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YOLOV5-CBAM-C3TR: an
optimized model based on
transformer module and
attention mechanism for apple
leaf disease detection
Meng Lv and Wen-Hao Su*

College of Engineering, China Agricultural University, Beijing, China
Apple trees face various challenges during cultivation. Apple leaves, as the key

part of the apple tree for photosynthesis, occupy most of the area of the tree.

Diseases of the leaves can hinder the healthy growth of trees and cause huge

economic losses to fruit growers. The prerequisite for precise control of apple

leaf diseases is the timely and accurate detection of different diseases on apple

leaves. Traditional methods relying on manual detection have problems such as

limited accuracy and slow speed. In this study, both the attentionmechanism and

the module containing the transformer encoder were innovatively introduced

into YOLOV5, resulting in YOLOV5-CBAM-C3TR for apple leaf disease detection.

The datasets used in this experiment were uniformly RGB images. To better

evaluate the effectiveness of YOLOV5-CBAM-C3TR, the model was compared

with different target detection models such as SSD, YOLOV3, YOLOV4, and

YOLOV5. The results showed that YOLOV5-CBAM-C3TR achieved mAP@0.5,

precision, and recall of 73.4%, 70.9%, and 69.5% for three apple leaf diseases

including Alternaria blotch, Grey spot, and Rust. Compared with the original

model YOLOV5, the mAP 0.5increased by 8.25% with a small change in the

number of parameters. In addition, YOLOV5-CBAM-C3TR can achieve an

average accuracy of 92.4% in detecting 208 randomly selected apple leaf

disease samples. Notably, YOLOV5-CBAM-C3TR achieved 93.1% and 89.6%

accuracy in detecting two very similar diseases including Alternaria Blotch and

Grey Spot, respectively. The YOLOV5-CBAM-C3TRmodel proposed in this paper

has been applied to the detection of apple leaf diseases for the first time, and also

showed strong recognition ability in identifying similar diseases, which is

expected to promote the further development of disease detection technology.
KEYWORDS

deep learning, apple leaf, disease detection, YOLOv5, attention mechanism,
transformer encoder
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1 Introduction

Apples are highly prized for their nutritional richness and rank

among the world’s most economically significant fruits (Shu et al.,

2019). However, due to environmental, bacterial, and insect pests,

the growth of apple fruits can be attacked by a variety of diseases,

which can lead to a decrease in fruit yield and quality, resulting in

huge economic losses. Timely detection and accurate classification

of the type of disease is the first step to early control of the disease.

The leaves of apple trees occupy most of the area of the tree and are

the easiest part to observe. Most apple diseases can be identified by

observing diseased leaves (Wang et al., 2009; Vishnu and Rajanith,

2015). Therefore, the research in this study focuses on diseases of

apple leaf parts.

Traditionally, the identification of apple leaf disease mostly

relied on experienced farmers to identify the disease. However, due

to the similarity of diseases or the complexity of symptoms, relying

on human eye detection can easily lead to misjudgment of diseases,

which can not only solve the problem of diseases but also cause

environmental pollution (Liu et al., 2022). The combination of

machine learning and image processing replaced human eye

detection and provided a new direction for disease detection. For

example, Dubey and Jalal (2012) used K-means clustering for the

segmentation of apple fruit diseases, then global color histogram,

color coherence vector, local binary pattern, and complete local

binary pattern were used for feature extraction, the support vector

machine (SVM) (Hearst et al., 1998) was used for disease

classification, which can achieve an accuracy of 93%. Chuanlei

et al. (2017) introduced a method for apple leaf disease detection.

To improve the detection accuracy, a region-growing algorithm is

used to segment the disease image, a genetic algorithm combined

with correlation feature selection is used to select the important

features, and finally SVM classifier is used to identify the disease,

which was tested on a dataset containing 90 images on a dataset

with an accuracy of 90%. Shi et al. (2017) proposed an apple disease

recognition method based on two-dimensional subspace learning

dimensionality reduction, with recognition accuracy above 90% on

the apple leaf disease dataset. Gargade and Khandekar (2021) used

K-NN and SVM algorithms to classify apple leaf defects with 99.5%

accuracy. Jan and Ahmad (2020) used 11 apple leaf image features

and a multilayer perceptron (MLP) pattern classifier to detect apple

Alternaria leaf blotch with 99.1% accuracy. However, segmentation

based on image processing and feature extraction based on

traditional machine learning are extremely complex, leading to

inefficient disease diagnosis.

In recent years, convolutional neural network (CNN)-based

model avoids complex preprocessing work on images and

automatically extracts features through an end-to-end approach

(Abade et al., 2021; Dhaka et al., 2021), which is more suitable for

solving problems in the field of computer vision. Apple leaf disease

detection tasks can be classified into three main categories according

to the type of computer vision tasks: 1) image classification, which

classifies the detected images into various types of diseases, 2) target

detection, which detects and locates the diseases in the images, and

3) image segmentation, which segments the images into semantic

disease maps. In general, image classification studies using CNN
Frontiers in Plant Science 02
models are the most common. Based on Densenet-121, Zhong and

Zhao (2020) proposed regression, multi-label classification and focal

loss function recognition methods for three apple leaf diseases with

accuracies of 93.51%, 93.31% and 93.71%, respectively. Yu and Son

(2019) used the ROI-aware DCNN model to classify Marssonia

blotch and Alternaria leaf spots, which was shown to outperform

traditional methods. Singh et al. (2021) improved the classical CNN

model to implement Marssonia Coronaria, Rust, and Scab for

accurate classification with up to the accuracy of 99.2%. Babu and

Ram (2022) proposed a deep residual convolutional neural network

(DRCNN) with contrast limited adaptive histogram equalization for

weed and soybean crop classification with an accuracy of 97.25%.

Kundu et al. (2021) proposed the use of deep learning in conjunction

with IoT for automatic detection of pearl millet diseases, and the

accuracy of the proposed custom network model is comparable to

that of the current state-of-the-art image classification model, with

an accuracy of up to 98.78%, while greatly reducing the training

time. Image classification methods are excellent at accurately

classifying diseases, but their utility is limited by failing to provide

information about the location of the disease. In contrast, target

detection methods can locate the target object in real-time and

obtain more detailed information, which is more conducive to

practical application. Currently, target detection methods can be

classified into single-stage and two-stage algorithms. Two-stage

algorithms such as Faster-RCNN (Ren et al., 2015) and Mask-

RCNN (Kaiming et al., 2017) have higher detection accuracy but

lose detection speed. In comparison, single-stage algorithms are

characterized by a small number of model parameters and fast

inference speed, which better meet the needs of practical production

environments. The single-stage algorithms are best known as you

only look once (YOLO) (Redmon et al., 2016), which turns the

detection task into a simple regression problem and has a simple

network model that is easy for researchers to learn and train.

Although there have been many iterations of YOLO, YOLOV5

remains the most widely used version across all domains (Lang

et al., 2022). For example, Chen et al. (2022) added the SE module to

YOLOV5 and replaced the original loss function GIOU with EIOU

to automatically identify diseases on rubber trees, finally the average

accuracy was improved by 5.4% compared to the original YOLOV5.

With the aim of improving the accuracy of vegetable disease

detection in natural environments, Li (2022) improved the CSP,

FPN, and NMS modules in YOLOV5s, and finally achieved a

mAP of up to 93.1% on a dataset containing a total of 1,000

images of five diseases. In order to accurately identify and locate

tomatoes, Li et al. (2023) optimized YOLOV5 by adding the

CARAFE module to obtain a larger sensory field while

maintaining lightness, introducing EIOU and quality focal loss

to solve the problem of uneven samples, and finally proposing

YOLOv5s-CQE. The mAP 0.5of YOLOv5s-CQE on the dataset

containing 3,820 tomato images finally reaches 98.68%.

Therefore, YOLOV5 shows excellent detection accuracy and fast

processing speed in a series of target detection tasks and shows

great potential in the automatic identification and classification of

apple leaf diseases.

In this study, aiming to achieve accurate detection of three

common apple leaf diseases in the natural environment, YOLOV5
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was selected as the baseline model, and YOLOV5-CBAM-C3TR

was finally proposed by adding different attention mechanisms and

C3TR modules and transformer encoders individually or jointly.

The specific objectives of this study are as follows: (1) A proposal for

an improved YOLOV5 method based on CBAM and C3TR

modules for the identification of three apple leaf diseases

including Alternaria blotch, Grey spot, and Rust; (2) Comparison

of the performance of YOLOV5-CBAM-C3TR, SSD, YOLOV3,

YOLOV4, YOLOV5 and other different target detection models

on the same dataset containing three diseases; (3) Comparison of

the performance improvement of YOLOV5 with the addition of

CBAM, SE, ECA and C3TR modules, individually or in

combination; (4) development of a model for the effective

classification of similar apple leaf diseases. As far as we know, this

is the first time that the YOLOV5-CBAM-C3TR model has been

used for the identification and localization of apple leaf diseases.
2 Materials and methods

2.1 Datasets

In this study, the images were collected from the publicly

available apple leaf pathology image dataset (https://aistudio.

baidu.com/datasetdetail/11591). Disease images in natural

environments in the dataset were obtained from a real apple

orchard in Yantai, Shandong Province, China. A total of 390

high-quality images of three common apple leaf diseases were

selected for study in this dataset. However, the original images

cannot be trained, validated, and tested directly. Images used for

target detection need to determine the location of the target in the

dataset image, which requires the researcher to label the observed

targets before starting training, validation, and testing (Wang and

Zhao, 2022). The dataset used in this study was in YOLO format

and manually labeled for apple leaf diseases using image annotation

software. In order to facilitate model training, the labeled images

were divided into training, validation, and test sets in a ratio of 8:1:1.

In addition, to better adapt the model to different environments and

to reduce the negative effects of photometric distortion during

training (Zhu et al., 2021), data enhancements such as random

cropping, panning, changing luminance, adding noise, rotating, and

mirroring were chosen to extend the dataset. Finally, the dataset

required for the experiment consisted of 3900 images of apple leaves

containing the three diseases, 1680 from the laboratory background

and 2220 from the orchard background, as shown in Table 1.
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2.2 Methods

2.2.1 YOLOV5
The aim of this study is to achieve real-time detection and

accurate identification of apple leaf diseases. Considering the type of

disease detected including early-stage disease, the shape of the

infestation is small. Therefore, target detection methods are

chosen for identification. Classical single-stage target detection

algorithms such as SSD (Liu et al., 2016), YOLOV3 (Redmon and

Farhadi, 2018), YOLOV4 (Bochkovskiy et al., 2020), YOLOV5

(Jocher et al., 2021), RetinaNet (Lin et al., 2017) can obtain the

positional information of the target object for identification and

localization. In this study, YOLOV5 was selected for the detection of

apple leaf diseases. As shown in Figure 1, the YOLOV5 model

consists of four parts: Input, Backbone, Neck, and Head. The main

work of each part is as follows:
1. Input. The Input part of YOLOV5s is preprocessed by

adding mosaic data enhancement, adaptive anchor frames,

and adaptive image scaling. The model can extract the

features better during training and thus shows better results

on the dataset.

2. Backbone. The Backbone part mainly relies on the Focus,

C3, and SPP modules to extract features from the input

images. The Focus module performs slicing operations on

the image before it enters the backbone, thus reducing the

feature dimensionality. The C3 module, which consists of

three convolutional modules and a bottleneck structure,

brings the dual advantages of increased computational

speed and reduced parameter complexity. The SPP

module is a pooling module that passes the input features

in parallel to the Maxpool pooling layer to obtain a set of

feature maps of different sizes, and finally joins these

feature maps together so that feature information at

different scales can be captured. The backbone is

responsible for passing the extracted position and

category information to the Neck layer.

3. Neck. The Neck part of the YOLOV5s combines up-

sampling and down-sampling to generate a feature

pyramid that improves the detection accuracy of the target

object, which on one hand needs to reprocess the extracted

features in the backbone network and on the other hand

plays an important role in the subsequent detection.

4. Head. The Head part is to classify and predict the results of

the neck layer by using a 1 �1 convolutional layer to
TABLE 1 Apple leaf disease dataset.

Diseases Training Set Validation Set Test Set Total

Alternaria blotch 1040 130 130 1300

Grey spot 1040 130 130 1300

Rust 1040 130 130 1300

Total 3120 390 390 3900
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Fron
generate batch size different three results for final

target detection.
2.2.2 CBAM module
When detecting apple leaf diseases, intricate background

environments can cause interference, which can affect the

accuracy of disease recognition. To address this challenge,

integrating the attention mechanism becomes a promising

solution that enhances the model’s ability to selectively focus on

relevant features while filtering out irrelevant information. As

shown in Figure 2, the convolutional block attention mechanism

(CBAM) (Woo et al., 2018) consists of two key components: the

channel attention module (CAM) and the spatial attention module

(SAM). The CAM emphasizes the key features, while the SAM
tiers in Plant Science 04
emphasizes the spatial localization of these key features. The

operation of the CAM consists of extracting features through

average pooling and maximum pooling respectively. These

features are then processed separately through a MLP network,

and finally summed and output the feature vector. The

mathematical formulation of the Channel Attention Module was

shown in Equation 1.

Mc(F) = s (MLP(AvgPool(F)) + MLP(MaxPool(F))) (1)

where s is a nonlinear sigmoid function used to map inputs to

continuous outputs between 0 and 1. F is the input feature map, the

MLP consists of two linear layers and a ReLU activation function.

SAM generates the spatial attention map by splicing the features

that are average pooled and maximum pooled in the channel

dimension. The formulation of the Spatial Attention Module was
FIGURE 2

Specific structure of the CBAM module.
FIGURE 1

Overall structure of YOLOV5-CBAM-C3TR.
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shown in Equation 2.

Ms(F) = s f 7�7 Concat AvɡPool(F),Maxpool(F)ð Þð Þ� �
(2)

Where s denotes the sigmoid function, f 7�7 represents a

convolutional kernel size of 7 � 7, and Concat denotes the

connection operation.

2.2.3 C3TR module
In recent years, the transformer (Vaswani et al., 2017)

architecture has been widely used in the field of natural language

processing (NLP) with resounding success. As with NLP, where

large amounts of textual data are key to training, the field of

computer vision also relies on large image libraries for effective

model learning. The transformer module can acquire complex

relationships between different locations in the image. The

multiple attention mechanism in the transformer module helps to

extract multi-scale information, which can focus on both location

and feature information and has great research potential. In order to

realize the application of transformer in the field of computer

vision, researchers endeavor to replace certain convolutional

structures with transformer. For example, in target detection

involving a drone capture scene, Zhu et al. (2021) innovatively

integrated the transformer block into the C3 module of the

YOLOV5 architecture, resulting in the C3TR module. As shown

in Figure 1, richer image information extraction is achieved by

replacing the bottleneck module in the C3 module.

The transformer block serves as the fundamental constituent

within the C3TR framework, adopting the classical transformer

encoder architecture. Illustrated in Figure 3, this block is comprised

of three primary layers: Flatten, Multi-head attention, and

feedforward neural network (FFN).

1. Flatten

The Flatten operation is to flatten the two-dimensional feature

vectors obtained by the model based on the image into one-

dimensional vectors, which can preserve the positional

information of the image. If an input feature map X ∈ RH�W�C

is given, it will become X1 ∈ RH�C after the spreading operation,

where H×W=H.

2. Multi-head attention

The multiple attention operation is responsible for different

linear mappings through the Flatten and LayerNorm, allowing

simultaneous attention to feature information at different scales.

After converting the feature maps into Q,K ,V ∈ RN�C as inputs

for multi-head attention, each single head performs one feature

mapping for Q, k, V. The output formula after the completion of the

single-head attention operation was shown in Equation 3 and

Equation 4.

Outputi = SiVi (3)

Si = softmax(QiK
T
i ) (4)

where Qi,Ki,Vi denote the multiplication of Q, K, V with the

weight matrix of the single-head attention mechanism, Si represents

the single-head attention matrix, and Outputi refers to the

integration of global information. The Outputi generated after
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feature mapping for each single-head attention will eventually be

unified through the connectivity layer to produce the final output

with expression was shown in Equation 5.

Output = Conca t(Output1,Output2, :::,Outputn) (5)

where n represents the number of multi-head attention.

3. FFN

The FFN layer is a feed forward neural network, which is

composed of two fully connected layers, one of which contains

the Relu activation function and the Dropout function between the

two layers. The expression of FFN was shown in Equation 6.
FIGURE 3

Detailed architecture of the transformer block.
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FFN(x) = max(0, xW1 + b1)W2 + b2 (6)

where x represents the feature sequence of the input FFN layer,

W1 and b1 represent the weights and offsets of the first fully

connected layer, and W2 and b2 represent the weights and offsets

of the second fully connected layer, respectively.

2.2.4 Proposed model
Orchard environments are extremely complex. Common

problems in target object detection such as similar texture

between target object and background, target occlusion, and

similarity between target object types. The focus on improving

detection accuracy led us to optimize the YOLOV5 framework. This

was done by trying to add CBAM, SE (Hu et al., 2018), ECA (Wang

et al., 2020), and C3TR modules to improve the performance of the

model. Finally, by adding CBAM module before SPP module and

C3TR module at the last layer of backbone network, the optimized

YOLOV5-CBAM-C3TR model was proposed. Figure 1 shows the

overall structure of the optimized model YOLOV5-CBAM-C3TR.

Before starting the training, the optimal runtime environment was

created, the input images were resized to 640 � 640. After training,

the final three different dimensions of the detection header

effectively outputted important information related to the type

and location of the apple leaf disease.
2.3 Model training environment
parameter configuration

In this study, the model training environment was built using

Pytorch and GPUs with the parameters shown in Table 2. The

adaptive moment estimation (Adam) (Kingma and Ba, 2014) was

used as the optimizer in the experiments. The input image input size

was set to 640×640, obtained by filling the original image. After

repeated experiments, the final hyperparameters were set as follows:

the initial learning rate was set to 0.0005, the epoch number was set

to 100, and the batch size was 8. To ensure the fairness of model

comparison, the parameters used in this study were consistent.
2.4 Model evaluation

In order to comprehensively assess the performance of the

model in apple leaf disease detection, a set of evaluation metrics
Frontiers in Plant Science 06
including precision, recall, mAP@0.5, mAP@[0.5:0.95], F1 Score,

and parameters were chosen. Among them, mAP is the mean

average precision, which is the evaluation metric of the main

model in target detection. mAP 0.5and mAP@[0.5:0.95] are

distinguished by the difference in the size of the intersection over

union (IOU), which determines that mAP@[0.5:0.95] is more

stringent. In addition, the loss value is used to assess the error

between the predicted and the ground truth. The training loss

reflects the model’s ability to fit on that dataset, and the validation

loss reflects the model’s ability to generalize. The loss value contains

three parameters: obj_loss (object loss), cls_loss (classification loss),

box_loss (bounding loss). The above metrics were calculated in

Equation 7, Equation 8, Equation 9, Equation 10, and Equation 11.

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 Score =
2� Precision� Recall
Precision + Recall

(9)

mAP = o
C
i=1APi
C

(10)

loss = box_loss + obj _ loss + cls _ loss (11)

where TP, FP , FN , and TN stand for true positive, false

positive, false negative, and true negative, respectively. The APi   is

the average precision value at the i-th species. C is the total number

of species.
3 Results

3.1 Model optimization

To further improve the detection precision of YOLOV5 for

apple leaf diseases, different modules including SE, CBAM, ECA,

and C3TR were added to improve the detection capability of

YOLOV5. As can be seen from Table 3, compared with the

original YOLOV5 model, the improved YOLOV5-CBAM-C3TR

achieved 73.4%, 40.9%, 70.9%, and 69.5% of mAP@0.5, mAP@

[0.5:0.95], precision and recall, which was a significant

improvement in detection performance. In addition, the

experimental results also showed that the improved YOLOV5-

CBAM-C3TR is more suitable for the detection of apple leaf

diseases in real and complex environments.

3.1.1 Model performance optimization by adding
an individual module

As can be seen from Table 4, the low accuracy of YOLOV5 in

detecting apple leaf diseases may be caused by the fact that the two

diseases including Alternaria blotch and Grey spot, which were too

similar. Therefore, to make the model more focused on extracting

the characteristics of apple leaf disease, different attention
TABLE 2 Software and hardware environment resource configuration.

Configuration Parameter

Operating system Ubuntu 20.04

GPU NVIDIA GeForce RTX 3090

CPU Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz

Memory 100 GB

Language Python 3.8

Framework Pytorch 1.10.0
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mechanisms were tried to be added to the backbone network of

YOLOV5 for experiments. As shown in Table 4, the addition of SE,

ECA, CBAM and C3TR all improved the accuracy of the YOLOV5

model for detecting apple leaf diseases while keeping the number of

model parameters relatively constant. The SE module allows the

model to better focus on feature channels that are effective for apple

leaf disease identification. Compared to YOLOV5, the addition of

the SE model resulted in an improvement of 3.39%, 5.73%, -4.75%,

-5.3%, and -5.1% in mAP@0.5, mAP@[0.5:0.95], precision, recall,

and F1 score, respectively. The ECA module calculates the

correlation of the feature channels so that the model focuses

more on the desired feature channels. Compared to YOLOV5, the

addition of the ECA model resulted in an improvement of 3.69%,

6.88%, 5.65%, -2.12%, and 1.5% in mAP@0.5, mAP@[0.5:0.95],

precision, recall, and F1 score, respectively. Unlike the SE and ECA

modules, The CBAM module extracts features by focusing on the

channel and spatial information of the image. Compared to

YOLOV5, the addition of the CBAM model resulted in an

improvement of 7.08%, 12.03%, -7.43%, -7.72%, and -7.65% in

mAP@0.5, mAP@[0.5:0.95], precision, recall, and F1 score,

respectively. The transformer module in the C3TR module

captures global contextual information, which improved the

mAP@0.5, mAP@[0.5:0.95], precision, recall, and F1 score of

the C3TR module by 6.34%, 15.2%, 8.9%, 2.7%, and 5.7% over

the YOLOV5 model, respectively. Adding modules can improve the

accuracy of the model in detecting target objects, but it also

increases the number of parameters of the model, which is not

conducive to the lightweight deployment of the model. By observing
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the change in the number of model parameters when each module

acts alone. It was found that the addition of the SE module severely

increased the number of model parameters, while the addition of

the other four modules had little effect on the number of

model parameters.

3.1.2 Model performance optimization by adding
multiple modules

As can be seen from Table 5, adding the modules individually

all improved the detection accuracy of the YOLOV5 model. In

order to further improve the feature extraction ability of the model,

the attention mechanism was combined with the C3TR module.

The combination experiments of CBAM+C3TR, ECA+C3TR, and

SE+C3TR were conducted respectively. Table 3 shows that

combining two modules improved the detection accuracy of the

YOLOV5 model better than adding a single module. Compared

with the addition of SE and C3TR alone, the mAP@0.5, mAP@

[0.5:0.95], precision, recall, and F1 score of the YOLOV5-SE -C3TR

were improved by 3.7% and 0.8%, 10.8% and 1.7%, 6.2% and -7.1%,

and 8.6% and 0.1%, 7.4% and -3.5%, respectively. Compared with

the addition of the ECA module and C3TR module alone, the

mAP@0.5, mAP@[0.5:0.95], precision, recall, and F1 score of

YOLOV5-ECA -C3TR were improved by 3.0% and 0.4%, 7.8%,

and 0.0%, -1.1% and -4.1%, 5.4% and 0.4%, and 2.2% and -1.8%,

respectively. Compared with the addition of the CBAMmodule and

C3TR module alone, the mAP@0.5, mAP@[0.5:0.95], precision,

recall, and F1 score of the YOLOV5-CBAM-C3TR were improved

by 1.1% and 1.8%, 4.6% and 1.7%, 13.8% and -3.2%, 13.9%, and
TABLE 4 Comparison of model performance improvement by adding a single module.

Methods
mAP@0.5

(%)
mAP@ [0.5:0.95] (%) Precision

(%)
Recall
(%)

F1 Score Parameters

YOLOV5 67.8 34.9 67.3 66.1 66.7 7018216

YOLOV5-SE 70.1 36.9 64.1 62.6 63.3 7542504

YOLOV5-ECA 70.3 37.3 71.1 64.7 67.7 7018217

YOLOV5-CBAM 72.6 39.1 62.3 61.0 61.6 7051627

YOLOV5-C3TR 72.1 40.2 73.3 67.9 70.5 7060072
The performance of the indicators is best shown in bold.
TABLE 3 Comparison with different target detection models.

Methods
mAP@0.5

(%)
mAP@ [0.5:0.95]

(%)
Precision

(%)
Recall
(%)

SSD 66.2 46.9 96.8 36.9

YOLOV3 65.1 33.3 64.3 63.4

YOLOV4 52.4 18.6 87.9 25.1

YOLOV5 67.8 34.9 67.3 66.1

MGA-YOLOV5 69.0 34.2 74.4 64.3

BTC-YOLOV5 72.0 39.8 70.7 67.9

YOLOV5-CBAM-C3TR 73.4 40.9 70.9 69.5
The performance of the indicators is best shown in bold.
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2.4%, and 14% and -0.4%, respectively. Overall, combining SE,

ECA, and CBAM with C3TR all further improved mAP@0.5,

mAP@[0.5:0.95], and recall with little parameter change

compared to adding each module individually. Although the

addition of multiple modules resulted in a decrease in accuracy

and F1 score metrics compared to the addition of the C3TR module

alone, YOLOV5-CBAM-C3TR had the smallest decrease and the

largest increase, achieving almost positive growth and being the best

performing model. The added SE or ECA modules need to capture

channel information, while the transformer module in C3TR needs

to capture context information. The reason for the accuracy

degradation may be the mutual interference between multiple

modules leading to inadequate feature extraction. On the other

hand, the CBAM module, which focuses on both channel and

spatial dimension information, interoperates with the C3TR

module to better ensure that sufficient feature information is

provided to the model.
3.2 Model training

Seven target detection models including YOLOV3, YOLOV4,

YOLOV5, SSD, MGA-YOLOV5, BTC-YOLOV5, and optimized

YOLOV5-CBAM-C3TR were established based on labeled apple

leaf disease images. Figure 4A shows the graph of training loss

values for each model with increasing epoch values in apple leaf

disease detection. In general, the loss functions of each model

decreased with increasing epochs and eventually stabilized. The

SSD model had the fastest convergence of the training loss curve,

but also had the largest loss value after stabilization, which reached

full convergence after 10 epochs. The loss functions of the other six

models gradually stabilized after 60 epochs of training. Among

them, MGA-YOLOV5 had the second-highest training loss value

after the training loss function gradually stabilized. The loss

functions of YOLOV5-CBAM-C3TR, BTC-YOLOV5, YOLOV3,

and YOLOV4 were very similar, with slightly higher stabilized

loss values than those of YOLOV5. YOLOV5 has the lowest training

loss value of all the models.

Figure 4B shows a plot of the validation loss function with

increasing epoch values. As with the training loss function curve,

the SSD model still had the fastest convergence rate and stabilized

after 10 epochs, while the validation loss value was the highest. The

other six target detection models all stabilized around the 30th

epoch. Specifically, YOLOV5 and MGA-YOLOV5 had the similar

loss function curves after stabilization, with the second highest loss

function value. The YOLOV3, YOLOV4, BTC-YOLOV5, and
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YOLOV5-CBAM-C3TR had also the similar loss curves after

stabilization, with slightly higher stabilized loss values than that

of YOLOV5, which had the lowest training loss value among

all models.
3.3 Comparative analysis with different
detection models

The objective of this study is to propose a target detection model

capable of accurately identifying and locating apple leaf diseases,

which can assist the disease precision spraying device for automatic

spraying. To verify the effectiveness of YOLOV5-CBAM-C3TR in

detecting apple leaf diseases, it was compared with SSD, YOLOV3,

YOLOV4, YOLOV5, MGA-YOLOV5 and BTC-YOLOV5 models

on the same dataset. The results in Table 3 showed that the mAP

0.5and mAP@[0.5:0.95] of YOLOV4 were the lowest with 52.4%

and 18.6% respectively. While the mAP 0.5and mAP@[0.5:0.95] of

YOLOV5-CBAM-C3TR were the highest with 73.4% and 40.9%

respectively. The precision of SSD was up to 96.8% and the recall

was only 36.9%, indicating that SSD was accurate in detecting apple

leaf diseases, but there were omissions in disease identification.

Similarly, YOLOV4 had large variations in precision and recall,

resulting in a poor mAP 0.5 In contrast, YOLOV3, YOLOV5,

MGA-YOLOV5, and BTC-YOLOV5 can balance the precision

and recall metrics better, with mAP 0.5of 65.1%, 67.8%, 69%, and

72%, respectively. Overall, compared with YOLOV5, the optimized

YOLOV5-CBAM-C3TR showed a significant improvement in

detection precision, with an 8.25% improvement in mAP@0.5

and a 17.2% improvement in mAP@[0.5:0.95]. In addition, the

experimental results also confirms that the optimized YOLOV5-

CBAM-C3TR has a high detection accuracy, which is sufficient for

practical needs.
3.4 Performance of the improved model in
apple leaf disease detection

To further validate the effectiveness of the improved model, the

original YOLOV5 model and the optimized YOLOV5-CBAM-

C3TR model were selected for the comparison of detection results

in real environments. A total of 208 sample images with natural

environment backgrounds were selected in the test set to examine

the detection effect of YOLOV5-CBAM-C3TR in real scenes.

Table 6 shows that YOLOV5-CBAM-C3TR improves the correct

recognition rate of the three apple leaf diseases compared to
TABLE 5 Comparison of model performance improvement by adding combinations of models.

Methods
mAP@0.5

(%)
mAP@ [0.5:0.95] (%)

Precision (%) Recall (%)
F1 Score Parameters

YOLOV5-SE -C3TR 72.7 40.9 68.1 68.0 68.0 7092840

YOLOV5-ECA -C3TR 72.4 40.2 70.3 68.2 69.2 7060073

YOLOV5-CBAM-C3TR 73.4 40.9 70.9 69.5 70.2 7093483
The performance of the indicators is best shown in bold.
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YOLOV5, with a significant increase of 18.9% in the average

accuracy. Figure 5 shows a comparison of typical detection results

for the three apple leaf diseases. The results show that the YOLOV5

algorithm has errors in detecting the three apple leaf diseases in a

natural environment with a complex background, and the main

reason for the unsatisfactory detection results is its inaccurate
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feature extraction of the diseases. As can be seen in Figure 6,

YOLOV5-CBAM-C3TR is able to extract the features of various

diseases better, but there is still a risk of misjudging Alternaria

blotch and Grey spot, which are two similar diseases. The possible

reason for this is that these two diseases are very similar after data

enhancement in the simulated natural environment. In this study,
B

A

FIGURE 4

(A) Curve of training loss values with epoch values, (B) Curve of validation loss values with epoch values. Due to the different scales of change in loss
function values for SSD and other models, a double Y-axis is used to represent the change in loss function for each model. The left axis represents
the scale of variation of the loss function values for the YOLOV3, YOLOV4, YOLOV5, BTC-YOLOV5, MGA-YOLOV5, and YOLOV5-CBAM-C3TR
models, and the right axis represents the scale of variation of the loss function values for the SSD model. the loss function curves for the SSD model
are shown in bold red.
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the CBAM module and the C3TR module were added to YOLOV5,

and the two modules work together to enable YOLOV5 to better

extract disease features.
4 Discussion

In this study, attention mechanism and module with the

transformer encoder were added to optimize YOLOV5, and

finally proposed YOLOV5-CBAM-C3TR to accurately classify
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three common diseases of apple leaves. Comparing with the

target detection algorithms such as SSD, YOLOv3, YOLOv4, and

YOLOv5, YOLOV5-CBAM-C3TR had the highest mAP@0.5 and

mAP@[0.5:0.95], which reached 73.4% and 40.9%, respectively. An

average accuracy of 92.4% was achieved on a randomly selected

sample of 208 images containing the three apple leaf diseases.

Empirical results showed that adding CBAM, SE, ECA, and C3TR

individually or in combination can significantly improve the

detection accuracy of YOLOV5. In contrast, combining each

attention mechanism with the C3TR module has a higher
B

C

A

FIGURE 5

(A) Original image, (B) YOLOV5 detection results, (C) YOLOV5-CBAM-C3TR detection results. Different colored bounding boxes are used in the
images to distinguish the types of apple leaf diseases, with Alternaria blotch in red, Grey spot in pink and Rust in orange. The names of apple leaf
diseases from the first to the third column in the image are: Alternaria blotch, Grey spot, and Rust.
TABLE 6 Test results of improved models in detecting apple leaf diseases.

Model
Number of
Alternaria

Blotch Samples

Number of
Correctly
Detected

Number of
Grey

Spot Samples

Number of
Correctly
Detected

Number of
Rust

Samples

Number of
Correctly
Detected

Average
Accuracy

(%)

YOLOV5 87 52 67 54 54 50 77.7

YOLOV5-
CBAM-
C3TR

87 81 67 60 54 51 92.4
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detection accuracy than adding each module separately. Among

them, the combination of CBAM and C3TR provided the most

significant performance enhancement for YOLOv5. Different from

SE or ECA modules, CBAM module pays attention to both channel

information and spatial information, and can better cooperate with

C3TR for global information extraction. Certainly, Attention

mechanisms have been shown to be effective in many tasks (Xue

et al., 2021; Wang et al., 2022; Zhao et al., 2022). However, the task

requirements in different scenarios should be carefully considered

when choosing the appropriate attention module, which suggests

that the selection of modules requires extensive experimentation.

Although adding modules can improve the detection accuracy of

target objects, it also increases the number of parameters of the

model, which is not conducive to the actual deployment of the

model. The addition of CBAM, ECA, SE, and C3TR in this study

increased the number of parameters in YOLOV5. Future research

will consider methods to reduce the number of parameters while

maintaining model detection accuracy, such as pruning (Liang et al.,

2022) and distillation, in order to achieve a good balance between

model detection accuracy and the number of parameters.

Timely detection and control of apple leaf diseases is extremely

important. Since different apple leaf diseases may have similar

characteristics, even the human eye cannot distinguish them

accurately after exposure and other treatments that simulate the

natural environment. The experimental data in Table 6 showed that

YOLOV5-CBAM-C3TR improved the two types of diseases

including Alternaria blotch and Grey spot, by 33.33% and 8.95%,

respectively. The average accuracy achieved 92.1% for the three

types of diseases. The experimental data affirmed the ability of the

optimized model to accurately identify similar diseases. However,

factors such as the number of disease types in the data set, the
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complexity of the environment of the objects to be detected in the

image, and the difference in categories of the objects to be detected

will affect the accuracy of the network model detection to some

extent. Therefore, the selection of detection accuracy to evaluate the

model performance should be combined with specific application

scenarios. For example, Khan et al. (2022) developed an automated

apple leaf disease detection system based on deep learning. The

experimental results show that on a dataset containing more than

9000 images, Faster-RCNN can reach 42.01% mAP at 6FPS,

showing a good detection accuracy for 9 common apple leaf

diseases. The model is tested on data set images that are less

disturbed by the real background environment, and its robustness

is low in the real environment. The experimental results also

indicate that the model is not effective in detecting diseased

leaves. When using a target detection model to detect apple leaf

diseases, Zhang et al. (2023) found that the MFaster R-CNN model

could achieve 97.23% mAP for eight kinds of corn leaf diseases, but

only 80.69% mAP on a self-built data set of apple leaf diseases. The

above examples show that the accuracy evaluation of the model

should be combined with the specific application scenarios of the

model. In different tasks and different data sets, the model will show

different detection performance. Only 3 kinds of apple leaf diseases

were considered in this experiment, while there are more than 200

kinds of apple leaf diseases. Therefore, although YOLOV5-CBAM-

C3TR can accurately identify apple leaf diseases similar to those in

the classification data set, it may not be universally applicable to

other similar diseases. It is necessary to expand the data set of apple

leaf disease and collect more comprehensive types of leaf disease for

research. In addition, the model proposed in this study needs to be

compared with more advanced object detection algorithms such as

YOLOV7 and YOLOV8. These questions will be further explored in
FIGURE 6

Confusion matrix for the detection of three apple leaf diseases.
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the future to improve the accuracy of the model’s detection of

different apple leaf diseases so that each class of similar diseases can

be accurately classified.
5 Conclusions

YOLOV5-CBAM-C3TR algorithm was proposed to improve

the accuracy of detection of three apple leaf diseases including

Alternaria blotch, Grey spot, and Rust. The model was obtained by

optimizing YOLOV5 with the addition of an attention mechanism

and a module with a transformer encoder. Compared with different

target detection models, the optimized YOLOV5-CBAM-C3TR

algorithm achieved the highest detection accuracy than other

models, with mAP@0.5, mAP@[0.5:0.95], precision, recall of

73.4%, 40.9%, 70.9%, 69.5%, respectively. In randomly selected

apple leaf disease samples, the average accuracy based on the

YOLOV5-CBAM-C3TR model can reach 92.4%, which was

18.9% higher than that of the original YOLOV5. Moreover, the

YOLOV5-CBAM-C3TR model also showed a strong ability to

identify similar diseases, and could accurately identify Alternaria

blotch and grey spot, which are almost indistinguishable from the

naked eye. In the future, YOLOV5-CBAM-C3TR can also be

extended to detect similar diseases in other crops.
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