AUTHOR=Neuhoff Daniel , Neumann Günter , Weinmann Markus TITLE=Testing plant growth promoting microorganisms in the field - a proposal for standards JOURNAL=Frontiers in Plant Science VOLUME=14 YEAR=2024 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1324665 DOI=10.3389/fpls.2023.1324665 ISSN=1664-462X ABSTRACT=

In the European Union and worldwide there are a burgeoning markets for plant growth promoting microorganisms (PGPM) and other biological agents as soil improvers, bio-fertilizers, plant bio-stimulants, and biological control agents or bio-pesticides. Microbial agents have a major share in this development. The use of such products is often advertised with the promise of contributing to sustainable agricultural practices by increasing crop growth and yield and offering an alternative or substitute to decrease the dependency of agriculture on hazardeous agrochemicals. In contrast to registered microbial plant protection products, PGPM that are marketed in the EU as soil improvers or plant biostimulants, are not strictly required to have proven minimum efficacy levels under field conditions. Manufacturers only have to ensure that these products do not pose unacceptable risks to human, animal or plant health, safety or the environment. Uniform guidelines comparable to the EPPO - standards (European and Mediterranean Plant Protection Organisation) to test the efficacy in field trials are not available. This paper attempts to fill the gap. It proposes guidelines for PGPM field trial design and implementation, as well as recommendations for the type and scope of data collection and evaluation. Selected research papers from literature were evaluated to analyze, whether and to what extent the requirements are already met. The majority of the papers had a clear experimental design followed by proper data evaluation. Frequent deficiencies were the low number of tested environments and crop species, insufficient site and agronomic management description and missing data on soil humidity and temperature. Using the suggested standards is assumed to increase the expressive power of tested microbial products.