. When

H2O2 was applied in combination with DMTU, as expected, it led to

the reduction in endogenous H2O2 production, which reached 0.92

mmol/g at 6 h. In the case of wounded stems treated with H2O2, the

concentration of endogenous H2O2 experienced an initial peak at

1 h, reaching 2.12 mmol/g. Subsequently, it decreased to the baseline
BA

FIGURE 11

Endogenous H2O2 content in calli and stem of (A) agallocha. (A) Content of endogenous H2O2 in calli treated with H2O2, DMTU, and H2O2 + DMTU,
respectively, for 0, 1 h, 2 h, 6 h, 12 h, 24 h, and 48 h. (B) Content of endogenous H2O2 in the 1-year-old stems after pruning, the cut ends were
immersed in distilled H2O, H2O2, and DMTU. The pruned stems were exposed to air after 2 h, and the pretreating solution was discarded. The
healthy condition indicates the samples without any treatment and served as control. Following air exposure, samples were collected at 0 h, 1 h, 2 h,
6 h, 12 h, 24 h, and 48 h. Asterisks (*) indicate a statistically significant difference from healthy samples at *P < 0.05 or **P < 0.01 (Student’s t-test).
The data represent the means and standard deviations of three independent experiment.
FIGURE 10

Relative expression levels of AaRboh genes in H2O2-treated stem of A. agallocha. The stems were cut, and the apical end of each cut stem was
placed in distilled H2O, H2O2, DMTU, respectively, as appropriate. The pre-treating solution was thrown away after 2 h, and the stems were left
exposed to air. The samples were taken at 0 h, 1 h, 2 h, 6 h, 12 h, 24 h, and 48 h following air exposure. The samples without any treatments are
considered as healthy. Asterisks (*) denotes a significant difference compared with healthy samples at 0.05 or **P < 0.01 (Student’s t-test). Data
represent means ± SE off three independent experiments.
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level at 2 h, followed by another increase. The maximum H2O2

production occurred during the second peak at 6 h, with an H2O2

concentration 31.16 times greater than the initial concentration,

totalling 9.97 mmol/g. After 48 h of exposure to air, the H2O2

concentration decreased to 1.19 mmol/g. The elevated endogenous

H2O2 levels were mitigated by DMTU application. Furthermore,

the endogenous H2O2 content in wounded stems treated with H2O

was lower than that in wounded stems treated with H2O2, but it was

higher than that observed in the treatment with DMTU. Notably,

there were no significant alteration in the endogenous H2O2 levels

in healthy stems (Figure 11B).
3.12 Validation of the expression of
AaRbohA and AaRbohC in naturally
infected A. agallocha tree

The significantly higher AaRbohC and AaRbohA expression

levels in both calli and stem tissues under various treatment

conditions strongly suggest their involvement in stress responses.

Their expression was assessed in naturally infected wood tissues to

further investigate their role in response to stress. Both genes,

AaRbohC and AaRbohA, exhibited substantial upregulation, with

increases ranging from 22.61-folf to 76.94-fold, respectively, in the

infected A. agallocha wood tissues compared with that in healthy

wood tissues (Figure 12). This finding indicates the crucial role of

these two members in stress responses and possibly during

agarwood formation in A. agallocha.
4 Discussion

In this study, a comprehensive examination of total 14 Rboh

proteins was carried out in both Aquilaria species. Notably, an
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equivalent number of 7 Rboh proteins have been reported in the

genomes of several other plant species, including Citrus sinensis

(Zhang et al., 2022), Capsicum annuum (Zhang et al., 2021), Rubus

occidentialis, Prunus dulsis (Cheng et al., 2020), Prunus persica

(Cheng et al., 2019), Cucumis sativus (Li et al., 2019), Jatropha

curcas, Ricinus communis (Zhao and Zou, 2019), Fragaria ananassa

cv. Toyonaka (Zhang et al., 2018), and Vitis vinifera (Cheng et al.,

2013) (Supplementary Figure 4). This intriguing consistency in the

number of Rboh proteins underscores their importance across

diverse plant species. However, certain differences within the

members of both the Aquilaria species were observed. For

instance, RbohF and RbohJ were identified only in A. agallocha,

but not in A. sinensis, and vice-versa in the case of RbohH. Similarly,

maximum intron, i.e., 15 was found in AaRbohE, whereas 14 in

AsRbohE. The promoter of these genes composed of various cis-

regulatory elements, a characteristic that affirms their involvement

in stress responses, hormonal regulation, and developmental

processes (Jakubowicz et al., 2010; Marino et al., 2012; Huang

et al., 2021; Zhang et al., 2022). Thus, aligning with previous

research carried out in O. sativa and A. thaliana, the presence of

these elements within the putative Rboh genes of Aquilaria indicates

notable similarities in their functions (Kaur et al., 2016). In

addition, plant Rboh proteins are equipped with conserved

domains that facilitate their vital functions, including ROS

metabolism during stress conditions, the regulation of calcium

ion (Ca2+) channels, and downstream signaling processes (Torres

and Dangl, 2005; Yu et al., 2020). Recent studies have delved into

their roles in stress responses across various angiosperms (Hu et al.,

2018; Kaur and Pati, 2018; Chang et al., 2020; Zhang et al., 2022).

The results of motif analysis and homology modeling indicate that

the Aquilaria Rboh proteins possess the essential domain

NADPH_ox, in addition to a transmembrane domain likely

associated with ferric reductase activity and two calcium-binding

structural motifs known as EF-hand motifs specifically in RbohA
FIGURE 12

qRT-PCR analysis of two selected AaRboh genes. The −2DDCT method was used to determine relative gene expression value. The house keeping
gene GAPDH was used to normalized the data. The * symbol indicates transcript levels that differ statistically significantly based on the student t test,
and the P-value (**P < 0.01). The mean SE of three technical replicates is used to calculate each expression value. The infected and non-infected
plants from Hoollongapar Gibbon Sanctuary.
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and RbohC. The presence of EF-hand suggests its crucial role in

interaction with small GTPases (Herve et al., 2006). These structural

features strongly suggest that the ROS generated by these Rboh

proteins are integral components of the cellular signaling network.

The oxidative burst, characterized by the production of hydrogen

peroxide (H2O2), occurs as a result of the catalytic conversion of

environmental oxygen into H2O2 through the NAD(P)H oxidase

H2O2 forming activity of the putative Rboh proteins (Ben Rejeb

et al., 2015; Wang et al., 2018). These conserved domains in the

putative Rboh proteins imply their potential involvement in stress-

induced ROS generation during exposure to various stressors by

Aquilaria species. Interestingly, few motifs in the Rboh members

(except RbohA and RbohC) of A agallocha were missing. Overall,

the presence or absence of specific motifs and differences in

certain characteristics in their gene or protein sequence may

linked to functional divergence and conservation of Aquilaria

Rboh members.

Gene duplication processes significantly influence protein

families’ expansion and contraction to fulfill plants’ physiological

requirements (Zhang et al., 2021). Duplication events have been

identified as a major force behind the expansion of Rboh gene

family across various plant species, including Brassica rapa (Li et al.,

2019), Musa acuminate (Ying et al., 2020), Gossypium hirsutum

(Wang et al., 2020), and A. thaliana (Zhou et al., 2020). Our current

investigation identified a single instance of segmental duplication

and TRD in A. sinensis. However, the TRD was found to be

major force of expansion of Rboh family of A. agallocha. The

result indicated that AaRbohA acted as the old parent copy

and generated AaRbohB, AaRbohC, and AaRbohE in different

divergent time. The presence of intron regions in these genes also

indicated their possible generation by transposon-mediated event.

Similar results have been reported in case of TRAM/LAG/CRN8

(TLC) genes in maize, where Whole genome duplication (WGD)

and TRD contributed to expansion and diversification of the

protein families (Si et al., 2019). A significant number of genes

have also been shown to undergo TRD in A. thaliana (Wang et al.,

2013). The Ka/Ks ratio of the duplicated gene pairs in this study was

found to be <1, suggesting that these duplicated genes have

undergone robust purifying selection during the evolutionary

course. Furthermore, the reduction in the number of Rboh

proteins in both Aquilaria genomes, compared to Arabidopsis

Rboh family, implies that the loss of function events possibly

transpired during the evolutionary course of the Aquilaria

genomes. Alternatively, these gene losses could be attributed to

functional redundancy (Espinosa-Cantú et al., 2015; Martin and

Schnarrenberger, 1997).

KEGG pathway analysis and model interaction network

predictions further substantiate the role of AaRboh and AsRboh

genes in plant–pathogen interactions, hormone signaling, and

MAPK pathway. Rboh proteins in H. vulgare, G. barbadense,

Z. jujube, J. curcas, and M. sativa have been shown to perform

function through generation of ROS, thereby conferring protection

against invading plant pathogens (Trujillo et al., 2006; Zhao and

Zhou, 2019; Cheng et al., 2020). But, a study comprehending on the

ROS generation and associated Rboh proteins in the genomic-level
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is missing in Aquilaria plant. Hence, within the framework of this

study, the in silico expression analysis has elucidated the differential

upregulation of RbohA and RbohC in both plant species, as well as

the elevation of RbohB expression in A. sinensis. To corroborate

these findings, we validated their expression levels in H2O2-

mediated stress-induced callus and stem tissues of A. agallocha

using qRT-PCR, followed by quantifying the ensuing ROS

generation. An increase in the expression levels of AaRbohA and

AaRbohC significantly, coupled with the maximal accumulation of

ROS in both callus and stem tissues following a 6-h exposure to

H2O2, provides compelling evidence of their involvement in ROS

production in response to stress stimuli. In addition, the elevated

expression of AaRbohB and AaRbohE exclusively in callus tissue

suggests their specialized role in ROS generation, particularly within

the callus. However, in A. thaliana, RbohD and RbohF expressed in

all tissue (Orman-Ligeza et al., 2016). But in this study, we have not

detected any differential expression of these members. Nevertheless,

in Solanum melongena, RbohB and RbohC were highly expressed in

leaves (Du et al., 2023). The results of the expression study

corroborates previous findings about accumulation of endogenous

H2O2 under salt stress conditions in Aquilaria itself (Wang et al.,

2018). In similar lines, in C. annum L., cold, drought, and salt

stresses have been shown to trigger significant endogenous H2O2

production via Rboh enzymes (Zhang et al., 2021). Application of

stress via methyl jasmonate was able to substantially upregulate

expression of Rboh genes in A. sinensis calli (Xu et al., 2013); similar

observation was reported in Nitraria tangutorum (Yang et al.,

2012). In light of these findings, it is evident that, under stress

conditions, Rboh genes, specifically AaRbohA and AaRbohC, are

upregulated and play a pivotal role in ROS generation, which may

be closely linked with stress responses and hormonal regulation in

A. agallocha.

The generation of agarwood resin that is laden with a diverse

array of fragrant metabolites when A. agallocha is subjected to

injury and biotic stress is a well-established fact (Ahmead and

Kulkarni, 2017; Gao et al., 2019; Huang et al., 2022). The

mechanism initiated by infection and the engagement of the

MAPK signaling pathway, coupled with the orchestration of

defense responses through a network of hormonal biosynthesis

and modulation of terpenoid pathway genes by transcription

factors, such as WRKY and MYC2, have been postulated as

fundamental components intricately involved in the biosynthesis

and regulation of these aromatic metabolites in agarwood (Xu et al.,

2013; Lv et al., 2019; Tan et al., 2019). Interestingly, recent research

on similar line suggested plant–pathogen/microbial interaction as a

factor leading to ROS-mediated activation of MAPK pathway

(Pacheco-Trejo et al., 2022; Chuang et al., 2022). Thus, we were

interested to quantify the transcript levels of AaRbohA and

AaRbohC, aiming to explore whether a similar process is at play

in the natural production of agarwood within A. agallocha trees.

Intriguingly, the significant and distinct upregulation of both these

genes compared to healthy tissue strongly suggests their pivotal role

in generating ROS within the wood tissue. In the course of this

study, we employed an in silico approach, unveiling the differential

upregulation of genes associated with the MAPK signaling pathway,
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transcription factors, and the biosynthesis of terpene backbones.

The same had also been validated and is in align with our few

previous studies where we obtained differential regulation of genes

encoding MAPK, WRKY, MYC2, and terpenoid biosynthesis

through qRT-PCR in naturally infected wood (Islam et al., 2020;

Das et al., 2021; Islam and Banu, 2021; Das et al., 2023). We have

previously observed that naturally infected Aquilaria woods

exhibited higher expression levels of the genes responsible for

sesquiterpene biosynthesis, which include ADXPS, AHMGR,

AFPS, ASS, DGS, and ADXPR (Islam et al., 2020). In the same

way, in the infected agarwood, a higher expression of signaling

genes (MK, WRKY1, and MAPK3), jasmonate biosynthesis genes

(MYC2 and LOX), and sesquiterpenes genes (DSS, DGS, DXPS, FPS,

SS4, and DGS1) was observed (Islam and Banu, 2021). An in silico

investigation shows that the molecular mechanism behind the

production of numerous types of aromatic chemicals is attributed

by a AaTPS gene family (Das et al., 2021). The gene family AaCYPs,

involved in sesquiterpenoids and phenylpropanoids biosynthesis,

and these members were shown to be enhanced in methyl

jasmonate–induced callus and infected Aquilaria trees (Das et al.,

2023). In addition, in A. sinensis, upregulation of three

sesquiterpene synthases (AsTPS10, AsTPS16, and AsTPS19) stem

tissue has been linked to sesquiterpenes accumulation in the H2O2

pruned stem (Lv et al., 2019). These findings provide compelling

evidence of a cascade of events, initiated by ROS-induced activation

of the MAPK pathway, subsequently culminating in the hormonal

regulation of terpenoid biosynthesis through TFs like WRKY and

MYC2, contributing to the agarwood resin production in A.

agallocha tree.

Overall, the findings of this study confirm that, under stress

conditions in Aquilaria, Rboh genes play a pivotal role in ROS

generation, subsequently leading to the upregulation of various

genes responsible for the accelerated accumulation of specifically

terpenoids and other secondary metabolites as part of the defense

response mechanism (Zhang et al., 2013; Xu et al., 2016; Lv et al.,

2019). The generated ROS molecules are likely to serve as signaling

entities, modulating the genes involved in the biosynthesis fragrant

resinous agarwood.
5 Conclusion

In summary, this study characterized seven Rboh genes in each

Aquilaria species, delving into their structural and functional

attributes. The comprehensive analyses of phylogenetic positions,

exon–intron structures, and motif patterns highlight both

divergence and conservation among Aquilaria Rboh members.

Promoter analysis strongly indicates their active involvement in

stress-related pathways. The study further suggests that Rboh genes

are functionally linked with MAPK proteins and transcription

factors, including WRKY and MYC2. The two members, viz.,

AaRbohA and AaRbohC, are likely to play a role in generating

ROS and may have a significant impact on the signaling pathways

associated with the biosynthesis of metabolites present in resinous

agarwood. Although, the full intricate molecular mechanism
Frontiers in Plant Science 17
underlying agarwood formation is still lacking. The functional

characterization of this Rboh gene family is expected to expedite

the understanding of the initiation of agarwood deposition in

Aquilaria plants.
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SUPPLEMENTARY FIGURE 1

Flowchart of the methodology obtained in the study.

SUPPLEMENTARY FIGURE 2

Domain organization of 14 Rboh genes of A. agallocha and A. sinensis. The
characteristics domains are displayed based upon results of putative Rboh

SMART tool search. Blue rectangular boxes represent trans-membrane
regions and small pink boxes represents low complexity regions.
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Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Peer, V. D., et al. (2002).
PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for
in silico analysis of promoter sequences. Nucleic Acids Res 30, 1, 1194–1202. doi:
10.1093/nar/30.1.325

Li, D., Wu, D., Li, S., Dai, Y., and Cao, Y. (2019). Evolutionary and functional analysis
of the plant-specific NADPH oxidase gene family in Brassica rapa L. R. Soc. Open
Science. 6 (2), 181727. doi: 10.1098%2Frsos.181727

Lightfoot, D. J., Boettcher, A., Little, A., Shirley, N., and Able, A. J. (2008).
Identification and characterisation of barley (Hordeum vulgare) respiratory burst
oxidase homologue family members. Funct. Plant Biol. 35 (5), 347–359. doi: 10.1071/
FP08109

Lin, F., Zhang, Y., and Jiang, M. Y. (2009). Alternative splicing and differential
expression of two transcripts of nicotine adenine dinucleotide phosphate oxidase B
gene from Zea mays. J. Integr. Plant Biol. 51 (3), 287–298. doi: 10.1111/j.1744-
7909.2008.00808.x

Liu, Y., Chen, H., Yang, Y., Zhang, Z., Wei, J., Meng, H., et al. (2013). Whole-tree
agarwood-inducing technique: an efficient novel technique for producing high-quality
agarwood in cultivated. Aquilaria sinensis trees. Molecules 18 (3), 3086–3106.
doi: 10.3390/molecules18033086

Liu, Y., and He, C. (2016). Regulation of plant reactive oxygen species (ROS) in stress
responses: learning from. AtRBOHD. Plant Cell Rep. 35 (5), 995–1007. doi: 10.1007/
s00299-016-1950-x

Liu, J., Lu, H., Wan, Q., Qi, W., and Shao, H. (2019). Genome-wide analysis and
expression profiling of respiratory burst oxidase homologue gene family in Glycine
max. Environ. Exp. Bot. 161, 344–356. doi: 10.1016/j.envexpbot.2018.07.015

Lopez-Ortiz, C., Dutta, S. K., Natarajan, P., Pena-Garcia, Y., Abburi, V., Saminathan,
T., et al. (2019). Genome-wide identification and gene expression pattern of ABC
transporter gene family in Capsicum spp. PloS One 14 (4), 1–23. doi: 10.1371/
journal.pone.0215901
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