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José Dias Pereira,
Instituto Politecnico de Setubal (IPS),
Portugal

REVIEWED BY

Vı́tor Viegas,
Naval School, Portugal
Jakub Nalepa,
Silesian University of Technology, Poland

*CORRESPONDENCE

Signe Marie Jensen

smj@plen.ku.dk

RECEIVED 06 October 2023

ACCEPTED 22 November 2023

PUBLISHED 08 December 2023

CITATION

Khan AT, Jensen SM, Khan AR and Li S
(2023) Plant disease detection model for
edge computing devices.
Front. Plant Sci. 14:1308528.
doi: 10.3389/fpls.2023.1308528

COPYRIGHT

© 2023 Khan, Jensen, Khan and Li. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 08 December 2023

DOI 10.3389/fpls.2023.1308528
Plant disease detection model
for edge computing devices

Ameer Tamoor Khan1, Signe Marie Jensen1*,
Abdul Rehman Khan2 and Shuai Li3

1Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark,
2Department of Computer and Information Sciences, Pakistan Institute of Engineering and Applied
Sciences, Islamabad, Pakistan, 3Deparment of Information Technology and Electrical Engineering,
University of Oulu, Oulu, Finland
In this paper, we address the question of achieving high accuracy in deep

learning models for agricultural applications through edge computing devices

while considering the associated resource constraints. Traditional and state-of-

the-art models have demonstrated good accuracy, but their practicality as end-

user available solutions remains uncertain due to current resource limitations.

One agricultural application for deep learning models is the detection and

classification of plant diseases through image-based crop monitoring. We used

the publicly available PlantVillage dataset containing images of healthy and

diseased leaves for 14 crop species and 6 groups of diseases as example data.

The MobileNetV3-small model succeeds in classifying the leaves with a test

accuracy of around 99.50%. Post-training optimization using quantization

reduced the number of model parameters from approximately 1.5 million to

0.93 million while maintaining the accuracy of 99.50%. The final model is in

ONNX format, enabling deployment across various platforms, including mobile

devices. These findings offer a cost-effective solution for deploying accurate

deep-learning models in agricultural applications.
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1 Introduction

Plant diseases can be a major concern for farmers due to the risk of substantial yield loss.

While applying pesticides can prevent or limit the impact of most plant diseases, their use should

be restricted due to environmental considerations. Early and efficient detection of plant diseases

and their distribution in the field is crucial for effective treatment. The implementation of

automatic plant disease detection systems is, therefore, essential for efficient crop monitoring.

Deep LearningConvolutionalNeuralNetworks (CNNs) and computer vision are two developing

AI technologies that have recently been employed to identify plant leaf diseases automatically.

Already in 1980, Fukushima (1980) presented a visual cortex-inspired multilayer

artificial neural network for image classification. The network showed that the initial

layer detects simpler patterns with a narrow receptive field, while later levels combine

patterns from earlier layers to identify more complex patterns with wider fields. In 2012,
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Krizhevsky et al. (2012) developed the AlexNet architecture, which

helped them win the ImageNet Large Scale Visual Recognition

Challenge. Several CNN (Convolutional Neural Network) designs

have been introduced since then Krizhevsky et al. (2012); Fu et al.

(2018); Yang et al. (2023); Dutta et al. (2016); Sarda et al. (2021).

These models are called “deep learning” architectures due to their 5-

200 layers. Early investigations employed manually created

characteristics from leaf picture samples. Later, the trends shifted

to DCNN (Deep Convolutional Neural Network) architectures

capable of effectively classifying data and automatically extracting

features. Plant disease picture classification has been used to test a

variety of CNN architectures Amara et al. (2017); Sladojevic et al.

(2016); Setiawan et al. (2021); Yang et al. (2023); Qiang et al. (2019);

Swaminathan et al. (2021); Schuler et al. (2022).

Plant disease diagnosis through image analysis employs various

machine learning techniques Ferentinos (2018). These methods

identify and classify diseases affecting cucumbers, bananas Fujita

et al. (2016), cassavas Amara et al. (2017), tomatoes Ramcharan

et al. (2017), and wheat Fuentes et al. (2017). Ramcharan et al.

(2017) tested five architectures—AlexNet, AlexNetOWTBn,

GoogLeNet, Overfeat, and VGG on 58 classes of healthy and sick

plants. AlexNet achieved 99.06% and VGG 99.48% test accuracy.

Despite the large variation in trainable parameters, these designs

had test accuracy above 99%. Maeda-Gutiérrez et al. (2020) tested

five architectures for tomato illnesses. All architectures tested had

accuracies above 99%. However, when tested on field pictures,

Ramcharan et al. (2017) encountered shadowing and leaf

misalignment. These factors greatly affected classification accuracy.

Amara et al. (2017) classified banana leaf diseases using 60×60

pixel pictures and a simple LeNet architecture. Grayscale images

had 85.94%, and RGB images had 92.88% test accuracy. Chromatic

information Mohanty et al. (2016) is essential in plant leaf disease

classification. Mohanty et al. (2016) used AlexNet and GoogLeNet

(Inception V1) designs to study plant leaf diseases and found RGB

images to be more accurate than their grayscale counterparts.

Likewise, Schuler et al. (2022) split the Inception V3 architecture

into two branches, one dealing with the grayscale part of the RGB

image and the other branch dealing with the other two channels of

the RGB image. The resultant architecture has 5 million trainable

parameters and achieved an accuracy of 99.48% on the test dataset.

While these studies demonstrate the effectiveness of deep learning

in plant disease classification, they often do not address the critical

challenge of deploying these models on resource-constrained edge
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devices. In contrast, our work not only achieves high accuracy but

also emphasizes optimizing deep learning models for such constraints.

Recent advancements in the field substantiate this focus. For instance,

Hao et al. (2023) discusses system techniques that enhance DL

inference throughput on edge devices, a key consideration for real-

time applications in agriculture. Similarly, the DeepEdgeSoc framework

Al Koutayni et al. (2023) accelerates DL network design for energy-

efficient FPGA implementations, aligning with our resource efficiency

goal. Moreover, approaches like resource-frugal quantized CNNs

Nalepa et al. (2020) and knowledge distillation methods Alabbasy

et al. (2023) resonate with our efforts to compress model size while

maintaining performance. These studies highlight the importance of

balancing computational demands with resource limitations, a core

aspect of our research. Thus, our work stands out by not only

addressing the accuracy of plant disease detection but also ensuring

the practical deployment of these models in real-world agricultural

settings where resources are limited.

One major drawback in the broader field is that deep-learning

approaches often have computational requirements, i.e., highermemory

and computing capacity, which are not always feasible for edge

computing devices. Our paper tackles this challenge head-on, focusing

onmaximizing accuracy while operating within the resource constraints

inherent to edge computing devices, thereby significantly enhancing the

real-life applicability of deep learning models in agriculture.

The remaining part of the paper is organized as follows: Section

2 will look into the PlantVillage dataset, then we will explore the

MobileNetV3-small architecture, model training, and finally, the

post-training quantization. Section 3 will discuss the results and

the comparison with existing methods. In Section 4, we will discuss

the importance of the problem and the relevance of our results.

Finally, Section 5 will conclude the paper with final remarks.
2 Materials and methods

2.1 PlantVillage dataset

The present work used the publicly available PlantVillage-Dataset

(2016). All images in the PlantVillage database were captured at

experimental research facilities connected to American Land Grant

Universities. The dataset included 54,309 images of 14 crop species,

including tomato, apple, bell pepper, potato, raspberry, soybean,

squash, strawberry, and grape. A few sample images of the plants are

shown in Figure 1. It could be seen that some samples were healthy,
FIGURE 1

Sample images of the PlantVillage dataset. It is a diverse dataset with 14 plant species, including healthy and infected plants. The dataset includes a
total of 54,309 image samples.
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and some were infected. There were 17 fungal infections, 4 bacterial

diseases, 2 viral diseases, 1 mite disease, and 1 mold (oomycete). There

were images of healthy leaves from 12 crop species, showing no obvious

signs of disease. In total, the dataset included 38 classes of healthy and

unhealthy crops. A detailed description of the distribution of species

and diseases in the dataset is shown in Table 1. It included 14 crop

species with 6 types, i.e., fungi, bacteria, mold, virus, mite, and healthy.

The dataset is imbalanced and not equally distributed across all 6 types.

To further elaborate on the imbalanced nature of the dataset, t-

SNE analysis was performed. t-SNE, or tDistributed Stochastic

Neighbor Embedding, is a machine learning technique used to

reduce dimensionality and visualize high-dimensional data. It

attempts to represent complex, high-dimensional data in a

lowerdimensional space while maintaining data point
Frontiers in Plant Science 03
relationships. The data overlapping is quite visible in Figure 2,

where the dimensions of the PlantVillage dataset were reduced to 2.
2.2 MobileNetV3-small

Recent research has focused on deep neural network topologies

that balance accuracy and efficiency. Innovative handcrafted

structures and algorithmic neural architecture search have

advanced this discipline.

SqueezeNet used 1×1 convolutions with squeeze-and-expand

modules to reduce parameters Iandola et al. (2016). Recent research

has focused on minimizing MAdds (Million Additions) and latency

instead of parameters. Depthwise separable convolutions boosted
TABLE 1 Distribution of observations in the PlantVillage dataset.

Fungi Bacteria Mold Virus Mite Healthy

Apple (3172) 1521 1645

Blueberry (1502) 1502

Bell Pepper (2475) 997 1478

Cherry (1906) 1052 854

Corn (3852) 2690 1162

Grape (4063) 3640 423

Orange (5507) 5507

Peach (2657) 2291 360

Potato (2152) 1000 1000 152

Raspberry (371) 371

Soybean (5090) 5090

Squash (1835) 1835

Strawberry (1565) 1109 456

Tomato (18,162) 5127 2127 1910 5730 1676 1592
The bold values represent the total number of images for that class in the dataset.
FIGURE 2

Visualization of the 38 classes in the PlantVillage data in two dimensions based on a t-SNE analysis. Each color in the spectrum represents one class
in the PlantVillage dataset.
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computational efficiency in MobileNetV1 Howard et al. (2017).

MobileNetV2 added a resource-efficient block with inverted

residuals and linear bottlenecks to improve efficiency Howard

et al. (2018).

Later, MobileNetV3 Howard et al. (2019) extended

MobileNetV2’s efficient neural network design. MobileNetV3’s

backbone network, “MobileNetV3-Large,” used linear bottlenecks

and inverted residual blocks to increase accuracy and efficiency.

Hierarchical squeeze-and-excitation (HSqueeze-and-Excitation)

blocks adaptively recalibrated feature responses in MobileNetV3.

Hard-Swish and Mish activation functions balanced computing

efficiency and non-linearity. MobileNetV3 used neural architecture

search to find optimal network architectures.

MobileNetV3-small was created for resource-constrained

situations. Its tiny, lightweight neural network system is efficient

and accurate. MobileNetV3-small achieved this through

architectural optimizations, a simplified design, and decreased

complexity. A reduced network footprint reduced parameters and

operations. MobileNetV3-compact solved several real-world

problems with low computing resources or edge device

deployment with a compact but efficient architecture. It

introduced several key components to optimize performance and

achieve high accuracy with fewer parameters.

2.2.1 Initial convolution
An RGB image of size (B,H,W,3), where B is the batch size, H is

the height, and W is the width, is used as an input. The image is

passed through a standard convolutional layer with a small filter

size (e.g., 3x3) and a moderate number of channels (e.g., 16).

2.2.2 Bottleneck residual blocks
MobileNetV3-small uses inverted bottleneck residual blocks,

similar to its predecessor, MobileNetV2. The architecture is shown

in Figure 3. Each block begins with a depth-wise convolution, which

convolves each input channel separately with its small filter (e.g.,

3x3), significantly reducing the computational cost. The depth-wise

convolution is followed by a point-wise convolution with 1×1 filters
Frontiers in Plant Science 04
to increase the number of channels. A nonlinear activation function

(e.g., ReLU) is applied to introduce nonlinearity.
2.2.3 Squeeze-and-excite module
The Squeeze-and-Excite (SE) module is incorporated into the

MobileNetV3-small architecture to improve feature representation

and adaptively recalibrate channel-wise information. The SE

module contains two steps:
• Squeeze: Global average pooling is applied to the feature

maps, reducing spatial dimensions to 1×1.

• Excite: Two fully connected (FC) layers are used to learn

channel-wise attention weights. These weights are

multiplied with the original feature maps to emphasize

essential features and suppress less relevant ones.
2.2.4 Stem blocks
MobileNetV3-small introduces stem blocks to further enhance

feature extraction at the beginning of the network. The stem block

consists of a combination of depth-wise and point-wise

convolutions with nonlinear activation.
2.2.5 Classification head
After multiple stacked bottleneck blocks and SE modules, the

final feature maps are passed through a classification head to make

predictions. Global average pooling is applied to the feature maps to

reduce spatial dimensions to 1×1. The output of global average

pooling is then fed into a fully connected layer with “softmax”

activation to produce K class probabilities, as shown in Figure 4.

The overall architecture is shown in Table 2.

The architecture focuses on reducing the number of parameters

while maintaining competitive accuracy. The number of parameters

in MobileNetV3-small is 1.5 million, which makes it suitable for

deployment on resource-constrained devices and applications that

require real-time inference.
FIGURE 3

The MobileNetV3 block uses depthwise and pointwise convolutions to collect spatial patterns and integrate features. These blocks balance computing
performance and precision, helping MobileNetV3 interpret complicated visual data.
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2.3 Model optimization

Model optimization, or quantization, is an essential deep-

learning technique that reduces a neural network’s memory

footprint and computational complexity. Quantization enables

efficient deployment on resource-constrained devices, such as

mobile phones, peripheral devices, and microcontrollers, by

converting the weights and activations of a full-precision model

into lower-precision representations (e.g., 8-bit integers) Zhu et al.

(2016). The procedure entails careful optimization to minimize the
Frontiers in Plant Science 05
impact on model performance while achieving significant gains in

model size reduction and faster inference times. Static quantization

quantifies model weights and activations during training, whereas

dynamic quantization quantifies model weights and activations

based on the observed activation range at runtime.

For model quantization, the “Pytorch” built-in quantization

tool was used Pytorch (2023). The PyTorch library ’s

torch.quantization.quantize dynamic function was used to

dynamically quantify particular layers in a given classifier model.

The torch.quantization.quantize dynamic function clones the input
FIGURE 4

It shows the overall architecture of MobileNet-V3 Small. It includes a lightweight neural network design featuring depth-wise convolutions, inverted
residuals, and a squeeze-and-excitation module for efficient feature extraction targeted for mobile and edge devices.
TABLE 2 Specification of MobileNetV3-Small.

Input Operator Exp-Size #Out SE NL Stride

224 × 224 × 3 Conv2d, 3×3 - 16 - HSb 2

112 × 112 × 16 BottleNeck, 3 × 3 16 16 ✓ REc 2

56 × 56 × 16 BottleNeck, 3 × 3 72 24 - RE 2

28 × 28 × 24 BottleNeck, 3 × 3 88 24 - RE 1

28 × 28 × 24 BottleNeck, 5 × 5 96 40 ✓ HS 2

14 × 14 × 40 BottleNeck, 5 × 5 240 40 ✓ HS 1

14 × 14 × 40 BottleNeck, 5 × 5 240 40 ✓ HS 1

14 × 14 × 40 BottleNeck, 5 × 5 120 48 ✓ HS 1

14 × 14 × 48 BottleNeck, 5 × 5 144 48 ✓ HS 1

14 × 14 × 48 BottleNeck, 5 × 5 288 96 ✓ HS 2

7 × 7 × 96 BottleNeck, 5 × 5 576 96 ✓ HS 1

7 × 7 × 96 BottleNeck, 5 × 5 576 96 ✓ HS 1

7 × 7 × 96 Conv2d, 1×1 - 576 ✓ HS 1

7 × 7 × 576 Pool, 7 × 7 - - - - 1

1 × 1 × 576 Conv2d, 1 × 1, NBNa - 1024 - HS 1

1 × 1 × 1024 Conv2d, 1×1, NBN - K - - 1
front
Conv 2 d, Convolution 2 DBottleNeck: Bottleneck Residual Blocks.
NBN, No Batch Normalization HS: Hard-Swish activation function.
RE, Rectified Exponential Linear Unit activation function Pool: Pooling Layer.
“✓” represents that squeeze-excitation (SE) layer is used in that bottleneck block and “-” represents SE-layer is not utilized.
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“model” before converting it into a quantized form. It then locates

the cloned model’s layers corresponding to the requested classes,

such as Linear (2D convolutional layers) and Conv2d (2D

convolutional layers). The weights and activations of each

recognized layer are subjected to dynamic quantization. The

activations are quantized at runtime depending on the observed

dynamic range during inference, whereas the weights are quantized

to int8 (Integer stored with 8 bit). The cloned model replaces the

quantized layers while leaving the other layers in their original

floating-point format. Compared to the original full-precision

model, the quantized model has less memory and better

computational efficiency, and it is prepared for inference on

hardware or platforms that support integer arithmetic.

While quantization is our chosen method, it is important to

acknowledge that there are other effective techniques for

compressing deep learning models. These include knowledge

distillation, where a smaller model is trained to emulate a larger

one Hinton et al. (2015), pruning, which involves removing less

important neurons Han et al. (2015), and low-rank factorization, a

technique for decomposing weight matrices Jaderberg et al. (2014).

Each of these methods offers unique advantages in model

compression and can be particularly beneficial in scenarios with

limited computational resources. However, for the goals and

constraints of our current study, quantization emerged as the

most suitable approach.

The above technique was employed to quantize “Linear” and

“Conv2d” layers with lower-precision representations, i.e., 8-bit.
2.4 Model training

For the model training, the MobileNetV3-small model from

PyTorch, trained on ImageNet data, was employed. The training

pipeline was simple as it did not involve any preprocessing of the

image data. The model was fed with PlantVillage images of

resolution 224×224. The hardware specifications were as follows:
Fron
• Processor: 11th Gen Intel(R) Core(TM) i9-11950H @ 2.60

GHz 2.61 GHz

• RAM: 64 GB

• GPU: Intel(R) UHD Graphics & NVIDIA RTX A3000
Although the model was trained on a GPU, the final quantized

model was intended for CPU and edge devices. The optimizer

parameters were as follows:
• Optimizer: Adam optimizer

• Betas: (0.5,0.99)

• Learning rate: 0.0001
Some additional model-training hyperparameters included:
• Batch Size: 64

• Epochs: 200

• Training Data Percentage: 80%

• Validation & Test Data Percentage: 10% each.
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3 Results

The training and testing dataset included samples from all 38

classes. “Cross-entropy” was used as the loss function for the

classification. The model’s performance was evaluated based on

two key metrics: Accuracy (Equation 1) and F1 score (Equation 4).

Accuracy, defined as the proportion of correctly identified classes to

the total number of classes, reflects the overall effectiveness of the

model in classification tasks. In our study, the initial accuracy of the

pre-trained model was 97%, which increased to a maximum test

accuracy of 99.50% at the 154-th epoch. This metric essentially

gauges the model’s ability to label classes correctly. On the other

hand, the F1 score, a harmonic mean of precision (Equation 2) (the

proportion of true positive predictions in the total positive

predictions) and recall (Equation 3) (the proportion of true

positive predictions in the actual positive cases), measures the

model’s ability to accurately identify positive examples while

minimizing false positives. This metric is especially useful in

understanding the model’s precision and robustness in identifying

correct classifications without mistakenly labeling incorrect ones as

correct. The trajectory of the model’s accuracy with MobileNetV3-

Small is shown in Figure 5. Similarly, the training loss, i.e., cross-

entropy loss, rapidly approached 0 and was ultimately reduced to 0

at the 136-th epoch. The trajectory of the training loss for

MobileNetV3-Small is depicted in Figure 6.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(Eq: 1)

Precision =
True Positives

True Positives + False Positives
(Eq: 2)

Recall =
True Positives

True Positives + False Negatives
(Eq: 3)

F1 Score = 2� Precision� Recall
Precision + Recall

(Eq: 4)

Later, the model was quantized, and the parameters were

reduced to 0.9 million without reducing the accuracy of 99.50%.

The inference time of the model was 0.01 seconds, and it achieved a

frame rate of 100 frames per second (FPS) when running on a CPU.

The higher-dimensional latent space of the model was also

visualized using t-SNE Van der Maaten and Hinton (2008).

54,309 images of 38 classes were input to the trained model, and

the output from the second-to-last layer of the MobileNetV3-small,

which had dimensions of 1024, was obtained. Using t-SNE, the

dimensions were reduced to 2, and the results were plotted to see

the underlying classification modeling of the model. The results are

shown in Figure 7. By forming distant clusters, it can be seen that

the model efficiently classified 38 classes of plants.

Finally, the model was compared with other state-of-the-art

architectures applied to the PlantVillage dataset. The comparison

was based on three parameters, i.e., the number of model

parameters, model accuracy, and F1 score. The comparison is

shown in Table 3. In the list of architectures, Schuler Schuler

et al. (2022) had the highest accuracy and F1 score, and
frontiersin.org
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Geetharamani Geetharamani and Pandian (2019) had the least

number of parameters, 0.2M. The proposed solution had the

highest accuracy (99.50%) and F1 score (0.9950). However,

the number of parameters was 0.9M, which was 5 times less than

the model suggested by the Schuler et al. (2022) model.
4 Discussion

Large model sizes can pose significant challenges to their

practical application in classification problems within agriculture.

Such problems often necessitate real-time or near-real-time

solutions, especially when identifying pests and diseases or
Frontiers in Plant Science 07
assessing crop health. Bulky models can slow the processing of

data, causing delays that might compromise timely interventions.

Deploying these models on edge devices, frequently used in

agriculture for on-site analysis, becomes problematic due to their

computational and memory constraints. Furthermore, in regions

with limited connectivity, transferring data for cloud-based

processing by large models can be bandwidth-intensive, leading to

additional lags. The energy and financial costs of running extensive

models can also be prohibitive for many agricultural applications,

especially for small-scale or resource-constrained farmers.

Additionally, the adaptability of these models can be limited;

training and fine-tuning them to cater to the diverse and evolving

classification needs of different agricultural contexts can be
FIGURE 6

The training loss of MobileNetV3-small in 200 epochs quickly decreases and settles to 0.0 at 136 Epoch. The lower initial loss is the result of the
pre-trained model.
FIGURE 5

After training for 200 in epochs, the MobileNetV3-small gained an accuracy of 99.50 in roughly 154 epochs. The initial accuracy is approximately
97.0% because we used a pre-trained model.
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challenging. In essence, while large models might boast superior

accuracy, their size can often impede their practicality and

responsiveness in addressing agricultural classification problems.

Previously proposed state-of-the-art solutions Schuler et al.

(2022); Mohanty et al. (2016) for plant disease classifications

achieve good accuracy. However, they have practical limitations

in size and deployment. To overcome this issue, we proposed a

solution with MobileNetV3-small. Its compact and efficient

architecture enables rapid data processing, facilitating real-time

agricultural interventions, such as pest detection or disease

identification. The model’s low power consumption makes it ideal

for battery-operated field devices, and its adaptability ensures

relevance to diverse agricultural needs. Furthermore, its cost-

effectiveness and ease of maintainability make it a practical choice

for agricultural scenarios, offering a balance of high performance

and resource efficiency.

While MobileNetV3 offers impressive efficiency and is

optimized for edge devices, it has certain tradeoffs. The primary

disadvantage is that, in pursuit of a lightweight and compact design,

it might not always achieve the highest possible accuracy, especially
Frontiers in Plant Science 08
when compared to larger, more complex models designed for high-

performance tasks. This reduction in accuracy can be a limitation

for applications where even a slight drop in precision can have

significant consequences. Additionally, certain customizations or

fine-tuning required for specific tasks might not be as

straightforward, given its specialized architecture. Thus, while

MobileNetV3 is advantageous for many scenarios, it may not be

the best fit for situations demanding the utmost accuracy and

complex model customizations.

The PlantVillage dataset, while comprehensive, exhibits an

unbalanced nature with respect to the number of images available

for different plant diseases. Unbalanced data can significantly

impact deep learning model performance. Such datasets have

extremely skewed class distributions, with one or a few classes

having disproportionately more samples. This imbalance causes

many issues. Deep learning models trained on unbalanced data tend

to focus accuracy on the dominant class over the minority classes,

biasing them towards the majority class. As a result, the model’s

ability to generalize and forecast underrepresented classes falls,

resulting in poor training and evaluation performance. Due to
TABLE 3 Results comparison on PlantVillage dataset.

Author Architecture Parameters Accuracy Fl-score

Proposed MobileNetV3-small 0.9M 99.50% 0.9950

Schiller Schuler et al. (2022) Inception V3 (Modifed) 5M 99.48% 0.9923

Mohanty Mohanty et al. (2016) GoogLeNet 5M 98.37% 0.9836

Mohanty Mohanty et al. (2016) AlexNet 60M 97.82% 0.9782

Toda Toda and Okura (2019) Inception V3 5M 97.15% 0.9720

Geetharamani Geetharamani and Pandian (2019) 9 layers CNN 0.2M 96.46% 0.9815

Mohanty Mohanty et al. (2016) GoogLeNet 5M 96.21% 0.9621

Mohanty Mohanty et al. (2016) AlexNet 60M 94.52% 0.9449
fr
TThe bold values correspond to the best value in each column.
FIGURE 7

The t-SNE visualization of latent space of trained MobilenetV3-small model The output is from the second-last layer with a dimension of 1024,
which is reduced to 2 using t-SNE. Each color in the spectrum represents one plant class in the PlantVillage dataset.
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their rarity, the model may have trouble learning significant

patterns from minority classes, making it less likely to recognize

and classify cases from these classes.

MobileNetV3’s efficient and compact design offers a strategic

advantage in addressing the imbalances inherent in datasets like

PlantVillage. By leveraging transfer learning, a pre-trained

MobileNetV3 is later fine-tuned on PlantVillage classes, harnessing

generalized features to counteract dataset disparities. Its lightweight

nature facilitates rapid training, enabling extensive data augmentation

to enhance underrepresented classes. Furthermore, MobileNetV3 can

serve as a potent feature extractor, with the derived features being

suitable for synthetic sample generation techniques like SMOTE or

ADASYN to achieve class balance. The model’s cost-effectiveness

allows for swift iterative experiments, incorporating regularization

techniques to deter overfitting dominant classes. Overall,

MobileNetV3 presents a versatile toolset for researchers to navigate

and mitigate the challenges of unbalanced datasets.

Training MobileNetV3 on the PlantVillage dataset and applying

it to new images introduces challenges related to generalization.

Absent categories, like healthy orange and squash, might be

misclassified into familiar classes the model has seen. Diseases not

in the training data, such as brown spots on soybeans, could be

wrongly identified as another visually similar ailment or even as a

healthy state. The model might also grapple with new images that

differ in lighting, resolution, or background, especially if not

exposed to such variations during training. The inherent class

imbalance in the PlantVillage dataset, if unaddressed, can further

bias the model towards overrepresented classes, affecting its

performance on new or underrepresented classes. In essence,

while MobileNetV3 is efficient, its accuracy on unfamiliar data

hinges on the diversity and comprehensiveness of its training data.

Quantization compresses neural models by reducing the bit

representation of weights and activations, enhancing memory

efficiency and inference speed. “Weight quantization” reduces

weight precision after training. This post-training quantization can

introduce errors, as the model was not trained to accommodate the

reduced precision. This can sometimes lead to a significant drop in

model performance. Whereas “quantization-aware training” adjusts

the model during training to a lower precision. PyTorch’s

torch.quantization.quantize dynamic is notable, dynamically

quantizing mainly the linear layers. This balances reduced model

size and computational efficiency, preserving accuracy and making it

apt for models with varied layer intensities.

The proposed pipeline, while efficient in its current application,

does have certain limitations. Firstly, the pipeline is optimized for a

specific dataset and task; scaling it to handle larger datasets or

adapting it to different types of plants and diseases might require

additional modifications. Secondly, the maintenance and updating

of the model could present minor challenges. Ensuring that the

model remains current with the latest data and continuously

performs at its peak might necessitate regular updates and

maintenance, which can be resource-intensive over time.

As we move forward from this study, we plan to extend our

research to include a wider range of real-world datasets, such as

those suggested by Tomaszewski Tomaszewski et al. (2023) and

Ruszczak Ruszczak and Boguszewska-Mańkowska (2022). Our
Frontiers in Plant Science 09
current focus on a controlled dataset lays the groundwork for this

expansion. In future work, we aim to test and refine our models

against the complexity of real-world agricultural scenarios,

enhancing their generalization capabilities. This step-by-step

approach, progressing from controlled conditions to more diverse

datasets, aims to develop robust and adaptable deep-learning

models for effective plant disease detection in practical

agricultural settings.
5 Conclusion

The traditional and cutting-edge models have shown good

accuracy; however, their suitability for onthe-ground applications

with limited resources is often limited. By focusing on maximizing

accuracy within resource constraints, we demonstrated the real-life

usability of deep learning models in agricultural settings. Using the

MobileNetV3-small model with approximately 1.5 million

parameters, we achieved a test accuracy of around 99.50%,

offering a cost-effective solution for accurate plant disease

detection. Furthermore, post-training optimization, including

quantization, reduced the model parameters to 0.9 million,

enhancing inference efficiency. The final model in ONNX format

enables seamless deployment across multiple platforms, including

mobile devices. These contributions ensure that deep learning

models can be practically and efficiently utilized in real-world

agricultural applications, advancing precision farming practices

and plant disease detection.
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