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Multi-omic insights into the
cellular response of
Phaeodactylum tricornutum
(Bacillariophyta) strains
under grazing pressure
Chenqi Liu †, Liang Li †, Shuo Yang, Mingye Wang,
Hang Zhang and Si Li*

School of Chemical Engineering, Hebei University of Technology, Tianjin, China
Background/Aims: Phaeodactylum tricornutum, a model organism of diatoms,

plays a crucial role in Earth’s primary productivity. Investigating its cellular

response to grazing pressure is highly significant for the marine ecological

environment. Furthermore, the integration of multi-omics approaches has

enhanced the understanding of its response mechanism.

Methods: To assess the molecular and cellular responses of P.tricornutum to

grazer presence, we conducted transcriptomic, proteomic, and metabolomic

analyses, combined with phenotypic data from previous studies. Sequencing

data were obtained by Illumina RNA sequencing, TMT Labeled Quantitative

Proteomics and Non-targeted Metabolomics, and WGCNA analysis and

statistical analysis were performed.

Results: Among the differentially expressed genes, we observed complex

expression patterns of the core genes involved in the phenotypic changes of

P.tricornutum under grazing pressure across different strains and multi-omics

datasets. These core genes primarily regulate the levels of various proteins and

fatty acids, as well as the cellular response to diverse signals.

Conclusion: Our research reveals the association of multi-omics in four strains

responses to grazing effects in P.tricornutum. Grazing pressure significantly

impacted cell growth, fatty acid composition, stress response, and the core

genes involved in phenotype transformation.
KEYWORDS

Phaeodactylum tricornutum , grazing stress, transcriptome, proteome,
metabolome, phenotype
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1 Introduction

Phytoplankton, particularly marine diatoms, are key

contributors to Earth’s primary productivity (Shukla et al., 2023),

responsible for about one-fifth of the total. The impact of global

climate change intensifies the importance of understanding their

response to grazing pressure, crucial for marine ecosystem

conservation. Phaeodactylum Tricornutum (Bowler et al., 2008), a

model organism for diatoms, showcases a diverse range of

responses to various environmental stressors, including nitrogen

and phosphorus deprivation and heavy metal ion exposure

(Thamatrakoln, 2021). Moreover, it affects the behavior of its

predators (Kim et al., 2022), such as copepods, altering their

grazing behavior and consequently, the marine food web. The

advent of high-throughput sequencing technologies has allowed

for a more in-depth exploration of these responses, extending to

many omics levels.

P.tricornutum, a pennate diatom with an evolutionary history

spanning 90 million years (Sims et al., 2006), displays remarkable

plasticity under environmental stressors. In response to nitrogen

deprivation, it reorganizes its proteome to facilitate nitrogen

removal and minimize lipid degradation, thereby limiting

nitrogen use to high-demand pathways (Kang et al., 2023).

Phosphorus scarcity triggers cellular changes, increasing

polyphosphate production, phosphorus transport, and

metalloenzyme production to dissolve organophosphates

(Helliwell et al., 2021). The diatom has a defined response to

heavy meta l ions , where a luminum tox ic i ty target s

photosynthesis, inducing increased reactive oxygen species (ROS)

and enhancing lipid peroxidation. This effect is mitigated by up-

regulated glycolysis and the pentose phosphate pathway, providing

the necessary cellular energy and carbon skeletons for growth (Xie

et al., 2015).

In the intricate marine food web, the impact of the diatom

P.tricornutum on its predators, particularly copepods, stands as a

significant ecological dynamic. Grazing-induced signals, stemming

from mechanical damage or specific compounds, can alter the

morphology, physiology, and life history of P.tricornutum (Zhang

et al., 2021). Toxins produced can impact diatoms’ nutritional

quality, thus modulating copepods’ grazing behavior (Park et al.,

2023). Furthermore, P.tricornutum’s synthesis of aldehydes

strategically curtails zooplankton reproduction, effectively

regulating predator populations and modulating grazing pressures

(Lauritano et al., 2016; Øie et al., 2017; Martino et al., 2019).

High-throughput sequencing technologies have propelled

P.tricornutum studies to new depths. Detailed transcriptomic and

proteomic analyses under low CO2 conditions have unearthed

profound alterations in metabolic pathways, underscoring

changes in carbon acquisition, signaling, and nitrogen metabolism

(Clement et al., 2017). Particularly under nitrogen limitation, there

is an observable upregulation in nitrogen fixation, central carbon

metabolism, and the tricarboxylic acid (TCA) cycle, paralleled by

lipid rearrangements favoring triglyceride distribution (Remmers

et al., 2018). The advent of high-throughput sequencing

technologies has provided an unprecedented opportunity to delve

deeper into the intricate biological processes at multiple “omics”
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levels - namely transcriptomics, proteomics, metabolomics, and

non-coding RNAs (Clement et al., 2017; Li and Ismar, 2018;

Remmers et al., 2018).

Recent investigations have highlighted substantial variations in

growth rate, biovolume, and nutritional composition among

individual P.tricornutum strains (Li and Ismar, 2018). The

sequence replicates of 1055/1 strain corroborates the consistency

of these samples. Quantitative simulations and observed shifts in

growth rate, biovolume, and nutritional composition have

illuminated the effects of copepod grazing pressure on

P.tricornutum. However, given the genetic diversity and unique

response profiles among different strains, a comprehensive

understanding of the differential gene expression mechanisms is

imperative. Such insights are critical to grasp the species’ adaptive

responses to grazing pressure. Therefore, there is a pressing need for

extensive, multi-strain, and multi-omics studies to refine our

understanding and unravel the gene regulatory networks that

drive growth discrepancies and morphological adaptations.

In this study, our objective is to elucidate the genetic

underpinnings that govern the diverse strain-specific responses of

P.tricornutum to grazing pressure. By integrating phenotype-

associated gene modules with comprehensive transcriptomic,

proteomic, and metabolomic datasets, we aspire to decode the

intricate molecular mechanisms driving these responses. This

endeavor is not merely an exploration of P.tricornutum’s adaptive

strategies; it represents a broader initiative to enhance our

comprehension of marine ecological interactions. Furthermore, it

aims to contribute strategically to the development of informed

approaches for mitigating the effects of global environmental

changes on these vital ecosystems.
2 Materials and methods

2.1 Cultivation of Phaedactylum
tricornutum strains and
experimental conditions

Four strains of P.tricornutum (CCAP 1052/1A, CCAP 1052/1B,

CCAP 1055/3, CCAP 1055/7) were provided by Génomique,

Environnementale et Evolutive Section 3 CNRS UMR8197, Institut

de Biologie de l’ENS (IBENS). The setting of culture conditions comes

from the paper of Li (Li and Ismar, 2018). The culture medium was

prepared using sterile-filtered natural seawater (Minisart High-Flow

0.1mm syringe filter; Sartorius Stedim Biotech GmbH, Goettingen,

Germany), fortified with macronutrients and micronutrients in

accordance with a modified Provasoli medium. P.tricornutum

cultures were incubated at 18°C under constant illumination of 100

mmol photons·m-2·s-1, following a 12:12 h light-dark cyclewith 2 hours

of simulated sunrise and sunset periods.
2.2 Experimental design

The design of grazing experiments followed the protocol

presented in Li (Li and Ismar, 2018). The grazing pressure was
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applied using over 2000 Acartia tonsa individuals, fed with

1×107P.tricornutum cells daily in 25 L seawater. Acartia were

maintained in a double-bucket system, with a 100 mm mesh sieve

replacing the bottom of the inner bucket (Supplementary Figure 1).

Daily, seawater in the outer bucket was replaced and Acartia faeces

and eggs were removed. Grazing treatment replicates were

generated by filtering Acartia’s culture medium using a 0.1 mm
syringe filter and adding it to P.tricornutum cultures. Control

groups were provides with the same volume of sterile-filtered

seawater, maintaining the nutrient ratio of the original medium

used for P.tricornutum cultivation.

Batch culture experiments were conducted for each

P.tricornutum strain under two treatments (control and grazing).

The 4 strains, under distinct conditions, were grouped into 8 sample

sets: pt52_A_c (CCAP 1052/1A strain control group), pt52_A_g

(CCAP 1052/1A strain grazing group), pt52_B_c (CCAP 1052/1B

strain control group), pt52_B_g (CCAP 1052/1B strain grazing

group), pt55_3_c (CCAP 1055/3 strain control group), pt55_3_g

(CCAP 1055/3 strain grazing group), pt55_7_c (CCAP 1055/7

strain control group), pt55_7_g (CCAP 1055/7 strain grazing

group). Each strain was cultured in 150 ml of medium and

subjected to Reference Genome, Transcriptome Sequencing on an

Illumina sequencing platform, TMT (Tandem Mass Tag) Labeled

Quantitative Proteomics Standard Analysis, and non-targeted

metabolomics Bioinformatics Standard Analysis. The grazing

treatment groups only received Acartia water, ensuring that the

responses to the chemical cues from grazing pressure was obtained

without within-strain selection due to grazing selectivity.

In a preceding study (Li and Ismar, 2018), three independent

experiments were conducted on multiple strains of P.tricornutum,

and the data demonstrated high repeatability. Rigorous quality

control measures were employed to ensure the removal of outliers

or any disproportionately impactful data points. Transcriptomic,

proteomic, and metabolomic approaches were employed to

improve the accuracy of the results. A principal component

analysis (PCA) was conducted on the proportion of omics data

with K-means clusters among the eight sample groups to examine

correlations between different omics within each strain, ensuring

mutual validation of data from diverse omics layers (Supplementary

Figure 2). Employing a multi-level data approach significantly

clarifies our analytical results. Despite these constraints, our

findings provide valuable preliminary insights and establish a

foundational basis for future, more extensive research.
2.3 Illumina RNA sequencing

Total RNA was extracted from 4 strains under two conditions

(control vs grazing). The quality of the extracted RNA, including its

concentration and purity, was confirmed by RNA-specific agarose

electrophoresis and Agilent 2100 Bioanalyzer. After the extraction,

purification, and library construction processes, Next-Generation

Sequencing (NGS) was conducted on the libraries using the

Illumina HiSeq sequencing platform, aligning with the

Phaeodactylum_tricornutum.ASM15095v2.dna.toplevel.fa reference

genome (acce s s ib l e a t h t tp s : / /p ro t i s t s . ensembl . o rg /
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Phaeodactylum_tricornutum/Info/Index). The raw sequencing data

have been deposited to the NCBI with the dataset identifier

PRJNA1008380 (https://www.ncbi.nlm.nih.gov/sra/PRJNA1008380).

Complete transcriptome analysis involved the filtration of raw

data and comparison of the filtered high-quality sequence (Clean

Data) with the species’ reference genome. Based on the comparison

results, the expression level of each gene was determined. After

splicing the resulting reads to restore the transcript sequence, they

were compared with known mRNA and LncRNA transcripts in

order to identify new LncRNA. An analysis of expression

differences, target gene enrichment, and cluster analysis was

conducted between known LncRNA and newly identified

LncRNA. For unmatched sequences, 20bp were intercepted from

both ends to obtain Anchor Reads. The Anchor Reads were then re-

matched with the genome, and the CircRNA was identified using

find_circ based on the comparison results. Then, basic statistical

analysis, quantitative and differential expression analysis, functional

and pathway enrichment analysis, and miRNA targeting

relationship prediction were conducted for CircRNA. The raw

miRNA data was filtered for quality, compared with the Rfan and

miRBase databases, and various sRNA annotation information was

obtained. The characteristics and expression of miRNA were

analyzed, and miRNAs with significant differential expression

were analyzed using clustering techniques. The predicted target

genes were also subjected to enrichment analysis. Differential

expression analysis involved standardized mRNA, LncRNA,

CircRNA, and miRNA for significant differential expression

screening, employing Log2Foldchange treatment and p-value

screening. KEGG and GO functional enrichment analysis were

employed to ascertain the primary biological functions of the

differentially expressed genes.
2.4 TMT labeled quantitative proteomics

TMT™ (Tandem Mass Tag™), an in vitro labeling technology

by Thermo Scientific, was employed to assess relative protein

content across our samples. Using labels of 2, 6, 10 or 16

isotopes, peptides’ amino groups were specifically labeled,

followed by tandem mass spectrometry to analyze protein content

variation in 2, 6, 10, or 16 groups simultaneously.

Our eight samples (four strains) from the two treatments

(control and grazing) underwent protein extraction through the

TCA acetone precipitation method, and SDT (4%(w/v) SDS,

100mM Tris/HCl pH7.6, 0.1M DTT) cleavage method

(Wisniewski et al., 2009). Then the protein was quantified by

BCA method. 200mg of protein from each sample was used for

tryptic enzymatic hydrolysis via the Filter aided proteome

preparation (FASP) method (Wisniewski et al., 2009), followed by

enzymatic enzymatic peptide desalination using C18 Cartridge. The

desalted peptide was then lyophilized and dissolved with a 40mL
Dissolution buffer (OD280). Subsequent to this, 100mg of the

peptide segment from each sample was labeled using the TMT

labeling kit (Thermo Fisher), and the proteins were identified and

quantitatively analyzed after SCX chromatography and LC-MS/MS

data collection. The mass spectrometry proteomics data have been
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deposited to the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) via the iProX partner

repository (Ma et al., 2019; Chen et al., 2021) with the dataset

identifier PXD044954.
2.5 Non-targeted metabolomics

HILIC UHPLC-Q-EXACTIVE MS technology coupled with a

data-dependent acquisition method was adopted for full-spectrum

analysis of the samples. Compound Discoverer 3.0 (Thermo Fisher

Scientific) facilitated peak extraction and metabolite identification

(Benton et al., 2015). The chromatographic separation of the

extracted metabolites from the eight samples was performed

using an ACQUITY UPLC BEH C18 column (100 mm*2.1 mm,

1.7mm, Waters, USA) with a column temperature set at 40°C and a

flow rate of 0.3 ml/min. Both positive and negative ion modes of

electrospray ionization (ESI) were utilized for detection. The

samples post- UHPLC separation were analyzed with a Q-

Exactive four-pole and a Thermo Fisher Scientific mass

spectrometer. The resulting raw mass spectrometry data were

processed by Compound Discoverer 3.0 (Thermo Fisher

Scientific) software for peak extraction, peak alignment, peak

correction, and standardization, resulting in a 3D data matrix

composed of the sample name, spectral peak information

(including retention time and molecular weight), and peak area.

The metabolite structure was identified by precise mass number

matching (<25 ppm) and secondary spectrogram matching method

to search the laboratory database and various other databases

including Bio cyc, HMDB, Metlin, HFMDB, Lipidmaps. The

metabolomics data have been deposited to the Metabolights

(Haug et al., 2020) with the dataset identifier MTBLS8485

(www.ebi.ac.uk/metabolights/MTBLS8485).
2.6 Weighted gene co-expression
network analysis

Co-presentation network construction employed the WGCNA

(Version 1.71) (Langfelder and Horvath, 2008). Hierarchical
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clustering of the sample data was first conducted to calculate the

test of delocalization value. During co-expression network

construction, we screened soft threshold values. Hierarchical

clustering and dynamic tree cutting algorithms (Langfelder et al.,

2008) were used to group genes with similar expression patterns

and categorize them into different gene co-expression modules. We

used the Pearson correlation coefficient to assess the relationship

between the characteristic gene (Pei et al., 2017) of the gene co-

expression module and the phenotype. Hierarchical clustering of

the sample data was carried out and the Pearson correlation

coefficient was calculated to link the sample to the phenotype.

In WGCNA, the core genes within each co-expression module

can be evaluated by Gene Significance and Module Membership

index (Pei et al., 2017). In this study, the genes with |KME|≥0.8 and

|GS|≥0.8 in each module were identified as the core genes in the

module. We then used the Gene Significance between genes and

phenotypes within each module to map the Connectivity of genes

within the module to verify the correlation between modules and

phenotypes. The essential code for WGCNA analysis is available in

the appendix for reference.
2.7 Softwares

Statistical analysis were performed using RStudio (R Core

Team, 2022).
3 Results

3.1 Transcriptome profiling
of P.tricornutum

The genomes of 8 samples of P.tricornutum were sequenced

using the Illumina HiSeq sequencing platform. Following the

removal of adapter and the filteration of low-quality sequences,

the resultant clean reads counts were as follows in Table 1. For

accurate genome alignment, clean reads were mapped to the

reference genome ASM15095v2 using the BWT algorithm
TABLE 1 Basic information about the sequencing data after data filtering.

Sample Reads No. Clean Read No. Bases (bp) Clean Data (bp) Clean Reads % Clean Data %

pt52_A_c 107600456 98856954 16140068400 14828543100 91.87 91.87

pt52_A_g 118828944 109112418 17824341600 16366862700 91.82 91.82

pt52_B_c 109030966 99613970 16354644900 14942095500 91.36 91.36

pt52_B_g 110369976 100799184 16555496400 15119877600 91.32 91.32

pt55_3_c 106200518 96171702 15930077700 14425755300 90.55 90.55

pt55_3_g 104258976 94442576 15638846400 14166386400 90.58 90.58

pt55_7_c 121164860 107697388 18174729000 16154608200 88.88 88.88

pt55_7_g 114128898 103032006 17119334700 15454800900 90.27 90.27
Reads No.: Total Reads; Clean Read No.: High quality sequence read number; Bases (bp): Total number of bases; Clean Data (bp): High quality sequence base number; Clean Reads %: High
quality sequence reads accounted for the percentage of sequencing reads; Clean Data %: High quality sequence bases accounted for the percentage of sequencing bases.
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implemented in the HISAT2 software. The mapping efficiencies

for each sample are detailed in Supplementary Table 2.

The mRNA expression of P.tricornutum was normalized using

the Fragments Per Kilo base of transcript per Million mapped reads

(FPKM) metric across various genes and samples. This study

identified12392 mRNA genes. Gene prevalence in each sample

was enumerated based on mRNA expression profiles, with the

statistical interplay of unique and common genes across all

samples illustrated in Figure 1. The inter-sample correlation,

based on FPKM values, revealed varying degrees of differential

expression amongst the four strains under grazing stress (Figure 2).

Notably, the correlation coefficient between the control and grazing

groups for all four strains exceeded 0.75, with strain pt52_B

exhibiting the highest correlation (0.93), indicating relatively

lesser differential expression under grazing pressure. Differential

gene expression analysis, conducted using DESeq, adhered to

criteria of |log2FoldChange| >1 and P-value < 0.05. This

approach identified 1235 mRNA genes as significantly

differentially expressed. Comparative analysis between control

and grazing pressure groups uncovered distinct expression

patterns for the four strains under grazing stress, with additional

expression data from the CCAP1055_1 strain represented

in Figure 3.

For LncRNA gene expression, FPKM normalization was

similarly differences applied. Our analysis identified a total of 505

LncRNAs, with correlation analysis indicating varied degrees of

differential expression among the strains under grazing pressure.

Notably, between pt52_B_c and pt52_B_g were statistically

insignificant, while pronounced differences were observed in the

pt55_3_c vs pt55_3_g and pt55_7_c vs pt55_7_g pairings, as

evidenced in Figure 2. Differential analysis of LncRNA expression set
Frontiers in Plant Science 05
the criteria for differentially expressed genes at |log2FoldChange| >1

and P-value < 0.05. After this filtration, 65 LncRNA transcriptional

genes showed significant differential expression, and cis-acting target

gene prediction was performed for these genes, with corresponding

target mRNAs identified (the relationships are delineated in the

Supplementary Table 3).

For CircRNA expression, normalization employed the

Transcripts per Million of a gene (TPM) metric, identifying a

total of 536 CircRNAs. Inter-sample expression correlations,

based on TPM, indicated varied differential expressions across

strains under grazing pressure, with no significant variations

among control groups (Figure 2). Despite using consistent

differential expression criteria of |log2FoldChange| > 1and P-

value < 0.05, no CircRNA showcased significant differential

expression upon further analysis.

miRNA expression was normalized using the Counts per Million

(CPM) metric, identifying 297 known miRNAs. Correlation analyses

of sample expressions, based on CPM, showed notably low

relationships among the four strains under grazing stress (Figure 2).
3.2 Proteomic profiling of P.tricornutum

In our comprehensive proteomic analysis of eight

P.tricornutum samples, 4984 proteins and 22985 peptides were

identified. Proteins exhibiting differential expression, defined by

an expression alternation exceeding 1.5-fold (upregulated beyond

1.5 times or downregulated below 0.67-fold), are detailed in Table 2.

To glean deeper biological insights, significant differentially

expressed proteins were subjected to KEGG pathway enrichment

analysis, the details of which are presented in Supplementary
FIGURE 1

Upset plot representing gene identification across samples. Each set’s cardinality represents the total count of genes identified within that particular
sample. Intersection cardinalities denote the number of genes detected in multiple samples. The horizontal line connecting all points signifies the
universally identified genes across all samples, while the remaining lines, connecting single or multiple points, represent genes exclusive to their
respective samples.
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Table 5. This proteomic exploration was further enriched by

integrating mRNA, LncRNA, and metabolomic data for an

encompassing metabolic pathway enrichment and analysis.
3.3 Metabolomic profiling of P.tricornutum

Metabolomic analysis of eight P.tricornutum samples, using

Compound Discoverer 3.0 software, yielded 5967 positive ion peaks

and 5814 negative ion peaks. Noteworthy Total Ion Chromatogram

(TIC) patterns emerged from the Mass Spectrometry (MS) evaluation.

The significant differential metabolites were clustered and enriched by

KEGG pathway (Supplementary Table 6). This analysis was further

integrated with mRNA, LncRNA, and proteomic data to perform

comprehensive metabolic pathway enrichment and analysis.
3.4 Pathway enrichment and analysis

Significantly differentially expressed genes within P.tricornutum

mRNA under grazing pressure were aligned with both Gene

Ontology (GO) and KEGG metabolic pathways (Figure 4). This
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revealed prominent involvement in pathways such as Glycolysis and

Gluconeogenesis, Fatty Acid Biosynthesis, the Fatty Acid Elongation,

Fatty Acid Degradation and Pyruvate Metabolism, Protein

Processing in Endoplasmic Reticulum, Carbon Fixation in

Photosynthetic Organisms, Nitrogen Metabolism. Furthermore,

pathways linked with stress responses, including Calcium Signaling,

Oxidative Stress, Nitrosative Stress, and Antioxidant Activity, were

also noteworthy. The specific data of KEGG Pathway Enrichment in

Transcriptomic (Supplementary Table 7), Proteomic (Supplementary

Table 5) and Metabolomic (Supplementary Table 6) are in

the Appendix.

Concurrently, genes markedly differentially expressed across

the transcriptome, proteome and metabolome of P.tricornutum

under grazing conditions were compared against the KEGG

metabolic pathway (Figure 5).
3.5 Weighted gene co-expression
network analysis

Utilizing the expression data of 12802 selected genes across eight

samples, a weighted gene co-expression network was constructed.
B

C D

A

FIGURE 2

Sample correlation Analysis. Sample identifiers are presented on the left and bottom. The color gradient within each square quantifies the correlation
strength between corresponding sample pairs. Subfigure (A) corresponds to mRNA. Subfigure (B) denotes LncRNA. Subfigure (C) represents CircRNA.
Subfigure (D) highlights miRNA.
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Network Construction: A cluster analysis was performed on the

eight samples to identify outlying values. A soft threshold was

determined to achieve a scale-free topological fit coefficient (R²) of

0.8 (Supplementary Figure 8). Hierarchical clustering was employed

to segregate genes into modules based on their correlations,

followed by merging modules exhibiting similar expression

patterns. Ultimately, 13 distinct modules were identified, ranging

in size from 11 to 2066 genes, each represented by different colors

(Supplementary Table 8, Figure 6).

Phenotypic Association and Interaction Analysis: Phenotypic

data were associated with gene co-expression modules following

outlier detection. The characteristic genes within each module

were considered as representatives for module-specific

expression profiles. Correlations between module characteristic

genes and various phenotypes were computed, providing insights

into the relationships within gene co-expression modules

(Figures 7, 8).
Frontiers in Plant Science 07
Identification of Core Genes: Within the network, Gene

Significance (|GS|) and Module Membership (|KME|) indices of

≥0.8 were used to ascertain core genes within modules. A

comprehensive analysis was conducted to identify the module

with the highest phenotype correlation. Correlations between

phenotypes and co-expression modules were further validated by

mapping gene connectivity within each module (Figure 9).

KEGG Pathway Annotation: The R KEGGREST Package

(Version 1.36.0) was employed for annotation, screening with a

significance level of p < 0.05 (Supplementary Table 9). A total of 29

phenotypic core genes were annotated across 38 pathways, with

varying correlations to distinct phenotypic modules.

Integration of Multi-Omics Data: The core genes were

compared and associated with the transcriptome, proteome, and

metabolome. The resulting multi-omics co-expression network was

visualized via Cytoscape (Version 3.9.1), elucidated in Figure 10.
4 Discussion

4.1 Transcriptomic insights and omics
convergence in P.tricornutum Strains
under grazing pressure

In our exploration of the transcriptome across four

P.tricornutum strainsunder grazing pressure, a discernible

convergence emerged: genes consistently exhibited up-regulation
FIGURE 3

Cluster analysis of heat map of DEGs. Green bars represent the down-regulated genes. Red bars represent the up-regulated genes. The color depth
represents the log2 ratio.
TABLE 2 Protein quantification and differences.

Comparisons Up Down All

1052_1A_c VS 1052_1A_g 134 128 262

1052_1B_c VS 1052_1B_g 116 202 318

1055_3_c VS 1055_3_g 227 389 616

1055_7_c VS 1055_7_g 434 326 760
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or down-regulation, albeit with varying intensities. While there are

shared defensive responses among strains when exposed to

herbivorous stressors, distinct transcriptomic regulatory

mechanisms also exist across different strains. Notably, the pt55_1

strain from the prior studies (Li and Ismar, 2018) exhibited

transcriptomic patterns similar to those of the pt55_3 strain in

our analysis.

The advancement in omics methodologies, notably RNA,

protein, and metabolic level analyses (Blum et al., 2022; Cheng

et al., 2023), has allowed for a more integrated and comprehensive

examination of complex networks, from genes to phenotypes. The

omic patterns observed in P.tricornutum strains underpin a nuanced

understanding of organismal responses to external pressures.

Notably:

Cellular Processes: A uniform down-regulation of genes was

observed at the transcriptomic level, while the proteome exhibited

an equitable distribution of up- and down-regulated genes,

demonstrating overall subdued differential expression.
Frontiers in Plant Science 08
Organic Systems and Environmental Information Processing:

Consistent up-regulation of genes was noted at both transcriptomic

and proteomic levels, with a more tempered up-regulation in the

proteome compared to the transcriptome.

Genetic Information Processing: A stark contrast between the

transcriptome and proteome emerged, with most transcriptomic

alterations showing down-regulation, whereas the proteome

predominantly exhibited up-regulation. The metabolome added

another dimension, displaying varied degrees of up-regulation in

significantly altered genes.

Metabolism Pathways: Under grazing stress, P.tricornutum

employed diverse gene regulatory strategies across different

metabolic pathways as a defense mechanism. Noteworthy trends

include: down-regulation across both transcriptomic and proteomic

dimensions in the Cell Cycle pathway, with a more subdued effect at

the protein level; down-regulation in pathways related to Plant-

pathogen interaction and Calcium signaling, in response to grazing

pressures; contrasting trends in Aminoacyl-tRNA biosynthesis with
FIGURE 4

Multi-omics Cell Function Map of P.tricornutum. This figure illustrates the integrated analysis of transcriptomics, proteomics, and metabolomics,
along with GO and KEGG pathway analysis, highlighting the significant variations under grazing pressure. Outer Ring: The periphery of the diagram
represents the protein structure involved, color-coded by Model Confidence according to the AlphaFold’s per-residue confidence score (pLDDT):
Blue: pLDDT > 90, Cyan: 70 ≤ pLDDT ≤ 90, Yellow: 50 ≤ pLDDT ≤ 70,Orange: pLDDT < 50. Regions with low pLDDT may signify isolated or
unstructured segments. Middle Section: Encompasses GO and KEGG pathway analysis for P.tricornutum under grazing pressure, integrating
transcriptomics, proteomics, and metabolomics: GO Analysis (Lower Left Corner): Blue rectangles indicate Process IDs and names; gray rectangles
indicate Function IDs and names; black arrows represent “is” relationships; blue arrows denote “part of” relationships. KEGG Metabolic Pathway
Analysis (Remaining Middle Section): Circles: Various compounds, DNA, or other molecules; Solid Arrows: Direct interactions or relationships;
Dashed Arrows: Indirect connections or unidentified reactions; Double Arrows: Reversible conversions; Rectangles: Required genes or enzymes;
Ellipses: Specific organelles; Font Colors: Represent the metabolic pathways obtained through different analyses - green for transcriptomic, blue for
proteomic, and red for metabolomic.
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down-regulation at the transcriptome but pronounced up-

regulation at the metabolome; varied gene expression in

Terpenoid backbone biosynthesis across transcriptome and

proteome; yet a unified up-regulation in the metabolome. In sum,
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the contrasting gene expressions across omics, especially in

pathways like Valine, leucine, and isoleucine degradation, reaffirm

the intricate and multifaceted nature of gene regulation in

P.tricornutum under grazing pressure.
FIGURE 5

Circos plot illustrating differential expression across transcriptomic, proteomic, and metabolomic data in P.tricornutum’s KEGG pathway under
grazing stress. Transcriptomic Data: Represents the log10-transformed gene transcription levels for each KO. Proteomic Data: Demonstrates the
log2-transformed expression levels of proteins, comparing the grazing pressure group with the control group. Metabolomic Data: Features the
log10-transformed expression profiles of metabolites, contrasting the grazing pressure and control groups. From the outside in: The first circle is the
metabolic path corresponding to each gene and its text annotation, the bar color is meaningless; The second circle is a heat map of the data
expression at the transcriptomic level in the metabolic pathway (red to blue with red representing up-regulation and blue representing down-
regulation); The third circle is the dot plot of differential expression values of each gene corresponding to the grazing pressure group and the
control group in transcriptomic level. The fourth circle is the line chart of the P-Value of each gene in the transcriptomic level; The fifth circle is a
heat map of data expression at the proteomic level of metabolic pathways (color meaning is the same as transcriptomic data); The sixth circle is the
dot plot of the differential expression values of each gene corresponding to the grazing pressure group and the control group in the proteomic level.
The seventh circle is a heat map of data expression at the metabolomic level in the metabolic pathway (color meaning is the same as the
transcriptomic data); The eighth circle is the dot plot of the differential expression values of each gene corresponding to the grazing pressure group
and the control group in the data of the metabolomic level. The ninth circle is the relationship diagram of the four strains distinguished by color,
where brown represents pt52_A, seagreen represents pt52_B, royalblue represents pt55_3, and mediumpurple represents pt55_7. The outermost
metabolic path annotation is: CEL-CYC (Cell cycle); PLA-INT (Plant-pathogen interaction); CAL-SIG (Calcium signaling pathway); PHO-SIG
(Phosphatidylinositol signaling system); SPH-SIG (Sphingolipid signaling pathway); AMI-BIO (Aminoacyl-tRNA biosynthesis); DNA-REP (DNA
replication); PRO (Proteasome); FRU-MAN (Fructose and mannose metabolism); GAL-MET (Galactose metabolism); ASC-ALD (Ascorbate and
aldarate metabolism); INO-PHO (Inositol phosphate metabolism); GLY-MET (Glycerophospholipid metabolism); SPH-MET (Sphingolipid metabolism);
GLY-DIC (Glyoxylate and dicarboxylate metabolism); FOL-BIO (Folate biosynthesis); PER (Peroxisome); THE (Thermogenesis); PRO-EXP (Protein
export); PEN-PHO (Pentose phosphate pathway); RNA-DEG (RNA degradation); FAT-ELO (Fatty acid elongation); FAT-DEG (Fatty acid degradation);
ARG-BIO (Arginine biosynthesis); ALA-ASP (Alanine, aspartate and glutamate metabolism); GLY-SER (Glycine, serine and threonine metabolism);
GLU-MET (Glutathione metabolism); AMI-SUG (Amino sugar and nucleotide sugar metabolism); PRO-MET (Propanoate metabolism); MET-MET
(Methane metabolism); TER-BAC (Terpenoid backbone biosynthesis); OXI-PHO (Oxidative phosphorylation); VAL-LEU (Valine, leucine and isoleucine
degradation); TCA (Citrate cycle (TCA cycle)); PUR-MET (Purine metabolism); PHO (Photosynthesis); PYR-MET (Pyruvate metabolism); NIT-MET
(Nitrogen metabolism); FAT-BIO (Fatty acid biosynthesis); PRO-PRO (Protein processing in endoplasmic reticulum); CAR-FIX (Carbon fixation in
photosynthetic organisms); GLY-GLU (Glycolysis/Gluconeogenesis); POR-MET (Porphyrin metabolism).
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4.2 Mechanisms of cellular response under
grazing pressure in P.tricornutum Strains

4.2.1 Cellular processes
Cellular Processes primarily reflect alterations in the

abundance, size, and cell cycle of P.tricornutum cells in response

to grazing pressure. A consistent up-regulation in genes associated

with protein synthesis was observed across different strains at both

the transcriptomic and proteomic levels. In particular, triradiate

strains demonstrated an enhanced capacity to modulate the cell

cycle under grazing pressure compared to fusiform strains, adapting

more effectively to planktonic lifestyles under environmental stress

(Song et al., 2020).

The endoplasmic reticulum (ER) serves as a crucial hub for

protein synthesis and maturation, facilitating the post-

translational modification, folding, and oligomerization of newly

synthesized proteins (Supplementary Figure 14). Under grazing

pressures, transcriptomic analysis of pt55_7 strains highlighted

the role of CALR (calreticulin) in recognizing G1M9 glycoproteins

in the ER. This process involves the inhibition of activity through

hydrophobic entrapment and the promotion of folding in newly

synthesized glycoproteins (Hirano et al., 2015). Concurrently, an
Frontiers in Plant Science 10
increase in ER chaperone BiP, integral for luminal chaperones

recognition, was noted, bolstering ER protein homeostasis

(Kyeong and Lee, 2022). BiP, acting as a sentinel of ER integrity,

targets aberrant proteins for proteasomal degradation and curtails

aggregation, as anchoring the protein quality control system

(Pobre et al., 2019). Chaperones such as DNAJA1 and CRYAA

play a crucial role in marking aberrant proteins for ER-associated

degradation (ERAD) (Shen et al., 2002). Proteomic scrutiny of

pt55_7 strains under grazing pressures, accentuated the up-

regulation of GANAB, facilitating deglycosylation processes

(Gallo et al., 2018), and ERManI, responsible for mannose

glycol-groups cleavage (Maki et al., 2022). The increased of

HSP110 activity further substantiates the role of heat proteins in

ER-associated degradation (Hrizo et al., 2007), while a decline in

SKP1 activity implies attenuated proteasomal ubiquitination

(Yoshida and Tanaka, 2010). This integrative analysis

illuminates a nuanced regulation of protein synthesis and

quality control in the pt55_7 strain’s ER, characterized by

enhanced pro t e in syn the s i s a longs ide pro t ea soma l

ubiquitination. This nuanced protein regulation under grazing

pressures, varies across strains, highlighting the heterogeneity and

complexity of their cellular responses.
FIGURE 6

Heat map depiction of the topological overlapping matrix (TOM). This visualization represents the gene values within the TOM, providing insights
into gene interactions within and across modules. Hierarchical Clustering and Modules: The upper and left sides of the graph depict a hierarchical
clustering tree and the corresponding core presentation modules identified by a dynamic tree cutting algorithm. TOM Values: The color gradient
within the figure illustrates the TOM values, while progressively darker shades indicate higher value. Interpretation: The most profound darkness near
the diagonal line signifies the strongest gene interaction within individual modules. In contrast, The darker regions further from the diagonal reveal
interactions between corresponding modules.
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In the Cell Cycle-yeast metabolic pathway (Supplementary

Figure 15), specific genes (MCM2, ORC2, SMC2, YCS4) in the

pt55_7 strain are down-regulated in response to grazing pressure,

suggesting potential impediments in DNA replication and

metaphase chromosome compaction. These intricate interactions

among McM2-7 proteins, ORC components, and other essential
Frontiers in Plant Science 11
factors like CDC6 and CDT1 are fundamental to DNA replication

processes (Remus et al., 2009; Shibata and Dutta, 2020).

Additionally, the collaboration between SMC2 and YCS4 establish

a protein condensin complex pivotal for DNA morphology (Stray

et al., 2005; Hassler et al., 2019). Among the strains studied, only

pt55_7 exhibited significant alterations in the cell cycle, suggesting
FIGURE 7

Heat map of correlation illustrating the correlation between coexpression modules and phenotypes: This figure delineates the relationship between
individual coexpression modules and specific phenotypes. The X-axis represents individual co-expression modules, depicted in the left color block,
while the Y-axis represents all phenotypes, shown on the lower side of the figure. within the graph, color coding is used to represent the correlation
values. Red indicates a positive correlation, blue denotes a negative correlation, and white signifies no correlation. Each cell within the figure
contains two values; The upper value is the Pearson correlation coefficient, and the lower value represents the P-value. the figure elucidates that the
two co-expression modules most positively correlated with each phenotype are identified as the black module and the purple module.
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that the triradiate pt55_7 strain of P.tricornutum is more likely to

modulate its cell cycle in response to grazing pressures than its

fusiform strains.

4.2.2 Fatty acid metabolism
Fatty acids play vital physiological roles in organisms, and the

intricate alterations of fatty acid composition in P.tricornutum in

response to grazing pressure are crucial in multi-omics analysis.

The synthesis efficiency of long-chain fatty acids decreased at the

transcriptome level and exhibited a slight increase at the proteome

level, alongside an overall reduction in fatty acid abundance. This

aligns with previous findings that environmental changes impact

lipid profiles (Martino et al., 2011), with the triradiate strain

showing greater resilience to grazing stress compared to the

fusiform strain.

The study of fatty acid metabolism, especially in pt55_3,

clarified the influence of grazing pressure on the biosynthesis,

elongation, and degradation pathways. Within the fatty acid

biosynthesis pathway (Supplementary Figure 16), a significant

down-regulation of ACACA (Acetyl-CoA carboxylase) implies a

reduction in ATP-dependent carboxylation of Acetyl-CoA to

Malonyl-CoA under grazing pressure (Pereira et al., 2022). Enoyl

ACP reductases, including FabI and its isomers (FabL, FabK, FabV,

and InhA), play a crucial role in many microorganisms (Rana et al.,

2020). A decline in the expression of FabI leads to a reduced

processing of trans-2-Enoyl-[ACP] and Long-chain acyl-[ACP].

Prior to utilization within organisms, fatty acids require CoA

conjugation (Ma et al., 2022). The down-regulation of FadD

results in a slower conversion of Long-chain fatty acid to Long-
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chain acyl-CoA. Collectively, these findings highlight a decreased

efficiency in fatty acid biosynthesis at the transcriptomic level due to

grazing pressure. Within the fatty acid elongation metabolic

pathway (Supplementary Figure 17), the diminished activity of

HADH (3-hydroxyacyl-CoA dehydrogenase) during the

processing of fatty acids containing between 4 and 16 carbon

atoms suggests a suppressed oxidation reaction, consequently

hindering fatty acid elongation at the proteomic level. Within the

degradation pathway (Supplementary Figure 18), a decrease in the

activities of HADH and ACADS results in a reduction of fatty acid

dehydrogenation during the process of carbon chain reduction.

Notably, the expression of ACAT, which is crucial in the terminal

cleavage reactions of fatty acid degradation, is increased.

Simultaneously, a down-regulated lncRNA, MSTRG.9570, has

been found to be associated with ACAT modulation. Taken

together, these findings suggest that grazing pressure hampers

fatty acid oxidation while enhancing terminal cleavage reactions

in degradation.

Collectively, omics analyses reveal that grazing pressures on

P.tricornutum impede its fatty acid synthesis efficiency, favoring

degradation processes, leading to a significant reduction in fatty

acid quantity, which is in line with previous findings (Li and Ismar,

2018). At the transcriptomic level, the strains pt52_A and pt52_B

exhibit enhanced fatty acid synthesis efficiencies, with variable

reductions in elongation and degradation processes,not mirrored

at the proteome and metabolome levels. Consequently, under

grazing stress, both strains appear to favor the synthesis of short-

chain fatty acids. In contrast, the pt55_7 strain exhibits only a

modest proteomic increase in fatty acid synthesis, indicating
FIGURE 8

Sample and phenotypic correlation heat map. The X-axis designates the samples while the Y-axis illustrates various phenotypes. Progressive shades
of red reflect the strength of the correlation between samples and phenotypes. White signifies the absence of correlation, while gray denotes
missing data points.
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distinct response patterns between fusiform (pt52_A, pt52_B,

pt55_3) and triradiate (pt55_7) strains under grazing pressures.

4.2.3 Signal response
Cells respond to environmental stress by undergoing complex

signal transduction and regulatory actions. In the presence of

grazing stress, P.tricornutum regulates Ca2+ levels through a

variety of sensor proteins, resulting in changes at both the

transcriptome and proteome levels.
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Within the metabolic pathway of plant-pathogen interaction

(Supplementary Figure 19), under grazing pressure, an up-

regulation of CaMCML (Ca2+ calmodulin-like protein) in pt52_A

strains suggests the translation of intracellular Ca2+ fluctuations into

downstream signals through numerous sensor proteins, facilitating a

defense against diverse stressors (Melo-Braga et al., 2012). This

regulation could potentially lead to stomatal closure and increase

the production of nitric oxide (NO), a molecule that is considered to

be a sentinel against external threats and is thus crucial for plant
FIGURE 9

Gene significance vs. connectivity scatter plot. The scatter plot illustrates the relationship between a gene’s significance relative to phenotype and its
connectivity within modules. Each data point corresponds to an individual gene. Notably, core genes display heightened |GS| values and increased
connectivity. Therefore, the genes located in the upper and lower right corners are classified as core genes. This visual allows for the discernment of
modules most closely correlated with phenotype, providing complementary information to that depicted in Figure 7.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1308085
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1308085
defense (Robbins and Cowen, 2023). HSP90B, a universally

conserved molecular chaperone, regulates the structure and

function of numerous client proteins, many of which act as crucial

signal transduction nodes (Kumar and Ohri, 2023). Intriguingly,

under grazing stress, pt52_A strains manifest a down-regulation of

HSP90B, potentially in response to stressors like the Hypersensitive

Reaction (HR). Conversely, in the pt55_3 strain, an opposite trend is

observed, where up-regulation of HSP90B may enhance signal

transduction pathways to counteract stress.

In the Ca2+ signaling pathway (Supplementary Figure 20), the

transcriptomic up-regulationof SPHK (sphingosine kinase) in pt52_A

strains promotes sphingosine phosphorylation, which results in 1-

phosphate sphingosine. Its equilibrium with ceramide plays a

significant role in influencing sphingolipid dynamics (Adams et al.,

2020; Smith et al., 2023). Moreover, with the up-regulation of CALM

(calmodulin), Ca2+ modulates the MAPK signaling cascade, thus

governing cellular processes including contraction, metabolism, and

proliferation. The proteome of pt55_3 exhibits a remarkable up-

regulation of PPIF (peptidyl-prolyl isomerase F (cyclophilin D)),
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which leads to compromised mitochondrial stability and

functionality under Ca2+ stress (Gainutdinov et al., 2015).

Consequently, it is apparent that under the influence of Ca2+, both

pt52_A and pt55_3 strains promote cell apoptosis at the

transcriptomic level; proteomic evidence simultaneously suggests

impaired mitochondrial function. This observation provides a

coherent explanation for the diminished cellular efficacy observed in

the Ca2+ signaling pathway under grazing pressure in these strains,

while other strains appear to remain relatively unaffected. In response

to grazing pressure, intricate regulatorymodifications across signaling

pathways are discernible, emphasizing the dynamic predator-prey

relationship between the grazers and P.tricornutum.
4.3 Weighted gene co-expression
network analysis

Multi-Omics Insights into P.tricornutum’s Adaptation Under

Grazing Stress Utilizing Weighted Gene Co-expression Network
FIGURE 10

Coexpression relationships across phenotypic data: This figure portrays the coexpression interactions among core genes, transcriptional genes,
proteins, and metabolites across various phenotypes, as discerned through WGCNA. Triangles represent distinct phenotypic data. Dots represent
individual transcriptional gene IDs or protein gene IDs. Diamond symbolize specific metabolite names. Lines joining the icons denote co-expression
relationships. A gradient from red to green depicts the degree of differential expression of transcriptional genes, protein genes or metabolites.
Intense shades of red indicate significant up-regulation, while deeper greens indicate pronounced down-regulation. White suggests negligible
differential expression. Blue is not representative of any specific data. The right periphery of each icon is labeled with its respective name.
Additionally, each of the four segments is labeled with a specific strain name. The sequence from left to right consists of metabolites, protein genes,
transcription genes, phenotypic data, and is mirrored for the right half of the figure.
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Analysis (WGCNA), core genes were correlated with

transcriptomic, proteomic, and metabolomic datasets ,

constructing a multi-omics co-expression network pertinent to

the observed phenotype (Li and Ismar, 2018). This analysis

underscored the morphological modifications in the pt52_B and

pt55_7 strains of P.tricornutum under grazing stress.

Inpt52_B strain, phenotypic traits like total cell count, growth rate,

and specific morphological variants of P.tricornutum were linked to

metabolic routes such as Glycolysis/Gluconeogenesis (Supplementary

Figure 21) and Carbon fixation in photosynthetic organisms

(Supplementary Figure 22) at both the transcriptomic and proteomic

levels. Notably, down-regulation of PGAM (2,3-bisphosphoglycerate-

dependent phosphoglycerate mutase) inhibits the interconversion

between 3-phosphoglyceric and 2-phosphoglyceric acid, highlighting

PGAM’s pivotal role inmetabolicflux and redox balance, as supported

by its modulation of mitochondrial ROS and activation of the pentose

phosphate pathway (Mikawa et al., 2020).Concurrently, up-regulation

ofGAPDH(aldehyde 3-phosphate dehydrogenase (phosphorylating))

and PGK (phosphoglycerate) underscores their importance in the

carbon flux during Glycolysis/Gluconeogenesis, influencing cellular

growth dynamics under grazing stress. Earlier work has similarly

indicated such morphological adaptations in Phaeocystis globose in

response to grazing, spotlighting the universality of this response

(Yang et al., 2023).

For pt55_7, a correlation was found between phenotypic

measures and the down-regulation of POLA1 (DNA polymerase

alpha subunit A) at the transcriptomic level. Given that DNA

polymerase alpha orchestrates replication initiation, the

diminished activity of POLA1 hints at perturbed DNA replication

dynamics (Begemann et al., 2022). In light of our multi-omics

findings, this suggests that the triradiate P.tricornutum’s pt55_7

strain employs cellular replication regulation as an adaptive

mechanism under grazing stress.

In strains pt52_A, pt55_3 and pt55_7, phenotypic alterations,

particularly in fatty acid profiles, showed correlations across all

omics layers. A collective downtrend in fatty acid synthesis

emerged, intimating a reduction in the overall fatty acid pool.

This hints at a strategic recalibration by P.tricornutum under

grazing stress, aligning with the notion that modulation of fatty

acid profiles is a crucial defense mechanism for plankton against

predators. Such adjustments, mirroring changes in environmental

pressures, are evident in other marine phytoplankton, reinforcing

the idea that shifts in fatty acid content are universal stress markers

in phytoplankton under grazer-induced stress (Antacli et al., 2021;

Yang et al., 2023).
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