AUTHOR=Li Huibin , Yang Peng , Liu Huaiyang , Liu Xiang , Qian Jianping , Yu Qiangyi , Geng Changxing , Shi Yun TITLE=An improved YOLOv5s model for assessing apple graspability in automated harvesting scene JOURNAL=Frontiers in Plant Science VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1323453 DOI=10.3389/fpls.2023.1323453 ISSN=1664-462X ABSTRACT=Introduction

With continuously increasing labor costs, an urgent need for automated apple- Qpicking equipment has emerged in the agricultural sector. Prior to apple harvesting, it is imperative that the equipment not only accurately locates the apples, but also discerns the graspability of the fruit. While numerous studies on apple detection have been conducted, the challenges related to determining apple graspability remain unresolved.

Methods

This study introduces a method for detecting multi-occluded apples based on an enhanced YOLOv5s model, with the aim of identifying the type of apple occlusion in complex orchard environments and determining apple graspability. Using bootstrap your own atent(BYOL) and knowledge transfer(KT) strategies, we effectively enhance the classification accuracy for multi-occluded apples while reducing data production costs. A selective kernel (SK) module is also incorporated, enabling the network model to more precisely identify various apple occlusion types. To evaluate the performance of our network model, we define three key metrics: APGA, APTUGA, and APUGA, representing the average detection accuracy for graspable, temporarily ungraspable, and ungraspable apples, respectively.

Results

Experimental results indicate that the improved YOLOv5s model performs exceptionally well, achieving detection accuracies of 94.78%, 93.86%, and 94.98% for APGA, APTUGA, and APUGA, respectively.

Discussion

Compared to current lightweight network models such as YOLOX-s and YOLOv7s, our proposed method demonstrates significant advantages across multiple evaluation metrics. In future research, we intend to integrate fruit posture and occlusion detection to f]urther enhance the visual perception capabilities of apple-picking equipment.