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Weed control is a global issue of great concern, and smart weeding

robots equipped with advanced vision algorithms can perform efficient

and precise weed control. Furthermore, the application of smart weeding

robots has great potential for building environmentally friendly

agriculture and saving human and material resources. However, most

networks used in intelligent weeding robots tend to solely prioritize

enhancing segmentation accuracy, disregarding the hardware

constraints of embedded devices. Moreover, generalized lightweight

networks are unsuitable for crop and weed segmentation tasks.

Therefore, we propose an Attention-aided lightweight network for

crop and weed semantic segmentation. The proposed network has a

parameter count of 0.11M, Floating-point Operations count of 0.24G.

Our network is based on an encoder and decoder structure,

incorporating attention module to ensures both fast inference speed

and accurate segmentation while utilizing fewer hardware resources.

The dual attention block is employed to explore the potential

relationships within the dataset, providing powerful regularization and

enhancing the generalization ability of the attention mechanism, it also

facilitates information integration between channels. To enhance the

local and global semantic information acquisition and interaction, we

utilize the refinement dilated conv block instead of 2D convolution

within the deep network. This substitution effectively reduces the

number and complexity of network parameters and improves the

computation rate. To preserve spatial information, we introduce the

spatial connectivity attention block. This block not only acquires more

precise spatial information but also utilizes shared weight convolution to

handle multi-stage feature maps, thereby further reducing network

complexity. The segmentation performance of the proposed network is

evaluated on three publicly available datasets: the BoniRob dataset, the

Rice Seeding dataset, and the WeedMap dataset. Additionally, we

measure the inference time and Frame Per Second on the NVIDIA
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Jetson Xavier NX embedded system, the results are 18.14 msec and 55.1

FPS. Experimental results demonstrate that our network maintains better

inference speed on resource-constrained embedded systems and has

competitive segmentation performance.
KEYWORDS

convolutional neural network, attention mechanism, lightweight semantic
segmentation, crop and weed segmentation, precision farming
1 Introduction

Weeds pose a significant challenge to global agriculture due to

their short growth cycle and rapid reproduction rate. They fiercely

compete with crops for resources such as water, sunlight, and soil

nutrients, ultimately leading to reduced crop yield and

compromised quality (Hasan et al., 2021). Early detection of

weeds in the field is highly critical for taking appropriate actions.

Conventional weed control employs two primary methods. The first

is mechanized weed control, which is typically employed in weed-

concentrated areas and allows for the selection of appropriate tools

to remove them. Nevertheless, mechanical weeding becomes cost-

prohibitive for extensive planting fields. The second method is

chemical control, which relies on the application of herbicides to

target and eliminate weeds while preserving the crop (Rakhmatulin

et al., 2021). Chemical weed control is the predominant approach

due to its advantages in saving time and labor, convenience, and

high efficiency. Nonetheless, uneven herbicide spraying can lead to

insufficient weed control in areas with concentrated weed growth,

resulting in wasted herbicides, excessive chemical residues, and even

crop damage or loss (Kudsk and Streibig, 2003).

To overcome the limitations of chemical weed control methods,

(Slaughter et al., 2008) proposed an automated weed detection

system employing smart agricultural technology. The primary

objective of this system is to attain precise herbicide application

specifically on weeds, ultimately reducing expenses and minimizing

chemical usage. The persistent challenge of distinguishing between

crops and weeds, coupled with the complexities of background

interference, has been a longstanding issue. However, deep learning

has revolutionized automation in precision agriculture by

significantly enhancing target recognition accuracy and anti-

jamming capabilities (Albanese et al., 2021). To empower

intelligent weeding robots capable of accurately identifying the

target weeds and executing effective autonomous weed control,

achieving precise segmentation of crops and weeds becomes

absolutely crucial (Jiang and Li, 2020; Yang and Xu, 2021).

The Deep Neural Networks (DNNs) have been widely employed

in semantic segmentation in recent years (Krizhevsky et al., 2012).

(You et al., 2020) have augmented DNN with the attention

mechanism, which has shown promising results in crop and weed
02
segmentation tasks. Nevertheless, due to the significant number of

network parameters and high complexity, DNNs equipped in

embedded systems may result in poor inference time and low

Frame Per Second (FPS). This drawback renders them ill-suited

for deployment in weeding robots characterized by constrained

hardware resources. Hence, it is imperative to develop lightweight

networks specifically designed for the semantic segmentation of

crops and weeds (Rai et al., 2023). The Convolutional Neural

Network (CNN) is an effective method for designing lightweight

semantic segmentation networks with a wide range of applications

(Ji et al., 2020; Wang et al., 2021). Numerous CNN networks

specifically designed for autonomous driving (Romera et al., 2017;

Wu et al., 2020), medical images (Ronneberger et al., 2015), or

general-purpose segmentation tasks (Long et al., 2015; Zhao et al.,

2017) have found application in the domain of crop and weed

segmentation as well. (Wu et al., 2021) examined the crop and weed

detection and segmentation, and provided the results of comparison

with previously proposed general-purpose CNN models. The study

confirmed that CNNs exhibit high performance in accurate crop and

weed recognition and segmentation.

However, most current CNN-based semantic segmentation

networks for crop and weed focus solely on segmentation

accuracy, disregarding practical application. This limitation

hinders their effective implementation on embedded systems.

Although the CNN-based general-purpose lightweight network

has indeed shown enhanced inference time and FPS on

embedded systems, its segmentation accuracy falls short of

meeting practical requirements for crop and weed segmentation.

Considering the disadvantages in previous studies, we proposed an

attention-assisted lightweight network for semantically segmenting

crops and weeds, and achieves a robust balance between network

complexity and segmentation performance. The main contributions

of this study are summarized as follows.
1. The proposed method not only boasts a low parameter count

andminimal complexity but also achieves favourable inference

time and FPS when implemented on embedded systems. This

makes it particularly well-suited for weeding robots that have

limited hardware resources. Furthermore, it holds a

competitive edge in terms of segmentation performance.
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2. The dual attention block (DA) is proposed for datasets with

limited samples and a high degree of similarity, specifically

designed for crop and weed datasets. The DA allows for the

exploration of potential relationships across the entire

dataset, offering robust regularization to overcome the

issue of overfitting during training. Additionally, it

enhances the generalization ability of the attention

mechanism by integrating information between channels.

3. The refinement dilated conv block (RDC) is proposed to

address the challenges associated with plant (including crop

and weed) and background segmentation, as well as the

difficulty in classifying the semantic information of weed

and crop. Positioned as a replacement for 2D convolution

within the high-level encoder, the RDC module promotes

the fusion of global and local information, strengthens the

integration of multiscale data, and concurrently trims down

the number of network parameters.

4. The spatial connectivity attention block (SCA) is presented

to address the challenge posed by the small size of weed

targets and the potential loss of spatial information

resulting from the convolutional layers’ superimposition.

The SCA not only reduces the loss of spatial information

but also enhances the accuracy of spatial information.

Additionally, it employs weight sharing instead of the

complex connection between the encoder and decoder,

contributing to a further reduction in network complexity.
The remaining parts of this paper are organized as follows.

Section 2 illustrates the related works. Section 3 details the proposed

method. Section 4 presents the performance comparison and

analysis of the proposed and state-of-the-art (SOTA) methods.

Section 5 discusses the experimental results of different algorithms

comprehensively. The conclusions are drawn in Section 6.
2 Related works

In recent years, CNNs have risen to prominence as powerful

deep learning algorithms for image visualization and pattern

recognition, necessitating minimal human intervention

(Pouyanfar et al., 2018). This extensive capacity has facilitated the

adoption of CNNs across various domains of computer vision.

Particularly in agriculture, CNNs have been extensively utilized to

address diverse challenges and have become the primary approach

in computer-aided solutions for agricultural production issues

(Kamilaris and Prenafeta-Boldu, 2018).

Weed control is a significant challenge in agricultural

production. Weeds have a significant and profound impact on

crop growth. The weed-related challenges through computer-aided

solutions mainly include (1) image classification for distinguishing

crops from weeds, (2) target detection to identify crops and weeds,

and (3) pixel-by-pixel semantic segmentation for precise

delineation of crops and weeds. (Pandey and Jain, 2022) proposed

a novel conjunctive dense CNN architecture for image classification

of multiple crop and weed classes from RGB images captured by
tiers in Plant Science 03
UAV (unmanned aerial vehicle). However, this image classification

network is insufficient for solving weed problems as it cannot

simultaneously identify multiple classes. Regarding target

detection of crops and weeds, (Wang et al., 2022) constructed a

YOLOCBAM model aimed at enhancing its predictive capabilities

by effectively eliminating irrelevant features through the use of a

convolutional block attention module (CBAM) (Woo et al., 2018).

(Chen et al., 2022) have also incorporated spatial and channel

attention in YOLOv4 to increase the recognition accuracy of weeds.

Nevertheless, the CNN-based target detection network fails to

accurately determine crop and weed boundaries due to its

rectangular boundary detector. In weed-rich areas, occlusions and

overlaps between crops and weeds highly affect target detection

accuracy, making it unsuitable for weed problemsolving. Regarding

pixel-by-pixel semantic segmentation of crops and weeds, (You

et al., 2020) have made improvements to CNN-based models by

employing techniques such as extended convolution (Zhen et al.,

2019) and multiscale approaches (Chen et al., 2017b). These efforts

have led to consistent improvements in segmentation accuracy.

Likewise, adding specific modules to mature CNN networks

significantly enhances crop and weed semantic segmentation

performance. Comparing image classification and target detection

with pixel-by-pixel semantic segmentation, the latter method allows

for precise target detection and accurate boundary delineation. This

capability is crucial for precision herbicide spraying operations of

intelligent weeding robots. Consequently, we choose to build a

CNN-based crop and weed semantic segmentation network for

computer-aided solutions for weed problem-solving.

CNN-based crop and weed semantic segmentation networks

can be classified into two categories: single-CNN-based methods

and multi-CNN-based methods. Within the multi-CNN-based

methods, (Khan et al., 2020) introduced a cascaded encoder-

decoder architecture that divides the training into multi-stage

multitasks. Although this approach enhances the segmentation

accuracy, it fails to meet practical requirements. To address these

limitations, (Kim and Park, 2022) proposed a single-stage

processing method where target segmentation is performed

simultaneously with crop and weed segmentation, and (Moazzam

et al., 2023) optimizes it to have fewer parameters. This approach

facilitates practical. Among the single-CNN-based methods, Enet

(Paszke et al., 2016), DeepLab (Chen et al., 2014) and its variant

networks (Chen et al., 2018), as well as the common symmetric

encoder-decoder networks UNet (Ronneberger et al., 2015) and

SEGNet (Badrinarayanan et al., 2017), are widely utilized for crop

and weed semantic segmentation tasks. However, these networks

are not specifically designed for crop and weed semantic

segmentation tasks but rather belong to general-purpose

networks. In recent years, (Janneh et al., 2023) have developed

specialized networks that significantly improve the segmentation

performance compared to general-purpose networks for crop and

weed semantic segmentation tasks. To be deployed in intelligent

weeding robots, these networks must not only demonstrate

excellent segmentation performance but also possess a low

parameter count and minimal complexity. Additionally, they

should be compatible with embedded systems, ensuring improved

inference time and FPS.
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Since the number of parameters and inference time multiple

increases with multi-CNNs, the single-CNNmodel is utilized in this

paper. The dominant network structure among current single-CNN

methods is based on the encoder-decoder model. The encoder

extracts semantic information about the crops and weeds at the

expense of spatial information, while the decoder up-samples the

features to regain the lost spatial information. Based on

the enhancement of the symmetric encoder-decoder structure,

numerous network architectures have been proposed. (Valanarasu

and Patel, 2022) combined a multi layer perceptron (MLP) with the

UNet, yielding a significant reduction in network parameters and

complexity. This innovative approach successfully preserves

segmentation performance, while concurrently optimizing

inference time and FPS. Furthermore, incorporating an attention-

based mechanism into the encoder and decoder structure can

substantially enhance performance and stability. (Guo et al.,

2022) added External Attention to the network, which improves

the network’s ability to extract information from the entire dataset.

(Cao et al., 2019; Wang et al., 2020) introduced Spatial Attention

and Channel Attention, leading to a significant enhancement of the

network’s ability to extract relevant information while suppressing

irrelevant information. In this paper, we optimize these methods by

tailoring them to the specific requirements of crop and weed

segmentation tasks, and then integrate them into a foundational

six-stage lightweight U-shaped structure. As a result, the network

achieves a reduction in parameters and complexity, enhances

inference time, and attains a higher FPS when operating on
Frontiers in Plant Science 04
embedded systems, all while maintaining a competitive

segmentation performance.
3 The proposed method

3.1 The framework of the
proposed method

In this paper, we propose a lightweight baseline comprising a

symmetric encoder and decoder structure with a six-stage U-shaped

structure. At each stage, the channels are assigned as

{8,16,24,32,48,64}, and skip connections are established between

them through element-wise addition. Figure 1 displays the

framework of the proposed network.

As shown in Figure 1, the encoder part consists of six stages. In

the stage1, feature extraction is performed using the Conv2d block

(2D convolution (kernel = 3, stride = 1) + batch normalization +

GELU activation function). In subsequent stages (2 to 6), we

introduce the dual attention block and max pooling (stride = 2) for

downsampling, which enhances the regularization and attention

mechanisms, while also incorporating channel information. In

stages three to six, we utilize the refinement dilated conv block

instead of the Conv2d block for further feature extraction. This allows

for the integration of both local and global information while

simultaneously reducing the number of network parameters.

Moving on to the decoder part, we employ the Conv2d block and
FIGURE 1

The framework of the proposed network.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1320448
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2023.1320448
bilinear interpolation to perform up-sampling and recover the feature

information. Additionally, we introduce the spatial connectivity

attention block during the skip connection between the encoder

and decoder. We store the feature information of the encoder outputs

in a list and then utilize dilated convolution with shared weights to

process the multi-scale features. This approach effectively reduces the

loss of spatial information, resulting in more accurate spatial

information retrieval and decreased network complexity. Finally,

after the Conv2d block [2D convolution (kernel = 3, stride = 1)],

the number of output channels is adjusted to obtain the

segmentation results. By integrating the aforementioned three

blocks with a lightweight baseline, our study enhances

segmentation performance while minimizing the additional burden

on the complexity of network parameters. In the following sections,

we provide a detailed description of these modules.
3.2 Dual attention block

Self attention (SA) is one of the prominent attention

mechanisms in computer vision tasks (Dosovitskiy et al., 2020). It

can effectively capture long-distance dependencies by computing

the correlation between all positions within a sample. (Jiang et al.,

2022; Reedha et al., 2022; Zhang et al., 2023a) have added SA to the

network to apply it to crop and weed detection and segmentation

tasks. However, SA possesses high computational complexity and

does not address the inter-sample connection, which contradicts the

original objective of designing a lightweight network in this paper.

To address these limitations, we employ external attention (EA),

which exhibits lower computational complexity. Unlike SA, EA

utilizes two separate external storage memory units to compute the

attention of input samples. They are defined as (Equation 1, 2).

X = XIn ⊗MT
k , (1)

XOut = Softmax(X)⊗MV , (2)

where XIn ∈ RN�C , C denotes the number of channel

dimensions, N (N = H × W) represents the total number of pixels

in the feature map. MK, MV ∈ R4C�C denote two separate external
Frontiers in Plant Science 05
storage memory units, respectively. X is the feature map derived by

learning the prior knowledge of the input samples and updating the

features by the similarity of X with MK and MV. ⊗ denotes

matrix multiplication.

The memory units finally transform the input into a higher-

dimensional space, enabling it to comprehensively depict the overall

feature information of the dataset. To effectively capture the

inherent relationships within the dataset, we proposed a novel

dual attention block (DA) based on EA is illustrated in Figure 2.

The fast 1D convolution (kernel = 3, stride = 1) is employed to

enable all channels to share the same set of learning parameters.

The feature maps following the inclusion of local cross-channel

interactions are incorporated into the attention model as residual

connections of the EA mechanism. Then, a DA is formed. This

approach effectively captures the inherent relationships within the

entire dataset, and provides robust regularization. Moreover, DA

enhances the generalization capability of the attention mechanism,

and facilitates information interaction between the channels,

leading to improved integration of information. The specific

implementation process of DA is illustrated as follows.

Given an input XIn ∈ RC�H�W , there are two branches in the

DA. In the first branch, the output XOut1 ∈ RC�H�W is computed

by (Equation 3).

 XOut1 = C2D(R(MV ⊗ Softmax(X1))), (3)

where C2D denotes the 2D convolution (kernel = 1, stride = 1) +

group normalization ( groups = 4). R denotes the Reshape

operation. MV ∈ R4C�C denotes the memory cell. Softmax

denotes the softmax activation function. ⊗ denotes the matrix

multiplication. X1 ∈ RN�4C is computed by as (Equation 4).

X1 = R(C2D(XIn))⊗MT
K , (4)

where MT
K ∈ R4C�Cdenotes the memory cell. In the second

branch, the output XOut2 ∈ RC�4C is calculated by (Equation 5).

XOut2 = R(s (X2))⊙XIn, (5)

where R denotes the Reshape operation. s denotes Sigmoid

activation function. ⊙ denotes the element-wise product. X2 ∈
RC�1 is computed by (Equation 6).
FIGURE 2

The architecture of the proposed DA.
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X2 = C1D(R(G(XIn))), (6)

where C1D denotes the s tandard 1D convolut ion

(kernel = 3, stride = 1). G represents the global average pooling.

The final output XOut ∈ RC�H�W is computed by (Equation 7).

XOut = GELU(XOut1 ⊕ XOut2 ⊕ XIn), (7)

where ⊕ denotes the element-wise addition. GELU denotes the

GELU activation function (Hendrycks and Gimpel, 2016).
3.3 Refinement dilated conv block

Both local and global information are crucial for improving

segmentation performance. On the one hand, global information

assists the network in comprehending the overall plant structure

and background, thus enabling more precise localization of the

segmentation target region. On the other hand, local information

helps capture the edge details of the crop and weeds, enhancing

segmentation accuracy. One common approach to obtain global

information is to increase the receptive field using 2D convolution

with large convolution kernels. However, the simultaneous

acquisition of both local and global information necessitates the

concurrent utilization of 2D convolution with convolution kernels

of different sizes. This approach substantially inflates the number of

parameters. To address this issue, we propose the refinement dilated

conv block (RDC) that leverages dilated convolutions with different

dilation rates in parallel. Dilated convolution enables enlargement

of the receptive field without increasing the number of parameters

(Chen et al., 2017a), while maintaining the size of the output feature

mapping (Yu and Koltun, 2015). Figure 3 illustrates the architecture

of the proposed RDC.

The RDC includes four types of dilation convolutions with

distinct dilation rates. The dilation convolutions with dilation rates

of 1 and 2 extract local information, whereas the dilation

convolutions with dilation rates of 5 and 8 extract global

information. We can obtain precise output results by aggregating

the multiscale information. Additionally, we introduce a channel

dimension splitting operation that divides the input into four parts,

each corresponding to a dilation convolution with a different

dilation rate. This allows us to cover the segmentation target from

the smallest to the largest region, further improving the
Frontiers in Plant Science 06
computation rate of the convolution. The specific implementation

process of RDC is illustrated as follows.

Given an input XIn ∈ RC�H�W , it is firstly divided into four

parts xi ∈ RC
4�H�W(i = 1, 2, 3, 4) along the channel dimension, as

shown in (Equation 8).

(x1, x2, x3, x4) = S(XIn), (8)

where Sdenotes the Split operation. Then the dilation

convolution ( kernel = 3, stride = 1) with different dilatation rates

is performed to obtain the four parts x
0

i ∈ RC
4�H�W(i = 1, 2, 3, 4), as

shown in (Equation 9).

(x
0

1, x
0

2, x
0

3, x
0

4) = DCi(x1, x2, x3, x4)(i = 1, 2, 5, 8) (9)

where DCi denotes dilation convolution (kernel = 3, stride = 1)

with different dilation rates and i is the dilation rate. The final

output XOut ∈ RC�H�W is calculated by (Equation 10).

XOut = C2D(Con(x
0

1, x
0

2, x
0

3, x
0

4)), (10)

where C2D denotes the 2D convolution ( kernel = 1, stride = 1)

+ group normalization (groups = 4) + GELU activation function.

Condenotes the Concat operation.
3.4 Spatial connectivity attention block

Spatial attention plays a crucial role in suppressing irrelevant

information and acquiring precise spatial information. The CNN

structure often leads to a loss of spatial information due to the

combining effects of convolutional layers. To tackle this issue,

(Woo et al., 2018) have introduced a spatial attention

mechanism to the network, enabling it to identify the most

critical regions for further processing. This approach helps

mitigate the loss of spatial information and improve the

accuracy of spatial information retrieval.

In the specific context of crop and weed semantic segmentation,

the weed information is relatively scarce, resulting in an increased

risk of losing spatial information. Therefore, incorporating a spatial

attention mechanism into the network becomes imperative. In this

paper, we propose the spatial connectivity attention block (SCA)

that facilitates multi-stage parallel connections to generate spatial

attention feature maps.
FIGURE 3

The architecture of the proposed RDC.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1320448
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2023.1320448
Figure 4 gives the architecture of the proposed SCA, and it is an

example of six-stage encoder-decoder body structure. Stages 2, 3, 4,

and 5, which are shown omitted in Figure 4, are computed using the

same method as stages 1 and 6. The outputs from the encoders at

each stage are stored in ListI and subsequently utilized to calculate

average pooling and maximum pooling operations based on the

channel dimensions. These results are then concatenated separately,

as illustrated in (Equations 11, 12).

A = ListI½X1,X2,X3,X4,X5,X6 �; (11)

Bi = Concat(Maxpool(A);Avgpool(A))(i =  1, 2, 3, 4, 5, 6) (12)

Convolution with shared weights can significantly reduce

network parameters and complexity. In SCA, a dilated

convolution ( kernel = 7, stride = 1) with a dilation rate of 3 and a

Sigmoid activation function are employed to generate the spatial

attention feature maps P for the encoders at each stage. These maps

are then incorporated into the variable ListII according to

(Equations 13, 14).

Pi = Sigmoid(DliatedConv2d(Bi))(i =  1, 2, 3, 4, 5, 6 Þ; (13)

T = ListII  =  ½P1, P2, P3, P4, P5, P6 �; (14)

The SCA holds crucial significance in mitigating spatial

information loss and enhancing the precision of spatial

information acquisition. The utilization of a parallel connection

with weight sharing effectively diminishes the intricate connection

between the encoder and decoder, thereby considerably reducing

both the quantity and complexity of network parameters. The

specific implementation process of SCA is illustrated as follows.

Given output of the encoder of each stage as the inputs XIni ∈
RCi�Hi�Wi(i =  1, 2, 3, 4, 5, 6) at each stage of the SCA, they are firstly

placed in ListI, as shown in (Equation 15).

A = ListI½XIn1,XIn2,XIn3,XIn4,XIn5,XIn6� (15)

then we traverse A to obtain two feature maps xi1, xi2 ∈
R1�Hi�Wi(i =  1, 2, 3, 4, 5, 6) at each stage after max pooling and
Frontiers in Plant Science 07
average pooling in channel dimension. Concat along the channel

d imens ion to obta in Xi−1 ∈ R2�Hi�Wi(i =  1, 2, 3, 4, 5, 6) i s

calculated by (Equation 16).

Xi−1 = Con(MPC(A),APC(A))(i =  1, 2, 3, 4, 5, 6) (16)

where Con denotes the Concat operation.MPC and APC denotes

the channel-based max pooling and average pooling, respectively.

Next, the spatial attention feature map XSAi ∈ R1�Hi�Wi(i =  1, 2, 3

, 4, 5, 6) for each stage is calculated by (Equation 17).

XSAi = s (DC(Xi −1 ))(i =  1, 2, 3, 4, 5, 6), (17)

where s denotes Sigmoid activation function, and DC denotes

the shared dilated convolution (kernel = 7,stride = 1,rate = 3). Then,

all the spatial attention feature maps are placed in ListII, as shown in

(Equation 18).

T = ListII  =  ½XSA1,XSA2,XSA3,XSA4,XSA5,XSA6�, (18)

the final output XOuti ∈ RCi�Hi�Wi(i =  1, 2, 3, 4, 5, 6) i s

computed by (Equation 19).

XOuti =  (T ⊙XIni)⊕ XIni(i =  1, 2, 3, 4, 5, 6) (19)

where ⊙ denotes the element-wise product, ⊕ denotes the

element-wise addition.
4 Experimental results and analysis

4.1 Datasets

We conducted experiments on three publicly available datasets,

including the BoniRob dataset (Chebrolu et al., 2017), the Rice

Seeding dataset (Ma et al., 2019), and the WeedMap dataset (Sa

et al., 2018). The segmentation task for each dataset involves

making pixel-by-pixel predictions of crops and weeds. These

datasets are annotated with three types of labels: black, red, and

green, which correspond to soil or Paddy background, weeds, and

crops, respectively. The limited number of images in the Rice
FIGURE 4

The architecture of the proposed SCA.
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Seeding dataset and WeedMap dataset can easily lead to overfitting

and excessive randomness during testing. To address this issue, we

employed data augmentation techniques to expand the datasets. It

is important to note that if the dataset is expanded first and then

divided into sets, data leakage can occur, compromising the

significance of the test set. Therefore, in this paper, we divided

the dataset into training, validation, and test sets first, and then

applied data augmentation techniques to expand the data within

each set, ensuring the rigor of our experiments.

(a) BoniRob dataset

The BoniRob dataset utilizes an autonomous robot to gather

data from a farm in close proximity to Bonn, Germany, comprising

sugar beets and weeds. The images have a resolution of 1296 × 966

pixels. The Bonirob robot collected multiple image datasets due to

its diverse array of sensors used for data acquisition. Among the

various possibilities, we selected a total of 1050 RGB images and

their corresponding color masks in our experiments. The training

set consists of 900 images, while the validation set and the test set

contain 50 and 100 images, respectively.

(b) Rice Seeding dataset

The Rice Seeding dataset is generated using an IXUS 1000 HS

camera (lens model EF-S 36-360 mm f/3.4-5.6 IS STM) in a paddy.

The dataset consists of images captured in a paddy, featuring both

rice seeding and weeds. The images have a resolution of 912 × 1024

pixels. In total, there are 224 images, which are divided into three

subsets: 170 images for training, 18 images for validation, and 36

images for testing. To enhance the dataset, various data

augmentation techniques are applied to each subset, including

horizontal and vertical flips, vertical and diagonal quadrangle

deformations, elastic distortions, and miscut transformations. As

a result, the training set was expanded to 850 images, the validation

set to 40 images, and the test set to 90 images. In total, the dataset

comprises 980 images.

(c) WeedMap dataset

The WeedMap dataset utilizes a UAV platform equipped with

multispectral sensors to collect data from two farms located in

Switzerland and Germany. The dataset includes imagery of crops

and weeds, with an image resolution of 480 × 360 pixels. The entire

dataset is divided into seven subsets. To generate these subsets, the

original images are processed from upright maps into tiled images

using a sliding window approach. However, it is important to note

that some of the tiled images may contain regions with invalid

pixels after processing. In our experiments, we specifically select the

RGB tiled images that do not have any invalid pixel regions as the

dataset. In total, there are 245 images, which are divided into three

subsets: 200 images for training, 15 images for validation, and 30

images for testing. Since the WeedMap dataset is acquired through

drone-based surveillance of farmland, the images exhibit a certain

degree of regularity. Consequently, we employ flip-based

augmentation techniques (including horizontal flip, vertical flip,

and their combinations) to augment the data in the training,

validation, and test sets. Each flip method is used only once to

ensure that there are no duplicate images in the dataset. As a result,

the training set was expanded to 800 images, the validation set to 60

images, and the test set to 120 images. In total, the dataset comprises

980 images.
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4.2 Implementation details and
network training

To simulate the hardware environment of a mobile device, the

experiments were conducted on a laptop computer. The laptop was

equipped with an AMD Ryzen 9 5900HS CPU, 16GB of RAM, and

an NVIDIA GeForce RTX 3050 Laptop GPU. The proposed

method is implemented using the default initialization scheme for

each module within the PyTorch 2.0 framework. The supervised

learning-based models were trained and evaluated using the

AdamW optimizer (Loshchilov and Hutter, 2017). The learning

rate is reduced by the cosine annealing attenuation method. To

safeguard against the loss of the training model due to power

outages or abnormal exits during long-term training, we propose a

strategy to regularly save the model every 5 epochs. This approach

ensures that even in such unfortunate events, the progress made

during the training process is preserved (Zhang et al., 2023b).

All the input images are standardized and resized to a size of

256 × 256 pixels, color mode is RGB, and further the data is

augmented by applying random Gaussian blur. It’s important to

note that the training process did not involve transfer learning with

pre-training. We set the learning rate, weight decay, batch size and

epochs to 0.001, 0.01, 6 and 150, respectively.

Figure 5 illustrates the loss and accuracy of the proposed

method on both the training and validation sets. The green line

represents the loss on the training set, while the red line and the blue

line correspond to the accuracy on the training and test sets,

respectively. As shown in Figure 5, after 80 epochs, the model

reaches a state of equilibrium in terms of training loss. Additionally,

the training accuracy becomes more similar to the validation

accuracy with reduced fluctuations. Looking at the whole picture

that when the number of training iterations increases, the loss tends

to converge towards sufficiently large scores, while the accuracy

converges towards sufficiently small scores. This suggests that the

neural network model in this study is effectively trained on the

provided training dataset. Similarly, when considering the number

of training iterations on the validation dataset, the accuracy

eventually reaches a suitably low value. This implies that the

model proposed in this study successfully avoids overfitting on

the training dataset.
4.3 Loss function

The selection of the loss function significantly impacts the

learning process, and it is crucial for designing an effective image

segmentation architecture. In this study, the main loss function

chosen for training the network is Dice loss (Milletari et al., 2016),

while Cross-Entropy loss (Loshchilov and Hutter, 2017) is used as

an auxiliary loss function. Generally, CNN-based image

segmentation relies on capturing high-frequency image

distributions. Inadequate representation of high-frequency

components can lead to inaccurate region detection. Thus, Dice

loss is utilized to enhance the focus on diverse shapes of crops and

weeds. Dice loss is commonly utilized in crop and weed

segmentation tasks and computer vision, due to its ability to
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facilitate precise region detection by measuring image similarity.

Furthermore, Cross-Entropy loss is utilized to reinforce the training

of high-frequency edge component detection in order to

complement the overall high-frequency representation. The Dice

loss and the Cross-Entropy loss are defined as (Equations 20, 21),

respectively.

LossDice = 1 −
2 oB�H�W

i=1 pi � gi
� �

oB�H�W
i=1 p2i +oB�H�W

i=1 g2i
; (20)

  LossCrossEntropy = − o
B�H�W

i=1
pilog gi, (21)

where pi denotes the value of the i-th pixel in the true label, and

gi denotes the value of the i-th pixel predicted by the model. B,H,W

denote the batch size, the image height, and the image width,

respectively. B × H × W denotes the total number of pixels.

After analyzing the reduction in loss across several training

sessions, it is unequivocally determined that the most favorable

impact on the learning process is achieved by assigning a weight of

0.8 to the Dice loss and a weight of 0.2 to the Cross-Entropy loss.

Consequently, a novel compound loss function is defined in this

paper, as depicted in (Equation 22).

LossCompound = 0:8LossDice + 0:2LossCrossEntropy : (22)
4.4 Evaluation metrics

To fully measure the performance of our proposed network, we

use five objective metrics in the comparison experiments, including
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Intersection Over Union (IOU) for each class (soil or paddy, crop,

and weed), Mean IOU (MIOU), Precision, Recall, and F1score

(Yang et al., 2023). Before describing the metrics, some notations

will be given first. TP is the number of true positives. FP is the

number of false positives. TN is the number of true negative. FN is

the number of false negatives.

The IOU is a crucial metric used to assess the accuracy of image

segmentation in quantitative terms. We will calculate the IOU value

for each class (soil or paddy, crop, and weed) in the segmentation

results. The IOU is calculated by dividing the intersection of the

predicted set and ground truth by their union, as shown in

(Equation 23).

  IOU =
TP

TP + FP + FN
: (23)

The MIOU is a measure that calculates the average of the IOU

values for three classes: crop, weed, and soil or paddy. It is described

as (Equation 24).

 MIOU =
IOUcrop + IOUweed + IOUsoil ∨ paddy

3
: (24)

The precision is a metric that measures the accuracy of a model’s

positive predictions. It calculates the proportion of correctly

identified positive samples (TP) out of all samples that the model

classified as positive. The Precision is given in (Equation 25).

Precision =
TP

TP + FP
: (25)

The recall represents the probability of correctly identifying

positive samples among the actual positive instances, as shown in

(Equation 26).
FIGURE 5

Loss and accuracy of the proposed method on the training and validation sets.
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Recall =
TP

TP + FN
: (26)

The F1score is calculated as the harmonic mean of precision

and recall, with equal weights assigned to each of them, as shown in

(Equation 27).

  F1score =
2� Precision� Recall
Precision + Recall

: (27)

There is a commutative relationship between the F1score and

the IOU, as shown in (Equation 28). Thus the F1score provides a

direct measure of the network’s segmentation accuracy.

IOU =
F1score

2 − F1score
: (28)
4.5 Testing on the BoniRob dataset

4.5.1 Ablation studies
In this paper, we adopt a baseline using the six-stage U-

structure (UVI) with channel numbers of {8,16,24,32,48,64} and

incorporate an element-wise addition skip connection between the

encoder and decoder. Single-module ablation studies are conducted

on UVI: UVI+RDC, where RDC replaces the 2D convolution in

stages 4-6 of the encoder; UVI+DA, which adds the DA before the

2D convolution in stages 2-6 of the encoder; UVI+SCA,

incorporating the SCA into the skip connection between the

encoder and decoder. Multi-module ablation studies are

conducted by extending the single module as follows:

UVI+RDC+DA, which builds upon UVI+RDC by adding the DA

before the 2D convolution in stages 2-3 of the encoder, and before

the RDC in stages 4-6 of the encoder; UVI+RDC+DA+ SCA further

incorporating the SCA into the skip connection between the
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encoder and decoder, based on UVI+RDC+DA. Ablation studies

on the Rice Seedling dataset (in Subsection 4.6.1) and the WeedMap

dataset (in Subsection 4.7.1) are also conducted in the same manner.

Table 1 shows how different modules impact the accuracy and

complexity of segmentation on the BoniRob dataset, with green

undertones indicating crop aspects, red undertones indicating weed

aspects and bold text indicates the best results for each indicator.

The settings for the following tables (Tables 2–6) are also the same.

In the single-module ablation studies, the RDC enhances the

receptive field, improving the ability to extract weeds from the

overall target, while reducing the number of parameters and

complexity. The DA reinforces the relationship between the

sample and the whole, thereby improving the recall of crops and

weeds and leading to more accurate segmentation targets. The SCA

enhances the integration of spatial information, thereby improving

the overall accuracy of image segmentation. Importantly, this

enhancement is achieved without significantly increasing the

number of parameters or the computational complexity of the

model. In the multi-module ablation studies, the combination of

RDC and DA directs the encoder’s focus toward identifying small

weed targets, thereby enhancing the classification accuracy of

weeds. Additionally, the inclusion of the SCA in the encoder-

decoder hopping connection ensures more precise boundary

delineation of crops and weeds, effectively improving overall

segmentation accuracy.

For crops, the proposed method exhibits a slight improvement in

both Precision and Recall. This improvement can be attributed to the

large size of crop targets and the low presence of weed infestation in

the BoniRob dataset, demonstrating enhanced performance in

segmenting crop textures and boundaries. For weeds, our method

demonstrates a minor decline in Precision but a substantial increase

in Recall. This discrepancy can be attributed to the small and

dispersed nature of weed targets in the BoniRob dataset, wherein
TABLE 1 Evaluation results of various modules on the BoniRob dataset.

NETWORKS Soil IOU Crop IOU Weed IOU MIOU Params (M) FLOPs (G) Precision Recall F1score

UVI 0.9956 0.9323 0.6955 0.8744 0.1072 0.1219
0.9688 0.9611 0.9649

0.9023 0.7521 0.8204

UVI+RDC 0.9957 0.9385 0.7476 0.8939 0.0649 0.1063
0.9751 0.9616 0.9682

0.8825 0.8302 0.8555

UVI+DA 0.9956 0.9364 0.7434 0.8918 0.1496 0.2467
0.9695 0.9649 0.9671

0.8628 0.843 0.8528

UVI+SCA 0.9956 0.9366 0.7458 0.8927 0.1073 0.1305
0.9708 0.9638 0.9673

0.8734 0.8362 0.8544

UVI+RDC +DA
0.9957 0.9366 0.7503 0.8942 0.1073 0.2312

0.9742 0.9604 0.9672

0.8784 0.8374 0.8574

UVI+RDC +DA+SCA
0.9957 0.9390 0.7600 0.8982 0.1074 0.2397

0.9725 0.9645 0.9685

0.8902 0.8387 0.8636
fro
Bold text indicates the best results for each indicator.
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the greater Recall value suggests a more comprehensive weed

detection. These results demonstrate that the proposed method’s

effectiveness in accurately segmenting crops and weeds, even in

environments with small and dispersed weed clusters.

4.5.2 Comparisons between the proposed
method and the SOTA methods

To assess the effectiveness of the proposed method, we

conducted a series of comparative experiments using various

networks, including DeepLab V3+, SEGNet, ENet, and UNet,
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which are commonly used in the field. In addition, we conducted

comparisons with two other networks: MFRWF-CWF, specifically

designed for agronomic image segmentation, and UNeXt, a

lightweight network designed for real-time segmentation.

Comparative experiments on the Rice Seedling dataset (in

Subsection 4.6.1) and the WeedMap dataset (in Subsection 4.7.1)

are also conducted in the same manner.

Table 2 presents the comparison results between the proposed

method and the SOTA methods on the BoniRob dataset, and

displays the comparison results of the numbers of true positives
TABLE 2 Comparison results between the proposed method and the SOTA methods on the BoniRob dataset.

NETWORKS Soil
IOU

Crop
IOU

Weed
IOU

MIOU Precision Recall F1score TP FN FP TN

DeepLab V3+ 0.9940 0.9121 0.6101 0.8388
0.9526 0.9555 0.9540 5,255,540 244,749 261,573 119,273,145

0.8220 0.7030 0.7579 455,194 192,341 98,514 124,288,958

SEGNet 0.9952 0.9210 0.6665 0.8609
0.9444 0.9738 0.9589 5,356,167 144,122 315,558 119,219,160

0.8587 0.7486 0.7999 484,733 162,802 79,732 124,307,740

ENet 0.9947 0.9259 0.6931 0.8713
0.9678 0.9554 0.9615 5,254,899 245,390 174,878 119,359,840

0.8712 0.7722 0.8187 500,021 147,514 73,893 124,313,579

UNet 0.9949 0.9289 0.6740 0.8659
0.9491 0.9776 0.9631 5,377,154 123,135 288,333 119,246,385

0.9106 0.7217 0.8052 467,335 180,200 45,837 124,341,635

UNeXt 0.9953 0.9288 0.6996 0.8746
0.9668 0.9593 0.9631 5,276,669 223,620 181,124 119,353,594

0.8037 0.8439 0.8233 546,468 101,067 133,479 124,253,993

MFRWF-CWF 0.9959 0.9395 0.7554 0.8970
0.9716 0.9660 0.9688 5,313,665 186,624 155,314 119,379,404

0.8784 0.8436 0.8607 546,274 101,261 75,636 124,311,836

Ours 0.9957 0.9390 0.7600 0.8982
0.9725 0.9645 0.9685 5,305,290 194,999 149,851 119,384,867

0.8902 0.8387 0.8636 543,074 104,461 67,004 124,320,468
fr
Bold text indicates the best results for each indicator.
TABLE 3 Evaluation results of various modules on the Rice Seedling dataset.

NETWORKS
Paddy
IOU

Crop
IOU

Weed
IOU

MIOU
Params
(M)

FLOPs
(G)

Precision Recall F1score

UVI 0.9447 0.6610 0.7566 0.7874 0.1072 0.1219
0.6999 0.9224 0.7959

0.8292 0.8962 0.8614

UVI+RDC 0.9504 0.6793 0.7576 0.7957 0.0649 0.1063
0.7509 0.8769 0.8090

0.8367 0.8890 0.8621

UVI+DA 0.9505 0.6784 0.7585 0.7958 0.1496 0.2467
0.7665 0.8550 0.8083

0.8188 0.9114 0.8626

UVI+SCA 0.9485 0.6712 0.7742 0.7980 0.1073 0.1305
0.7491 0.8658 0.8032

0.8427 0.905 0.8728

UVI+RDC
+DA

0.9503 0.6798 0.7632 0.7977 0.1073 0.2312
0.7525 0.8755 0.8093

0.8297 0.9049 0.8657

UVI+RDC
+DA+SCA

0.9492 0.6799 0.7797 0.8030 0.1074 0.2397
0.7401 0.8932 0.8095

0.8445 0.9104 0.8762
o

Bold text indicates the best results for each indicator.
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(TP), false negatives (FN), false positives (FP), and true negatives

(TN) between different methods (The total number of pixels is

125,035,007). In the case of crops, MFRWF-CWF produces more

true positives, whereas the proposed method has the fewest false

positives. However, the proposed method exhibits higher false

negatives compared to MFRWF-CWF, resulting in a lower Recall.

Additionally, although the proposed method has the highest

Precision, the F1score is lower than that of MFRWF-CWF.

Consequently, the crop IOU of the proposed method is slightly

lower than MFRWF-CWF. In the case of weeds, the Precision

value and the Recall value of the proposed method are lower than
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those of UNet and UNeXt, respectively. This disparity arises

because UNet exhibits the fewest false positives for weeds and

more true positives than the proposed method, leading to a higher

precision. UNeXt achieves the most true positives and the fewest

false negatives, resulting in the highest Recall. The F1score for

weeds in the proposed method surpasses that of other methods,

and the F1score for crops is slightly lower than that of MFRWF-

CWF. Nevertheless, the MIOU of the proposed method is the

highest. It indicates that our method offers better overall

segmentation accuracy in scenarios where weeds are small

and dispersed.
TABLE 4 Comparison results between the proposed method and the SOTA methods on the Rice Seedling dataset.

NETWORKS Paddy
IOU

Crop
IOU

Weed
IOU

MIOU Precision Recall F1score TP FN FP TN

DeepLab V3+ 0.9446 0.6581 0.7746 0.7925
0.7221 0.8813 0.7938 6,417,761 864,695 2,469,518 74,297,946

0.8679 0.8782 0.8730 3,239,109 449,317 493,203 79,868,291

SEGNet 0.9490 0.6701 0.7501 0.7897
0.7447 0.8700 0.8024 6,335,537 946,919 2,171,939 74,595,525

0.8062 0.9151 0.8572 3,375,356 313,070 811,207 79,550,287

ENet 0.9464 0.6652 0.7588 0.7901
0.7363 0.8733 0.7990 6,359,859 922,597 2,278,118 74,489,346

0.8207 0.9095 0.8628 3,354,788 333,638 733,158 79,628,336

UNet 0.9515 0.6739 0.7492 0.7915
0.7664 0.8481 0.8052 6,176,299 1,106,157 1,882,912 74,884,552

0.8205 0.8961 0.8566 3,305,335 383,091 723,142 79,638,352

UNeXt 0.9478 0.6712 0.7743 0.7978
0.7287 0.8947 0.8033 6,515,517 766,939 2,425,241 74,342,223

0.8447 0.9029 0.8728 3,330,186 358,240 612,256 79,749,238

MFRWF-CWF 0.9504 0.6863 0.7678 0.8015
0.7528 0.8859 0.8140 6,451,810 830,646 2,118,250 74,649,214

0.8499 0.8882 0.8686 3,276,194 412,232 578,657 79,782,837

Ours 0.9492 0.6799 0.7797 0.8030
0.7401 0.8932 0.8095 6,504,681 777,775 2,284,200 74,483,264

0.8445 0.9104 0.8762 3,357,934 330,492 618,419 79,743,075
fro
Bold text indicates the best results for each indicator.
TABLE 5 Evaluation results of various modules on the WeedMap dataset.

NETWORKS Soil IOU Crop IOU Weed IOU MIOU Params (M) FLOPs (G) Precision Recall F1score

UVI 0.9722 0.7254 0.6171 0.7716 0.1072 0.1219
0.8566 0.8257 0.8409

0.8157 0.7171 0.7632

UVI+RDC 0.9722 0.7298 0.6265 0.7762 0.0649 0.1063
0.8157 0.8739 0.8438

0.7890 0.7527 0.7704

UVI+DA 0.9728 0.7278 0.6329 0.7779 0.1496 0.2467
0.8457 0.8392 0.8424

0.7975 0.7541 0.7752

UVI+SCA 0.9729 0.7324 0.6354 0.7802 0.1073 0.1305
0.8424 0.8488 0.8456

0.8215 0.7371 0.777

UVI+RDC
+DA

0.9727 0.7270 0.6428 0.7809 0.1073 0.2312
0.8099 0.8766 0.8420

0.7634 0.8028 0.7826

UVI+RDC +DA+SCA 0.9730 0.7330 0.6511 0.7857 0.1074 0.2397
0.8328 0.8595 0.8460

0.7793 0.7984 0.7887
Bold text indicates the best results for each indicator.
ntiersin.org

https://doi.org/10.3389/fpls.2023.1320448
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2023.1320448
Figure 6 shows three groups of segmentation results obtained by

the proposed method and the SOTAmethods. Green, red, and black

represent crop, weed, and soil, respectively. The white circular areas

represent regions with low segmentation accuracy. as depicted in

Figure 6), crops and weeds in the original images exhibit a high

degree of separateness, with a relatively low level of weed

infestation. However, weed targets are small and scattered, which

poses challenges for image segmentation.

From the segmentation results, the proposed method achieves

highly accurate detection of fine weeds and closely resembles the

Ground Truth (GT). In contrast, the SOTA methods often

misclassifies fine weed targets as crops, especially ENet and

SEGNet. Additionally, UNet tends to omit weeds. UNeXt and

DeepLab V3+ exhibited rougher plant boundary processing,

leading to misclassification of crop internals as soil background.
Frontiers in Plant Science 13
4.6 Testing on the Rice Seedling dataset

4.6.1 Ablation studies
Evaluation results of various modules on the Rice Seedling dataset

are presented in Table 3. In the single-module ablation studies, the

RDC improves the segmentation accuracy of crops under occlusion,

while reducing the number of parameters and complexity. The DA

strengthens the ability to recognize plant reflections in the

background, effectively improving the anti-interference ability of

plant reflections, and subsequently enhancing the segmentation

accuracy of the background. The SCA significantly improves the

segmentation accuracy of weeds with only a minimal increase in

parameter number and complexity. In the multi-module ablation

studies, the combination of RDC and DA enhances the information

fusion capacity across multiple channels, ensuring a balanced trade-
TABLE 6 Comparison results between the proposed method and the SOTA methods on the WeedMap.

NETWORKS
Soil
IOU

Crop
IOU

Weed
IOU

MIOU Precision Recall F1score TP FN FP TN

DeepLab V3+ 0.9557 0.6213 0.5432 0.7067
0.7085 0.8347 0.7664 927,270 183,679 381,583 19,243,468

0.7015 0.7065 0.7040 479,327 199,096 203,950 19,853,627

SEGNet 0.9654 0.6519 0.4783 0.6986
0.7524 0.8300 0.7893 922,040 188,909 303,455 19,321,596

0.7258 0.5838 0.6471 396,047 282,376 149,643 19,907,934

ENet 0.9693 0.7125 0.6162 0.7660
0.8155 0.8494 0.8321 943,642 167,307 213,545 19,411,506

0.7586 0.7664 0.7625 519,962 158,461 165,423 19,892,154

UNet 0.9715 0.7244 0.6252 0.7737
0.8060 0.8774 0.8402 974,761 136,188 234,663 19,390,388

0.7741 0.7647 0.7694 518,765 159,658 151,372 19,906,205

UNeXt 0.9707 0.7213 0.6355 0.7758
0.8413 0.8348 0.8381 927,449 183,500 174,914 19,450,137

0.7338 0.8258 0.7771 560,255 118,168 203,227 19,854,350

MFRWF-CWF 0.9732 0.7353 0.6345 0.7811
0.8514 0.8437 0.8475 937,328 173,621 163,656 19,461,395

0.7982 0.7558 0.7764 512,757 165,666 129,644 19,927,933

Ours 0.9730 0.7330 0.6511 0.7857
0.8328 0.8595 0.8460 954,883 156,066 191,679 19,433,372

0.7793 0.7984 0.7887 541,629 136,794 153,403 19,904,174
fro
Bold text indicates the best results for each indicator.
FIGURE 6

Segmentation results obtained by the proposed method and the SOTA methods on the BoniRob dataset.
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off between Precision and Recall for segmentation targets, ultimately

leading to improved overall segmentation performance. Moreover,

incorporating the SCA into the encoder-decoder hopping connection

enables the network to prioritize crop and weed boundaries, resulting

in a significant improvement in pixel classification accuracy for crops

and weeds in overlapping regions.

For crops, the proposed method has improved Precision while

decreasing Recall. This signifies an enhanced ability to accurately

classify the target crop in scenarios with overlapping crops and

weeds, effectively mitigating the impact of plant reflections in the

background. For weeds, both the Precision and Recall are improved

by the proposed method. This suggests that the target weeds can be

comprehensively and accurately segmented even in weed-

infested environments.

4.6.2 Comparisons between the proposed
method and the SOTA methods

Table 4 presents the comparison results between the proposed

method and the SOTA methods on the Rice Seedling dataset, and

gives the comparison results of the numbers of TP, FN, FP, and TN

between different methods (The total number of pixels is

84,049,920). In the case of crops, the proposed method yields

more true positives and fewer false negatives, resulting in a higher

Recall than MFRWF-CWF. MFRWF-CWF exhibits fewer false

positives. Consequently, the average crop Precision and Recall of

MFRWF-CWF are slightly higher than those of our method. In the

case of weeds, the weeds Precision and Recall of the proposed

method are lower than DeepLab V3+ and SEGNet, respectively.

DeepLab V3+ produces the least number of false positives, resulting

in higher Precision than the proposed method. On the other hand,

SEGNet generates the highest number of true positives and the least

number of false negatives, leading to the highest Recall among all

methods. The F1score of weeds obtained by the proposed method is

the highest. Moreover, the MIOU given by the proposed method is

also the highest. It demonstrates that our method outperforms other
Frontiers in Plant Science 14
comparison methods in terms of overall segmentation accuracy

even in environments with complex background disturbances,

overlapping, and occlusion of crops and weeds.

Figure 7 shows three groups of segmentation results obtained by

the proposed method and the SOTAmethods. Green, red, and black

represent crop, weed, and soil, respectively. The white circular areas

represent regions with low segmentation accuracy. In the Rice

Seedling dataset, as depicted in Figure 7, the background is

paddy. The reflection of plants in the water causes interference in

the segmentation task. Additionally, there is a minor overlap and

occlusion of crops, as well as a significant infestation of weeds.

Therefore, it is crucial to enhance the anti-interference ability

towards reflection and accurately delineate the boundaries of

crops and weeds to improve segmentation results.

From the segmentation results, it can be seen that the proposed

method outperforms others in correctly identifying and classifying

weeds, especially in situations where a few weeds are obscured by

the crop. Additionally, our method exhibits the highest similarity to

the GT, whereas the SOTA methods faces challenges in accurately

classifying crops when they are occluded by weeds. MFRWF-CWF

and UNeXt have misclassified small weed targets, whereas UNet,

ENet, and SEGNet have incorrectly classified extensive crop areas.

Moreover, DeepLab V3+ exhibits limitations in capturing fine plant

texture details.
4.7 Testing on the WeedMap dataset

4.7.1 Ablation studies
Evaluation results of various modules on the WeedMap dataset

are presented in Table 5. In the singlemodule ablation studies, the

RDC enhances the detection of tiny targets, improving the

segmentation performance for both crops and weeds, while

reducing the number of parameters and complexity. The DA

strengthens the network’s ability to learn the overarching patterns
FIGURE 7

Segmentation results obtained by the proposed method and the SOTA methods on the Rice Seedling dataset.
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within the dataset, leading to a significant enhancement in weed

segmentation accuracy and the integration of multi-channel

information. Moreover, it contributes to the improved accuracy of

target segmentation. The SCA strengthens the fusion of spatial

information, leading to a substantial enhancement in the

segmentation accuracy of crops, with only a negligible increase in

the number of parameters and complexity. In the multi-module

ablation studies, the combination of RDC and DA focuses the

encoder on recognizing tiny targets, significantly improving the

Recall of segmented targets. Furthermore, incorporating the SCA

into the encoder-decoder connection not only enhances the

accuracy of segmenting crop and weed boundaries but also

improves the overall segmentation performance of the network.

For crops and weeds, the proposed method has improved Recall

while decreasing Precision. The decrease in Precision can be

attributed to the regularity of crop generating regions in the

WeedMap dataset, but the more chaotic distribution of weeds

with high weed infestation. The improvement in Recall indicates

an improvement in the ability to comprehensively detect

segmentation targets with small crop and weed targets.

Ultimately, the overall segmentation accuracy is improved by

increasing the comprehensiveness of detection. These results

show that in segmenting aerial images captured by UAVs with

small targets, the method maintains stable and accurate results

despite the presence of high levels of weed infestation.

4.7.2 Comparisons between the proposed
method and the SOTA methods

Table 6 presents the comparison results between the proposed

method and the SOTAmethods on the WeedMap dataset, and gives

the comparison results of the numbers of TP, FN, FP, and TN

between different methods (The total number of pixels is

20,736,000). In the case of crops, the proposed method gives a

higher number of true positives and a lower number of false

negatives comparing to MFRWF-CWF. Consequently, the Recall

value of our method is superior to that of MFRWF-CWF. However,

MFRWF-CWF yields the minimum number of false positives,

leading to a higher precision. Following the reconciliation of

precision and recall through the F1score, it is found that the
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F1score achieved by the proposed method is slightly lower than

that of MFRWF-CWF, ultimately resulting in a slightly lower crop

IOU compared to MFRWF-CWF. In the case of weeds, the

proposed method yields a higher number of true positives.

Conversely, MFRWF-CWF produces the fewest false positives,

leading to a higher precision compared to the proposed method.

UNeXt achieves the highest recall by yielding the most true

positives and the fewest false negatives. The F1score of obtained

by the proposed method weeds is higher than that of other methods.

The F1score of crops obtained by the proposed method is slightly

lower than that of MFRWF-CWF. Nevertheless, the proposed

method achieves the highest MIOU. This highlights that the

proposed method exhibits significantly superior overall

segmentation accuracy in UAV overhead images characterized by

smaller targets and high levels of overlap.

Figure 8 shows three groups of segmentation results obtained by

the proposed method and the SOTAmethods. Green, red, and black

represent crop, weed, and soil, respectively. The white circular areas

represent regions with low segmentation accuracy. The WeedMap

dataset comprises aerial images captured by a UAV, as depicted in

Figure 8, with the primary segmentation task focusing on

identifying small targets. Although the growth area of the crops

appears uniform, the weeds grow in a disorderly manner, which

makes it challenging to accurately classify them. Additionally,

the crops and weeds often overlap, further complicating the

segmentation process. Therefore, the key to improving the

segmentation effectiveness lies in the ability to detect and classify

these small targets correctly.

From the segmentation results, the proposed method

demonstrates superior segmentation accuracy in the region where

crops and weeds overlap. Additionally, our method exhibits the

highest similarity to the GT, whereas the SOTAmethods is prone to

misclassify weeds that grow in the crop area, especially UNet and

ENet, MFRWF-CWF has a tendency to misclassify the crop as a

weed. UNeXt and SEGNet display weaknesses in detecting tiny

weeds, which can lead to pixel loss. Additionally, ENet and DeepLab

V3+ exhibit coarse plant boundary processing, making it

challenging to distinguish the soil background when there is a

high weed infestation.
FIGURE 8

Segmentation results obtained by the proposed method and the SOTA methods on the WeedMap dataset.
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4.8 Complexity comparison of
different algorithms

Table 7 presents the complexity comparison between the

proposed method and SOTA methods in terms of the number of

parameters, FLOPs, inference time and FPS. The best results for

each metric are highlighted in bold. In Table 7, it can be observed

that the proposed method boasts the smallest number of model

parameters, only 0.11M. This figure represents a remarkable

reduction of 96.5% compared to the SOTA method MFRWF-

CWF, a reduction of 92.5% when compared to the lightweight U-

network UneXt, and a reduction of 68.6% compared to the generic

lightweight network Enet. The significant reduction in parameter

count demonstrates the efficiency of the proposed method. In terms

of the number of FLOPs, the proposed method excels once more,

with a mere 0.24G. This figure is the lowest among all the compared

methods, indicating a lower algorithmic complexity.

Since the proposed network is primarily designed for intelligent

weeding robots, computational operations are executed in the form

of on-board computation (edge computation) on the embedded

system inside the mobile robot when calculating the inference time

and FPS. We use an NVIDIA Jetson Xavier NX for measuring these

metrics, which utilizes GPUs with 384 CUDA cores. Inference

framework in NVIDIA Volta. The central processing unit (CPU)

shares 8Gb of memory with the GPU, and the memory bandwidth

is 59.7GB/s. The power usage is 10W. As presented in Table 7, the

proposed method takes 18.14 msec to process an image, and the FPS

is 55.10 frames/sec, surpassing all compared methods. Therefore, it

is evident that the proposed method is suitable for application in

embedded systems with limited hardware resources.
5 Discussion

The currentmethods based on CNNs for crop and weed semantic

segmentation can be categorized into two types: single-CNN

structure and multi-CNN structure. The multi-CNN structure

divides the task into stages, which improves segmentation

performance to some extent. However, due to the independent

nature of the model task, these methods incur a high

computational cost and increase inference time in multiples. As a
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result, they are not suitable for implementation on mobile intelligent

robots for crop and weed segmentation. The single-CNN structure is

more suitable for embedded systems compared to the multi-CNN

structure. Therefore, the single-CNN structure is selected in our

proposed method. In different practical applications, the structure of

CNNs can vary. The MFRWF-CWF network is specifically designed

for agronomic image segmentation, it is different from other general-

purpose networks such as DeepLab V3+, SEGNet, ENet, and UNet.

Additionally, the UNeXt network is a lightweight network that is

specifically designed for real-time segmentation.

The MFRWF-CWF network utilizes a lightweight backbone with

restricted kernel convolution dimensions. The basic block contains

Resnet34 iterative parameters, and a feature reweighting module

based on multilevel attention is employed to eliminate background

clutter and fine-tune the target signal. Furthermore, fusion takes place

between each weighted feature map and all other features to enhance

the background signal of crop and weed. Ultimately, the MFRWF-

CWF decoder combines all object maps to maintain rich contextual

information. Results displayed in Tables 2, 4, 6 for the Bonirob

dataset, Rice Seedling dataset and WeedMap dataset reveal that the

MFRWF-CWF technique achieves superior performance in terms of

MIOU and F1score compared to other general-purpose networks.

However, it is important to note that MFRWF-CWF incurs an

overhead of 3.14M (as shown in Table 7) during training, which is

approximately 9 times larger than the training parameters of ENet, a

general-purpose lightweight network. Additionally, MFRWF-CWF

has significantly higher FLOPs than Enet. Its inference time and FPS

are less favorable when compared to other general-purpose networks.

UneXt adopts a convolutional and MLP-based architecture,

incorporating a tokenized MLP block with shifted MLPs for

labeling and projecting convolutional features. The results shown in

Table 7 demonstrate that UneXt slightly outperforms the general-

purpose lightweight network ENet in terms of training parameters

and FLOPs, and significantly outperforms the other networks in

terms of inference time and FPS. However, when considering the

segmentation results showcased in Tables 2, 4, 6, UneXt does not

possess an advantage in crop and weed segmentation tasks

comparing to MFRWF-CWF. Therefore, the proposed method in

the paper aims to address the challenge of designing a network that

achieves improved inference time and FPS while maintaining

competitive segmentation performance.
TABLE 7 Comparisons of the number of parameters, Floating-point Operations(FLOPs), inference time and Frame Per Second(FPS).

NETWORKS
Params
(M)

FLOPs
(G)

Inference time
(msec)

FPS

DeepLab V3+ 40.37 11.71 46.52 21.50

SEGNet 29.44 40.20 152.23 6.57

ENet 0.35 0.55 69.23 14.44

UNet 13.40 31.13 123.69 8.08

UNeXt 1.47 0.58 21.39 46.74

MFRWF-CWF 3.14 24.00 74.97 13.33

Ours 0.11 0.24 18.14 55.10
The best results for each metric are highlighted in bold.
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The method proposed in this paper utilizes a six-stage U-shaped

structure as the baseline. To further reduce network parameters, we

choose to reduce the output feature map and adjust the number of

channels to {8,16,24,32,48,64}. Moreover, we employ element-wise

addition instead of concatenation to decrease the number of

convolution operations in the encoder-decoder skip connection.

Although this reduction in parameters and complexity initially

hampers the baseline’s feature extraction capability, leading to

inadequate segmentation results that fail to meet actual requirements,

we address this issue by introducing a lightweight module to enhance

segmentation accuracy. Since the crop and weed dataset has a relatively

small number of samples and some images possess only a single

feature, the crop and weed categories are imbalanced, rendering the

training process susceptible to overfitting. To overcome this problem,

we propose the DA, which improves the network model’s ability to

learn information from the entire dataset, thereby serving as a

regularization technique to enhance generalization. DA significantly

alleviates the overfitting issue during training. Additionally, it facilitates

the integration of cross-channel inter-channel information, strengthens

the utilization of channel attention, and ultimately improves

segmentation performance. To tackle the challenges associated with

classifying semantic information of crops and weeds, we propose the

RDC to replace 2D convolution in deep-level networks. RDC integrates

global information and local information, enhances the computational

efficiency of dilated convolution, and reduces the number of network

parameters. Furthermore, we introduce the SCA to mitigate the loss of

spatial information caused by the superposition of convolutional layers.

The output feature maps of the encoders at each stage are processed

using shared weights, which further simplifies the model and obtains

feature maps containing spatial attention weights that are combined

with the decoder. The segmentation results, as shown in Tables 2, 4, 6,

demonstrate that our method achieves competitive MIOU scores

compared to other approaches. Although our method may exhibit

lower IOU on a single target (soil or paddy, crops) compared to other

methods, it still proves effective overall.

We conducted comparative experiments with the SOTAmethods

on three distinct datasets: the BoniRob dataset, which covers soil

crops; the Rice Seedling dataset, which involves paddy crops; and the

WeedMap dataset, which consists of UAV aerial views. These

datasets provide diverse scenarios and test the generalization ability

of the network. The metrics data presented in Tables 2, 4, 6, along

with the segmentation results depicted in Figures 6–8, reveal that the

BoniRob dataset exhibits decentralized crop and weed distributions,

with the lowest level of weed infestation among the three datasets.

Notably, this paper’s method slightly falls behind the MFRWF-CWF

in terms of background IOU and crop IOU, indicating the potential

for improvement in processing crop texture details. The accuracy of

overall segmentation is mainly affected by the smaller size of the weed

target. However, the method proposed in this paper outperforms

other SOTA methods in terms of weed IOU, resulting in a better

MIOU. In the Rice Seedling dataset, overlapping and shading

between crops and weeds occur, especially in areas with high weed

infestation. Moreover, the presence of aquatic crops introduces

reflection on the water surface, making the background complexity

the highest among the three datasets. In terms of background IOU,

the method presented in this paper performs lower than UNet and
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MFRWF-CWF, suggesting room for improvement in handling

complex background interference. Although this paper’s method

also exhibits a slightly lower crop IOU compared to MFRWF-

CWF, it surpasses other SOTA methods in terms of weed IOU.

resulting in a better MIOU. The WeedMap dataset includes aerial

images captured by UAVs, resulting in a small overall segmentation

target and a chaotic weed growth area where crops and weeds

frequently overlap. Consequently, this dataset exhibits the highest

level of weed infestation compared to the other two datasets. Similar

to the previous cases, this paper’s method shows slightly lower

performance in terms of background IOU and crop IOU when

compared to MFRWF-CWF. This highlights the need for

improvement in delineating plant boundaries. The inability to

accurately detect and categorize tiny weed targets within the

overlapping region of crops and weeds remains the main factor

affecting overall segmentation accuracy, the method proposed in this

paper excels in weed IOU, surpassing other SOTA methods. This

demonstrates its superiority in environments with severe weed

infestation, leading to a better MIOU. Although our method may

exhibit lower IOU on a single target (soil or paddy, crops) compared

to other methods, it still proves effective overall. Moreover, the

proposed method excels in terms of lightweight, as demonstrated

in Table 7. The proposed method outperforms the SOTAmethods in

terms of the number of model parameters and the number of FLOPs,

indicating its lower training cost and network complexity.

Furthermore, when considering inference time and FPS based on

NVIDIA Jetson Xavier NX, the proposed method surpasses the

general-purpose lightweight network ENet and the real-time

segmentation lightweight network UNeXt. This suggests that the

proposed method is highly suitable for deployment on embedded

systems with constrained computational resources, making it an ideal

choice for semantic segmentation tasks involving crops and weeds in

the context of intelligent weeding robots operating in resource-

constrained environments.

In summary, the segmentation performance of the method

proposed in this paper is competitive and outperforms other

SOTA methods in terms of model parameters, FLOPs, inference

time and FPS. This indicates that the proposed method can be

implemented on intelligent weeding robots with limited hardware

resources, ensuring both lower hardware resource utilization and

competitive segmentation performance. However, it is worth noting

that the segmentation accuracy for some targets is relatively low, as

depicted in Tables 2, 4, 6. These tables show cases where the IOU

scores for crops are lower than those obtained by MFRWF-CWF on

the BoniRob dataset, Rice Seedling dataset and WeedMap dataset.

Consequently, there is still room for further improvement in

segmentation performance while maintaining a low number of

parameters and complexity in the network.
6 Conclusions

Existing semantic segmentation networks for crops and weeds

primarily focus on enhancing segmentation performance while

disregarding their practical applications in intelligent weeding robots.

Hence, this paper proposes an attention-aided lightweight network for
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crop and weed semantic segmentation, aiming to improve inference

time and FPS without compromising segmentation performance.

Firstly, we implement regularization and integrate channel

information to address the issue of overfitting during training due to

the insufficient number of samples in the crop and weed dataset. It

enhances the attention mechanism’s ability to generalize and enables

the network model to learn information more efficiently from the

entire dataset. Subsequently, the integration of local and global

information is employed to enhance the classification of semantic

information related to crops and weeds, while also significantly

reducing the number of network parameters. Next, enhancements

are made to acquire spatial information effectively to minimize the loss

of spatial details caused by convolution layers’ overlapping.

Furthermore, the network’s complexity is reduced by adopting a

shared weights approach instead of a complex connection between

the encoder and decoder. Finally, these modules are combined with a

lightweight baseline. Comparative experimental and visualization

results on publicly available datasets, combined with test results on

embedded systems, demonstrate that the proposedmethod successfully

achieves a robust balance between network complexity and

segmentation performance.

Lightweighting is essential for a method to be deployed in smart

weeding robot and perform well, given the limited hardware

resources of these robots. This study aims to provide valuable

insights into lightweight semantic segmentation of crops and

weeds. Additionally, the experiments conducted in this paper

demonstrate that the proposed method achieves competitive

segmentation performance while efficiently operating within the

hardware limitations of intelligent weeding robots.

Nevertheless, the segmentation accuracy for certain targets

remains inadequate. In the future, we will focus on further

reducing the parameter count and complexity of the network,

improving inference time and FPS for embedded systems, and

enhancing segmentation accuracy.
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