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To have value, comparisons of
high-throughput phenotyping
methods need statistical tests of
bias and variance
Justin M. McGrath1,2*, Matthew H. Siebers1,2, Peng Fu3,4,
Stephen P. Long2,4,5 and Carl J. Bernacchi1,2,4

1Global Change and Photosynthesis Research Unit, USDA-Agricultural Research Service (ARS), Urbana,
IL, United States, 2Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana,
IL, United States, 3Center for Advanced Agriculture and Sustainability, Harrisburg University of Science
and Technology, Harrisburg, PA, United States, 4Carl R. Woese Institute for Genomic Biology,
University of Illinois, Urbana-Champaign, Urbana, IL, United States, 5Department of Crop Sciences,
University of Illinois, Urbana-Champaign, Urbana, IL, United States
The gap between genomics and phenomics is narrowing. The rate at which it is

narrowing, however, is being slowed by improper statistical comparison of

methods. Quantification using Pearson’s correlation coefficient (r) is commonly

used to assess method quality, but it is an often misleading statistic for this

purpose as it is unable to provide information about the relative quality of two

methods. Using r can both erroneously discount methods that are inherently

more precise and validate methods that are less accurate. These errors occur

because of logical flaws inherent in the use of rwhen comparing methods, not as

a problem of limited sample size or the unavoidable possibility of a type I error. A

popular alternative to using r is to measure the limits of agreement (LOA).

However both r and LOA fail to identify which instrument is more or less

variable than the other and can lead to incorrect conclusions about method

quality. An alternative approach, comparing variances of methods, requires

repeated measurements of the same subject, but avoids incorrect conclusions.

Variance comparison is arguably the most important component of method

validation and, thus, when repeated measurements are possible, variance

comparison provides considerable value to these studies. Statistical tests to

compare variances presented here are well established, easy to interpret and

ubiquitously available. The widespread use of r has potentially led to numerous

incorrect conclusions about method quality, hampering development, and the

approach described here would be useful to advance high throughput

phenotyping methods but can also extend into any branch of science. The

adoption of the statistical techniques outlined in this paper will help speed the

adoption of new high throughput phenotyping techniques by indicating when

one should reject a newmethod, outright replace an old method or conditionally

use a new method.
KEYWORDS

physical sciences, statistics method comparison, variance, bias, limits of agreement,
Bland and Altman
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1 Introduction

Advancements in sequencing technologies have created a gap in

our understanding of the relationship between genetic vs

phenotypic data (Furbank and Tester, 2011). High throughput

phenotyping technologies, which enable rapid and efficient

measurement of physical traits in organisms, are increasingly

being developed to bridge this gap (Herr et al., 2023). These

include, but are not limited to, phone apps, automated lab

equipment and greenhouses, RGB and hyperspectral imaging

technologies, light detection and ranging (lidar) scanners, and

ground penetrating radar (De Bei et al., 2016; Jimenez-Berni

et al., 2018; Siebers et al., 2018; Bai et al., 2019; Ferguson et al.,

2021; Jin et al., 2021; Manavalan et al., 2021; Montes et al., 2022;

Schuhl et al., 2022). These technologies have advanced beyond mere

data collection by facilitating a convergence of expertise from

multiple disciplines, which enables the affordable and rapid

transformation of raw data into biologically meaningful traits.

Despite these advancements in high throughput phenotyping, a

gap in robust statistical design persists, hampering the adoption of

newer, better, cheaper or readily available technologies. Existing

reviews of technological improvement often compare methods and

associated phenotypic values that neither indicate methodological

quality nor permit cross-study comparisons (Grzybowski et al.,

2021; Fu et al., 2022). These limitations can be ameliorated through

experimental designs and statistical tests that compare both bias

and variances, which has been the standard in statistics for the last

six decades (Bruning and Kintz, 1968; Bethea et al., 1975; Blank,

1980; Dixon and Massey, 1983; Ott and Longnecker, 2015; Taffé

et al., 2020; Yen et al., 2020), leading to unbiased and objective

assessment of new methods.

The prevailing issue with existing approaches to assessing

method quality lies in their failure to account for variance.

Although Pearson’s correlation coefficient (r) and Limits of

Agreement (LOA) are commonly used, both are flawed for the

purpose of method comparison (De Bei et al., 2016; Madec et al.,

2017; Siebers et al., 2018; Zhang et al., 2020; Taffé, 2021).

Specifically, r, despite its intuitive appeal, is a measure of strength

of a linear relationship between two variables but does not quantify

the variability within each method. Stated differently, it assesses

whether two techniques are measuring the same thing, but does not

determine the precision of either method. Hence, a large r indicates

that two methods measure the same thing, but does not indicate

whether either method measures that thing well (see Supplementary

Section S1 for more discussion). Similarly, the LOAmethod, despite

being one of the most cited papers for method comparison (Van

Noorden et al., 2014), also fails to test which method is more

variable and offers a potentially misleading binary judgment based

on predetermined thresholds. Consequently, one might improperly

reject a more precise method or accept a less accurate one. This is

not an issue of statistical power, and increasing the sample size of

the experiment does not resolve this issue.

Comparative statistical analyses between a novel method and

the established “gold-standard” should rigorously evaluate both the

accuracy and precision of each method over a range of values.

Accuracy refers to the degree to which the “true value” (µ) is
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approximated by measurement (see Supplementary Section S2 for

symbol meanings). When µ is known, it is quantified as bias (b̂ ),

and a low bias indicates high accuracy. When µ is not known, bias

between the two methods (b̂ AB) is calculated instead. A low b̂ AB

suggests that both methods yield, on average, comparable results. In

addition, precision reflects the variability in repeated measurements

of an identical subject, such as a specific plot, plant or leaf. This is

quantified as variance, which is the sum of squared differences

between individual measurements and a method’s mean estimate. A

low variance signifies high precision. While bias can be estimated in

typical experimental designs, estimating variance requires multiple

measurements of the same subject, a feature often neglected in

current experimental setups (For a more detailed explanation of

bias and variance see Supplementary Section S2).

Statistical tests comparing bias and variances of two methods

are straightforward to conduct. A significant difference in bias

between two methods is indicated if b̂ AB is significantly different

from zero as determined by a two-tailed, two-sample t-test.

Variances are considered different if the ratio of the estimated

variances (ŝ 2
A=ŝ 2

B) is significantly different from one as indicated

by a two-tailed F test. These statistical tests are supported by most

statistical software packages. They can also adapt to varying levels of

bias and variance across a range of µ values (Giavarina, 2015).

A common goal in phenotyping is to develop a way to predict a

hard-to-measure “ground-truth” trait from measurements using a

new, easier method. For example, researchers are able to predict

photosynthetic capacity from hyperspectral scans of leaves instead

of using gas exchange instruments (Yendrek et al., 2017; Meacham-

Hensold et al., 2020; Montes et al., 2022). Such studies use various

types of statistical models, with the easily-measured trait, or traits

(for example, hyperspectral scans), as independent variables, and

the ground-truth trait (for example, gas exchange results) as the

dependent variable. The ground-truth trait must be measured to

develop the model, but once developed, only the easily-measured

trait needs to be collected.

Developing an appropriate ground-truthing model involves

calculating statistics that quantify the deviations of the model

predictions from measurements of the ground-truth trait.

Commonly used statistics for this purpose are the root mean

square error (RMSE) and mean absolute error of model

predictions, and Willmott’s index of agreement. These model

comparison statistics are necessary to identify appropriate models,

and in this context, r is also a useful statistic, but in themselves these

statistics do not provide sufficient information about the relative

quality of the two methods. The models are parameterized in a way

that minimizes the mean differences between the observations and

the models predictions, which intuitively serves to minimize bias,

addressing one aspect of method quality. However, the RMSE of the

model error conflates information of the variances of each method,

such that it cannot be used to determine which method is more

precise. For example, a low model RMSE indicates that both

methods are reasonably precise, but that does not imply that the

new method is more precise than the old one. Conversely, a large

model RMSE could indicate that either or both methods are

imprecise. If the poor fit is due solely to an imprecise old, hard-

to-measure method, one may mistakenly conclude that the new
frontiersin.org

https://doi.org/10.3389/fpls.2023.1325221
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


McGrath et al. 10.3389/fpls.2023.1325221
modeled method is inferior. Not all method development requires

such model building - the methods presented below do not - but for

those that do, these statistics are necessary but incomplete, because

they do not quantify precision.

The primary objectives of this study are (1) to outline a rigorous

statistical framework for method comparison focused on testing

bias and variance rather than using r or LOA and (2) to empirically

demonstrate the utility of this framework through case studies

involving high-throughput phenotyping methods. These

objectives will be tested by comparing “gold-standard” methods

of canopy height and leaf area index (LAI) with high throughput

phenotyping tools and algorithms of our own design. We conducted

repeated measurements of canopy height, LAI-2200 measurements

of leaf area, and lidar scans in sorghum (Sorghum bicolor) at a

variety of growth stages. To further demonstrate the general

usefulness of testing bias and variance, we also reanalyzed the

data set used in the original manuscript describing the LOA

technique (Bland and Altman, 1986) and show that the approach

incorrectly rejected a new method. By adopting this refined

statistical approach, we aim to overcome current limitations

hindering method adoption, thereby significantly accelerating the

pace of scientific discovery. This will make cross-study comparisons

more reliable and enhance the overall efficiency and effectiveness of

high-throughput phenotyping.
2 Methods

2.1 Lidar data collection

The data collection system consisted of a lidar scanner (UST-

10LX, Hokuyo Automatic CO., LTD., Osaka, Japan) and router,

powered by a battery (Sherpa 100, GoalZero, Bluffdale UT),

mounted on a cart. A laptop connected to the router and data

were collected using open source software (UrgBenri Standard

V1.8.1, https://sourceforge.net/projects/urgbenri/). The lidar has a

90 degree blind spot that was mounted facing downward. It emits

pulses of far red (905 nm) light at 40 Hz in a 270 degree sector with

an angular resolution of 0.25 degrees. The maximum range of the

lidar is 30 m and the precision is ± 40 mm.

2.1.1 Experimental design
In 2018, 2019 and 2020 staggered-planting experiments were

conducted at the University of Illinois Energy Farm (Urbana, IL

40.065707°, -88.208683°). Supplementary Table 1 shows the

number of energy sorghum (Sorghum bicolor) varieties planted

each year and when they were planted. A series of plots were

planted on successive dates so that at the end of the growing season

plots would have a chronological series of heights and LAIs.

Generally, after the first planting, each successive planting was

done a month later. Plots were sown using a precision planter at 25

seeds per meter and fertilized with urea at a rate of 180 lbs/acre.

Every year, plots consisted of four, 10 foot long rows with 30 inch

row spacing. A three foot alley was left between each variety

(Supplementary Figure 1).
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2.1.2 Data collection
In 2018, 2019 and 2020 repeated measurements of height and

LAI were taken in a single day (Supplementary Table 1). Given a

standard set of instructions, five individuals measured height and

LAI in every plot. Plant height was considered the average height at

the top of the plants. Individuals were told to imagine, “a weightless

plane of styrofoam resting on the top of the plants and to measure

the height of that plane.” Plant height was measured in meters using

a tape measure in 2018 and 2019. In 2020 a digital ruler was used for

plots greater than 1.5 m in height (Nedo mEsstronic Easy, Nedo

Germany). LAI is a dimensionless measurement that quantifies m2

of leaf area per 1 m2 of ground area. It was measured using a canopy

analyzer (LAI-2200, LI-COR Biosciences Lincoln, NE). Using a 45

degree view-cap, two sets of above-leaves and below-leaves

measurements were made for each plot following guidelines

provided for row crops (LiCOR 2200c Manual, section 6-4).

Every year, five people shared two LAI-2200 instruments.

The lidar cart was run through every plot five times in 2018,

2019 and 2020. Data were collected at approximately 1 m/s. The

data were processed for height and LAI using the algorithms

described below.
2.2 Algorithms

Lidar data were processed before running the height and LAI

estimation algorithms. The lidar gives coordinates in a polar

coordinate system (q : the angle within the plane that the lidar

scans; r: the straight-line distance from the center of lidar).

Assuming that the lidar was level and a fixed height above the

ground, lidar returns were transformed to a Cartesian coordinate

system (x: the horizontal distance from the lidar; y: the vertical

distance above the ground). Next all x points greater than 30 inches

left and right of the lidar were removed. This ensured that only the

middle two rows of energy sorghum were being analyzed.

Additionally the first and last 15 percent of scans were removed

to avoid analyzing data associated with the edge of the plots. To

remove remaining outliers, Grubbs’s test (Grubbs, 1950) was used

(a = 0.01, smirnov_grubbs function from the outliers module;

Python 3.6.5) on the distribution of all vertical distances (y, in the

Cartesian coordinate system) for a plot. Crop height and LAI were

then calculated on these processed data. Height was estimated as the

99th percentile of y values in a plot.

Lidar LAI was estimated on the processed data using the gap

fraction method (Miller, 1967). To calculate gap fraction, angles

were grouped into intervals with the following boundaries: 0, 15, 30,

45, 60 and 90 degrees, where 0 degrees is upward. The ratio of the

number of angles without a lidar return to the total number of

angles in that interval was used as the gap fraction. Occasionally, all

angles in an interval were intercepted by a plant, and thus the gap

fraction was 0. This results in the log of 0, which is undefined. In

such cases, the gap fraction was replaced with 1/4 of the gap fraction

in the next skyward interval, which is an arbitrary decision that

approximates the observed relationship of gap fraction and

zenith angle.
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2.3 Data from Bland and Altman (Bland and
Altman, 1986)

Data from the table in Bland and Altman (Bland and Altman,

1986) were reanalyzed in order to compare variances. To briefly

describe their measurements in that study, peak expiratory flow rate

(PEFR) was measured with a Wright peak flow meter and a “mini”

Wright peak flow meter. Two measurements using each meter were

made on each of 17 subjects.
2.4 Bias and variance estimates

The following model was used for each method:

yMij = mj + bM + eMij

where j is the plot ID (a.k.a subject) from 1 … k, which varied by

year, and i is the observation ID from 1 … nM, which varied by

method and year (Supplementary Table 1). Residuals were assumed

to be independent and to come from a distribution with mean 0 and

either constant variance s 2
M for LAI, or for height, a separate

variance for each plot s2
M,j. Nonhomogeneity of variances was

determined by visual inspection, presented below. Variances of

each method were estimated as the within-subject variance.

To choose predetermined limits of agreement thresholds for

LAI and height, we decided that the disagreement of the bias should

be no greater than 5 percent of the greatest values (LAI of about 6;

height of about 3.5 m). Thus, the thresholds for limits of agreement

of -0.3 to 0.3 were chosen for LAI and -0.18 to 0.18 m for height. For

peak expiratory flow rate, the threshold in the original paper is not

stated, but the authors rejected LOA of -80 to 76 l/min (Bland and

Altman, 1986). Thus, we chose a threshold of 80 l/min, the larger

limit in absolute value.
2.5 Statistical tests

Bias was assessed using a two-tailed t-test of whether bias = 0

with a = 0.05. Variances were compared using a two-tailed F-test of

whether ŝ 2
A=ŝ 2

B > 1, with a = 0.05. For height and LAI estimates,

variances varied with the mean and therefore variances were

estimated and compared for each plot. For PEFR, variances were

compared for each subject, but since variances did not scale with the

mean, variances of all subjects for a single method were pooled into

a single variance for each method. Those pooled variances were

compared using the same F-test as above.
2.6 Data availability

Code for the open-source statistical software R is included in the

Supplementary Material. The code can be used to reproduce the

results and figures. It can also be used as a template for analyzing

repeated measurements. All of the data used in the analysis are

included as .csv files.
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3 Results

3.1 Lidar estimations of plant height were
unbiased and less variable than the
manual method

To calculate r for the height results, tape measure heights are

randomly paired with a lidar measurement from the same plot. In a

given plot there were five tape measure heights and five lidar

heights. The r between tape measure height and lidar height is

0.98 and the relationship falls near the 1-to-1 line (Figure 1A). For

estimating bias, differences between the means of the five repeated

measurements from each method are calculated. There are no

serious indications of bias between the lidar and tape measure

heights (p = 0.47, Figure 1B). The variance of the within-plot

repeated lidar estimates of height is lower than that of tape-

measure estimates for most measurements (Figure 1C). The

variance of both lidar and tape-measure manual methods of

height increases in taller crop stands (Figure 1C).
3.2 Lidar estimations of LAI were biased
and more variable than the
canopy analyzer

The r is 0.77 and the relationship between the LAI-2200 and the

lidar deviates from the 1-to-1 line (Figure 2A). Lidar LAI estimates

were significantly biased and lower than those of the canopy

analyzer (Figure 2B, p=0.0009). Estimates of variance showed no

indication of serious deviation from homogeneity. The variance of

lidar-based LAI estimates is greater than those of the canopy

analyzer for several of the plots with LAI values below 3 (Figure 2C).
3.3 Mini-Wright estimations of peak
expiratory flow rate (PEFR) were unbiased
and equally variable as the Wright meter.
The LOA were outside the
acceptable threshold

The r between the Wright and Mini-Wright instruments was

0.95 and the relationship falls near the 1-to-1 line (Figure 3A). The

LOA were -68 l/min to 80 l/min (Figure 3B) which exceeded the

predetermined threshold. The analysis in the original Bland and

Altman manuscript reports LOA of -80 l/min to 75 l/min. The

original analysis uses only one set of samples, whereas the analysis

here uses both sets. It also calculates the difference “Wright minus

mini-Wright”, whereas here “mini-Wright minus Wright” is used

in order to match “new method - old method” used for the height

and LAI analyses, hence the change in sign and slight difference in

LOA here compared to the original paper. There was no indication

of bias (Figure 3B). Paired comparisons of variances for each subject

showed that the mini-Wright had larger variance for one subject

and smaller variance for another, with no differences in the rest of

the 17 subjects (Figure 3C). The conflicting results, and few
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significant values relative to the number of subjects suggested type I

errors due to low power. Variances did not appear to depend on the

mean, indicating that they could be pooled to increase power. Thus,

variances across subjects were pooled. Using the pooled variances,

there was no indication that variances of methods were different

(Figure 3C inset, p = 0.28).
3.4 Summary of interpretations

Interpretations of results for Pearson’s correlations coefficient

would lead any researcher to accept the new height estimation

method, but likely researchers would find it difficult to make firm

conclusions about lidar-based LAI estimate (Table 1). Furthermore,
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for neither height nor LAI does the correlation coefficient give

information about the relative quality of the two methods.

Comparing bias and precision, lidar estimations of height are

unbiased and more precise. Lidar-based LAI estimates are biased

and except at the lowest height, the instruments do not differ in

precision (Table 1).
4 Discussion

The field of phenomics has no consistent standard for statistical

method comparison. The use of r is appealingly simple but offers no

insight into method quality. Although it has been discussed for use

in remote sensing, the popular alternative, LOA, should not be used
A B C

FIGURE 1

Plant height (height, m) measured by a lidar and a tape measure. (A) A correlation plot of height estimates of the two methods. (B) Bias plot with
mean bias (dashed line) standard error of the bias (dot-dashed line) and limits of agreement (dotted line). (C) Within-plot variances for each method
against the mean height, where blue symbols are for the tape measure and orange symbols are for lidar-estimated height. Filled symbols indicate a
significantly larger variance for that method for that subject, and open symbols indicate no significant difference or significantly smaller (two-tailed
F-test that the variances are equal; a = 0.05). Dashed lines are ordinary least squares regression fits to the data, but are for visualization only since
the chi-squared distribution of the variances is highly non-normally distributed, violating regression assumptions.
A B C

FIGURE 2

Leaf area index (LAI, dimensionless) measured by a lidar and canopy analyzer. (A) A correlation plot of LAI estimates of the two methods. (B) Bias plot
with mean bias (dashed line) standard error of the bias (dot-dashed line) and limits of agreement (dotted line). (C) Within-plot variances for each
method against the mean LAI, where blue symbols are for the LAI-2200 meter and orange symbols are for lidar estimated LAI. Filled symbols
indicate a significantly larger variance for that method for that subject, and open symbols indicate no significant difference or significantly smaller
(two-tailed F-test that the variances are equal; a = 0.05). Dashed lines are ordinary least squares regression fits to the data, but are for visualization
only since the chi-squared distribution of the variances is highly non-normally distributed, violating regression assumptions.
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because it fails to identify which method is more variable (Coops

et al., 2021). Instead studies should be designed to perform repeated

measurements of subjects to test bias and variance across a range of

values. The interpretations of r and LOA for height, LAI and the

original data used to describe LOA demonstrates the improvement

of using formal statistical tests of bias and variance; the

interpretation of r for the LAI methods is unclear and LOA

reaches the wrong conclusion for the height and flow meter

methods. The improved ability to objectively assess method

quality will accelerate and inform method adoption in

plant phenomics.

The largely arbitrary nature of using r to determine whether a

new method is a suitable substitute for an old one (Table 1) is

demonstrated by the LAI analysis. In this case, the r for these

correlations was about 0.77. Are these values large enough to be

considered acceptable? Some may consider these large enough that

lidar could acceptably replace the canopy analyzer. Others may

disagree. There is not a clear choice for an acceptably large r and

thus no statistical test to determine whether observed results exceed

that threshold. For lidar estimates of height, the r value was 0.98.
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These would be considered an excellent correlation. These

conclusions are unfulfilling though. Why does the correlation

appear to degrade at higher heights? Is it wind? Does the lidar fail

to see the top of the canopy? What one wants to know is which

method is better and in what way. One may conclude that because r

is very close to 1 that these questions are irrelevant and the methods

are equivalent, when in fact the lidar height estimation method is

considerably better than the tape measure method.

LOA is used pervasively in the place of r. However it should be

avoided. In the examples shown here, LOA rejects a superior

method (lidar based height), does not allow the conditional use of

another (lidar based LAI) and also rejects an equivalent, possibly

cheaper method (mini-Wright meter). The central issue with LOA

is that the variance of the bias contains the sum of the variance of

both methods (Bland and Altman, 1999). Therefore, using only

limits of agreement, it is difficult to accept a new method when the

established, ground-truth method is highly variable or if the

variability of the ground-truth method is already close to

the threshold of agreement. The variance of the ground-truth

method alone can push the methods outside of the limits of

agreement. Here the lidar-based height estimation method was

rejected because the limits of agreement (-0.4 to 0.36 m) were

outside of the predetermined threshold of 0.18 m (Figure 1B), which

is large enough to be meaningful for many researchers (Sabadin

et al., 2012). However, not adopting lidar-based estimates of height

would clearly be a mistake, as the new method has much smaller

variance and no bias. The limits of agreement approach rightfully

identifies that the two methods do not agree, but it misses the fact

that the disagreement is because the old method is inferior to the

new one. The logical flaw in using LOA is in assuming that the so-

called ground-truth method is in fact the truth, but “Which method

is better?” is the very question these experiments are meant to

answer. A statistical method that assumes that the existing method

is the “right” one makes it logically impossible to properly address
TABLE 1 A summary of interpretations for each method comparison
using each of the statistical approaches.

Approach Lidar
Height

Lidar LAI Wright
Flow Meter

Correlation
coefficient

Accept Unclear Accept

Limits
of agreement

Reject Reject Reject

Bias
and variance

Lidar is
unbiased and
substantially
more precise

Lidar is biased and
possibly less precise
at meaningful LAIs

The mini flow
meter is unbiased

and equally
as precise
A B C

FIGURE 3

Peak expiratory flow rate (PEFR, l/min) measured by the Wright and mini-Wright peak flow meters. (A) A correlation plot of PFER estimates from
each method. Source: Based on data from Bland and Altman (1986). (B) Bias plot with mean bias (dashed line) standard error of the bias (dot-dashed
line) and limits of agreement (dotted line). (C) Within-patient variances against subject mean where blue symbols are data for the Wright meter and
orange symbols are for the mini-Wright meter. Filled symbols indicate a significantly larger variance for that method for that subject, and open
symbols indicate no significant difference or significantly smaller (two-tailed F-test that the variances are equal; a = 0.05). One filled blue symbol is
occluded by other symbols near PFER=400. (C, inset) Pooled variances with their 95% confidence limits. The pooled variances were not significantly
different by a two-tailed F-test of equal variances using a = 0.05. Dashed lines are ordinary least squares regression fits to the data, but are for
visualization only since the chi-squared distribution of the variances is highly non-normally distributed, violating regression assumptions.
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the question. In contrast, the use of an F-test doesn’t make such

assumptions and makes it clear which method is more variable

(Figure 1C). For the height estimation methods, using limits of

agreement results in rejecting a clearly superior method.

This shortcoming in the limits of agreement approach was

identified previously and measuring the coefficient of repeatability

was suggested (Bland and Altman, 1986). Like variance, this statistic

is a measure of precision and requires repeated measurements of a

subject. As an example, Bland and Altman (Bland and Altman,

1986) compare two PEFR meters: one full sized (Wright) and one

miniaturized version (mini-Wright). Based on their calculated

limits of agreement, the instruments often differed by more than

80 l/min, which they considered an unacceptable difference

(Figure 3B). They then calculated the coefficient of repeatability of

each instrument, finding 43 l/min for the Wright and 56 l/min for

the mini-Wright. Since the coefficient for the mini-Wright was

larger, they then concluded that the disagreement stems from the

variability of the mini-Wright meter. However, no statistical test

was performed to compare the coefficients. Like other estimates,

variance estimates have a degree of randomness, and that one is

larger than the other does not necessarily indicate a true difference.

Thus, tests must be performed to provide a degree of confidence in

their difference.

Here, reanalyzing the data and comparing variances of paired

measurements of each subject, we found no apparent difference in

variances of the Wright and mini-Wright meters (Figure 3C).

Confidence limits overlap substantially. The very large confidence

limits are because measurements were replicated only twice for each

subject, which results in poor statistical power. However, given that

there is no apparent relationship between the variance and the

mean for either method, the variances of different subjects can be

pooled, giving smaller confidence limits and better statistical power

to determine differences between the methods. When pooling the

data, there is still no indication that the mini-Wright meter is more

variable than the Wright meter (Figure 3C, inset; p=0.28, two-tailed

F-test of ŝ 2
mini=ŝ 2

Wright ≠ 1).

In this case, the limits of agreement are large because neither the

Wright nor mini-Wright instruments have good repeatability

(Figure 3C, inset), not, as was originally concluded, because the

mini-Wright meter is an unacceptable replacement for the Wright

meter. The only way to demonstrate this is by comparing variances

using statistical tests. The limits of the agreement test alone cannot

determine this, and comparing measures of variability, such as the

coefficients of repeatability, without using a test can lead to

incorrect conclusions, as happened with these PEFR meters. The

conclusion here is that the mini-Wright flow meter is unbiased and

has equal variance compared to the Wright meter, so its quality is

equivalent to that of the Wright meter.

There is a question of how often this flaw of limits of agreement

could result in incorrect conclusions. The limits of agreement

approach makes it possible to (1) reject a new more precise

method, (2) reject a new, equivalent method or, (3) accept a new,

less precise method. Most method assessment studies do not collect

the data required to determine variance, so a comprehensive review

of literature is not possible. However, the authors hardly had to

search to find examples. It occurs with our height data set, where a
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newer more precise method is rejected. Outside of our own data, the

first study we considered, the original paper describing limits of

agreement, has the same limitation. The mini-Wright meter is

rejected although it is an equivalent method; it is unbiased and of

equal variance compared to the Wright flow meter. Moreover, if the

variance of the old measurement method is very low, it is also

possible to accept a new, less precise method, a situation that is

potentially worse if the users are unaware. Surely there are cases

where decreased precision is acceptable if the method is

considerably cheaper or faster, but the limits of agreement

approach cannot provide this information. A less precise method

that passes the limits of agreement test would be incorrectly deemed

equivalent to the existing method, and if the new method is more

expensive and slower, using it would clearly be a mistake. Thinking

of method comparison studies in general, a common reason to

replace an established method is that it is considered inadequately

precise. That is the situation in which large variance of the

established method would make it difficult to accept a new

method when using limits of agreement, suggesting that the

problem is common. Since approximately 50,000 manuscripts cite

this approach, it seems very likely that often there are new, better,

methods that are incorrectly rejected.

Of course accuracy and precision are only two factors to

consider among many when assessing which method is

appropriate. Speed, ease of use, cost, availability and maintenance

are several aspects that could be important to a researcher.

Quantifying variance provides one piece of information among

many for researchers to make informed decisions about methods

that cannot be provided with r or limits of agreement. For example,

lidar is an order of magnitude faster at measuring LAI than the

canopy analyzer. So, even though it is more variable and biased, one

could use lidar-based LAI estimates to identify overall best

performers in a large field trial, and subsequently use the more

precise canopy analyzer to identify the single best performer from

that smaller set.

Quantifying variance also provides the ability to compare

results across studies. For example, a later study of a new height-

estimation method could compare variance of their method to the

variances reported here. Although bias could be compared across

studies if a suitable reference is identified, a reference is not sensible

for all methods, as is the case here. Regardless, as described above,

bias is often not a concern, whereas precision is always a

consideration for method quality. Some studies compare r, r2 or

R2 across experiments, but unlike variance and bias, each of these

statistics depends on the experimental design, and comparing them

across studies confounds differences in method quality with the

experimental design, even when studies compare the same methods

(Goodwin and Leech, 2006). Thus, if the studies vary in treatment

size, number of replicates, or nearly any aspect of experimental

design, summarizing these statistics across studies does not provide

meaningful information, yet these comparisons are made (Siebers

et al., 2018; Zhang et al., 2020; Grzybowski et al., 2021).

Regarding designs to compare methods, it is helpful to have a

wide range of values, so that bias and variance can be assessed

across all expected values. It is critical to note that variance

estimates themselves are highly variable, and a small number of
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measurements will give poor confidence intervals, as seen in

Figure 3C. An appropriate number depends on how variable the

measurements are, which is of course not known beforehand. Thus,

although the minimum required to perform the computation is

only two replicates, more are almost certainly required to be

practically useful. Based on the authors’ experience, 4 degrees of

freedom is a minimum starting point. If estimates cannot be pooled,

that requires 5 replicates per subject. It is advisable to do initial work

to estimate roughly how variable the methods are and choose the

number of replicates based on that.

Studies that develop ground-truthing models, such as

predicting photosynthetic capacity from hyperspectral scans,

should still conduct method comparison experiments. After the

models are developed, the existing and new methods should each be

used to collect multiple measurements of the same subjects and

compared as described above. For these analyses, the data are not

used to develop the models, and instead the two methods are

compared as if they were independent. In the case of

hyperspectral imaging, the variability of the prediction model will

stem from variability of the cameras and the collection technique. In

this case, it’s important to make the collection technique clear to

facilitate cross-study comparison. Scanning 1 m2 of a plot will likely

result in a different variance from scanning 10 m2. Despite the

prediction models being chosen so that they reduce bias between

the model output and ground-truth data set, potential bias could

still exist, particularly if the ground-truth data set is small, in which

case it could substantially deviate from the mean response. A model

trained using such data would then be biased. Follow up studies

using repeated measurements provide a statistical test to

demonstrate a true lack of bias.

The variance tests presented in this study are the textbook

approaches for method comparison, although they are not

commonly used in plant phenotyping. Moreover, testing

variance through repeated measurements is valuable for

experiments in every discipline. A test of variance is more

meaningful for interpreting the quality of a method than r or

the limits of agreement alone. It will allow for the adoption of new

methods in situations where the old method is highly variable.

Testing bias and variance will help alleviate the method adoption

bottleneck that is slowing the use and objective understanding of

new phenomics techniques.
5 Conclusions

Few phenotyping method comparison studies use well

established statistical analyses to test bias and variances. Such

inconsistent statistical practices have likely slowed the rate of

method adoption in high-throughput phenotyping and misled

comparisons. Comparing bias and variance using repeated

measurements is the long-standing, standard statistical approach

for method comparison. It could be readily applied in phenotyping.

Although r is useful for model development, it has previously been

shown that r is inappropriate for method comparison. Similarly,

although the use limits of agreements approach is popularly used
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for method comparisons, here we show that it can reject a more

precise method, reject an equivalent method or even accept a less

precise method, not as a matter of lack of careful interpretation, but

due to an inherent deficiency in the approach. Two examples are

given here - lidar-based height and the mini-Wright peak flow

meter - where the limits of agreement approach leads to the

incorrect conclusion and prevents the adoption of an equivalent

or better method. We demonstrate examples of the standard

approach by quantifying variance in order to compare methods,

showing that the approach here is superior to both r and limits of

agreement. We also provide the code, in the free programming

language R, to analyze bias and variance and reproduce graphs like

the ones shown in the paper.
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