
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Yunchao Tang,
Guangxi University, China

REVIEWED BY

Xi Qiao,
Chinese Academy of Agricultural Sciences,
China
Jinhui Li,
Zhongkai University of Agriculture and
Engineering, China

*CORRESPONDENCE

Jing Zhao

zhaojscau@163.com

Yongbing Long

yongbinglong@126.com

RECEIVED 04 October 2023

ACCEPTED 13 November 2023
PUBLISHED 30 November 2023

CITATION

Bai S, Liang J, Long T, Liang C, Zhou J,
Ge W, Huang B, Lan Y, Zhao J and Long Y
(2023) An efficient approach to detect and
track winter flush growth of litchi tree
based on UAV remote sensing and
semantic segmentation.
Front. Plant Sci. 14:1307492.
doi: 10.3389/fpls.2023.1307492

COPYRIGHT

© 2023 Bai, Liang, Long, Liang, Zhou, Ge,
Huang, Lan, Zhao and Long. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 30 November 2023

DOI 10.3389/fpls.2023.1307492
An efficient approach to
detect and track winter flush
growth of litchi tree based on
UAV remote sensing and
semantic segmentation

Shudai Bai1,2, Juntao Liang1,2, Teng Long1,2, Changjiang Liang1,2,
Jinxin Zhou1,2, Weiyi Ge1,2, Binshan Huang1,2, Yubin Lan1,2,3,
Jing Zhao1,2* and Yongbing Long1,2,3*

1College of Electronic Engineering/College of Artificial Intelligence, South China Agricultural
University, Guangzhou, China, 2National Center for International Collaboration Research on Precision
Agricultural Aviation Pesticides Spraying Technology, Guangzhou, China, 3Country Guangdong
Laboratory for Lingnan Modern Agriculture, Guangzhou, China
The immature winter flush affects the flower bud differentiation, flowering and

fruit of litchi, and then seriously reduces the yield of litchi. However, at present,

the area estimation and growth process monitoring of winter flush still rely on

manual judgment and operation, so it is impossible to accurately and effectively

control flush. An efficient approach is proposed in this paper to detect the litchi

flush from the unmanned aerial vehicle (UAV) remoting images of litchi crown

and track winter flush growth of litchi tree. The proposed model is constructed

based on U-Net network, of which the encoder is replaced by MobeilNetV3

backbone network to reduce model parameters and computation. Moreover,

Convolutional Block Attention Module (CBAM) is integrated and convolutional

layer is added to enhance feature extraction ability, and transfer learning is

adopted to solve the problem of small data volume. As a result, the Mean Pixel

Accuracy (MPA) and Mean Intersection over Union (MIoU) on the flush dataset

are increased from 90.95% and 83.3% to 93.4% and 85%, respectively. Moreover,

the size of the proposed model is reduced by 15% from the original model. In

addition, the segmentation model is applied to the tracking of winter flushes on

the canopy of litchi trees and investigating the two growth processes of litchi

flushes (late-autumn shoots growing into flushes and flushes growing into

mature leaves). It is revealed that the growth processes of flushes in a

particular branch region can be quantitatively analysed based on the UAV

images and the proposed semantic segmentation model. The results also

demonstrate that a sudden drop in temperature can promote the rapid

transformation of late-autumn shoots into flushes. The method proposed in

this paper provide a new technique for accurate management of litchi flush and a

possibility for the area estimation and growth process monitoring of winter flush,

which can assist in the control operation and yield prediction of litchi orchards.
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1 Introduction

Litchi, a traditional fruit crop in South China, has always been

one of the most popular fruits because of its delicious flavour,

attractive colour, and high nutritive value (Zhao et al., 2020). As the

world’s rich litchi country, China ranks the first in litchi production

(69.9% of total production) followed by Thailand, India, and

Vietnam (Pareek, 2016; Qi et al., 2016). Due to the economic

value of litchi fruit, there is interest in the physiology of this

tropical species so that management techniques can be designed

to maximize fruit yield.

However, litchi’s unit yields are generally low and unstable (Xu

et al., 2010), which is affected by various factors, such as soil tillage,

fertilizer, climate and so on. Many studies have shown that in

addition to the above external factors, the maturity of terminal

shoots before flowering is the internal factor, which also directly

affects the flowering rate, fruit setting rate and final litchi yield (Liu

et al., 2022). In general, shoot growth has a rapid period of shoot

elongation and leaf expansion. Leaf expansion needs to go through
Frontiers in Plant Science 02
three different development stages of red, yellowish red and

yellowish green leaves, and then enter the maturity period of dark

green leaves (Hieke et al., 2002). Due to the suitable climate, litchi

leaves can grow from red leaves to dark green leaves in autumn in

September to October every year. The late-autumn shoots or winter

shoots drawn in November to December, however, cannot grow

into ripe green leaves on schedule because of the influence of

temperature, and the colour of the leaves is still red, yellowish red

and yellowish green. The occurrence of immature winter flush for

litchi trees at flowering stage could result in relatively low flowering

rate since the immature flush prevents the flower bud differentiation

and then reduces the flowering rate on the canopy (see Figure 1). In

litchi planting, leaves of the terminal shoots (potential flowering

branches) should be dark green and matured during floral

induction and differentiation stage, and winter flushes should be

removed or killed (Yang et al., 2015) to ensure adequate energy for

new shoots of leaves, floral buds, axillary buds at the beginning of

spring (Chen et al., 2004) and then enhance the flowering rate.

Therefore, in the management of litchi orchards, accurate monitor
B

C D

A

FIGURE 1

Litchi tree with different flowering rate. (A) Litchi tree with no flowers (the flushes have not grown into mature leaves before the flower bud
differentiation stage). (B) Litchi tree with canopy partially covered by flowers (there are no flower spikes in the region where there are flushes).
(C) Litchi tree with canopy fully covered by flowers (the flushes have grown into mature leaves before flower bud differentiation). (D) The red boxes
denote flushes in panel (B).
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of flush growth in winter and efficient estimate of the area ratio of

flush cannot only provide guidance for irrigation control in orchard

management, but also produce more nutrient for the growth of

flower buds. It plays an important role in the increase and

prediction of the yield of litchi, and helps to enhance the market

value of litchi.

Despite the importance of obtaining area proportion on flushes,

there are still relatively few studies on automatic detection and

segmentation of litchi flushes, and the progress towards this goal is

still relatively slow. At present, estimating and controlling flushes

still relies more on the manual judgment and operation of

experienced orchard managers. However, the following questions

inevitably arise: (1) Due to the large planting area of litchi orchards,

the work of estimating and judging the area and growth of winter

flushes is labour-intensive and time-consuming; (2) Because of the

tall physiological characteristics of litchi trees, the winter flushes on

the top of the trees are not observed by manual methods, which

makes it difficult to monitor the growth of winter flush, and it is easy

to obtain qualitative statistics on the area of winter flushes rather

than quantitative statistics; (3) The proportion of winter flushes

area of each litchi tree could not be counted by the artificial

estimation method.

In recent years, UAV, as a technology to acquire high spatial

and temporal resolution remote sensing images, has been widely

used in precision agriculture because of its obvious advantages such

as simple structure, strong mobility, high spatial and temporal

resolution, synchronous acquisition of images and spatial

information (Osco et al., 2021),which greatly reduces human

resources and contributes to the improvement of crop production

and efficiency (Aslan et al., 2022).A UAV with flexible movements

and a camera provides basic support to manpower in situation

assessment and surveillance application (Aslan et al., 2022), and

advance in UAV technology provides producers with options for

assessment of crucial factor impacting crop yield and quality, and

also offers researchers with a non-destructive, objective manner for

obtaining phenotypic measurements (Olson and Anderson, 2021).

Torres-Sanchez et al. (2014) evaluated the accuracy, spatial and

temporal consistency of six different vegetation indices (CIVE, ExG,

ExGR, Woebbecke index, NGRDI and VEG) in a wheat crop using

super resolution images from a low-cost camera attached to a UAV,

and studied the effects offlight altitude (30 and 60 m) and days after

seeding (DAS from 35 to 75DAS) on the accuracy of FVC

classification. This study demonstrated that the low-cost-camera

UAV can be used in precision agriculture applications, such as

vegetation mapping in weed management.

Deep learning, which is rapidly gaining momentum as an image

processing and data analysis method (Heaton, 2017), is an artificial

neural network approach with multiple hidden layers and deeper

combinations (Osco et al., 2021). As computer processing and

labelling samples (i.e., samples) became more available, the

performance of deep neural networks (DNNs) in image

processing applications had improved, which tended to improve

its performance and returned a larger learning capability than most

common networks or other types of learners (Lecun et al., 2015; Ball

et al., 2017). Although known for the high demand for
Frontiers in Plant Science 03
computational power and high requirement for labelled data,

deep neural networks have been successfully applied in

agricultural applications such as weed detection, agricultural

output assessment, etc.

The UAV remote sensing methods based on deep learning can

be categorized into classification, object detection and segmentation

tasks. Convolutional neural network and recurrent neural network

are the most commonly used network architectures (Liu et al., 2021).

In the study of agricultural precision management tasks, image

segmentation technology is often used to obtain specific spatial

characterist ics and time-varying information of crop

characteristics, because it provides basic information for crop

growth monitoring, plant breeding evaluation, differentiation

analysis and decision making (Hunt and Daughtry, 2018). For rice

lodging recognition, Su et al. (2022) proposed a semantic

segmentation method for rice lodging recognition that can process

multi-band images by using UAV remote sensing images and

combining U-Net network with dense block, dense network,

attention mechanism and jump connection, which provided a

useful reference for rice breeding and agricultural insurance claim

settlement. The improved DeepLabv3 network is proposed for

precise image segmentation of individual leaves by Yang et al.

(2023), which demonstrates that the proposed method can thus

effectively support the development of smart agroforestry. Genze

et al. (2022) used three different state-of-the-art deep learning

architectures combined with residual neural networks as feature

extractor to develop a weed segmentation model for detecting weeds

in sorghum fields under challenging conditions. The results showed

that the U-Net architecture with ResNet34 feature extractor obtains

more than 89% F1 scores on the persistence test set. Mo et al. (2021)

proposed a convenient semi-automatic image annotation method

and a high resolution digital ortho image segmentation method

based on partition to segment the canopy images of fruit trees

collected by UAV, which is of great significance for the accurate

management of orchards. Anand et al. (2021) used a multiscale

attention semantic segmentation method to automatically detect

farmland anomalies. Kamal et al. (2022) used the fully convolutional

network (FCN) and ResNet to analyse the accuracy of the weed and

crop segment. A global accuracy of more than 90% in the verification

package was achieved for both structures, which verified that FCN

network can assist in agricultural weed and crop segmentation.

Behera et al. (2023) deployed a lightweight convolutional neural

network (CNN) architecture in real-life settings on a UAV that can

be used in mapping urban areas, agricultural lands, etc.

Although UAV remote sensing and deep learning technologies

are widely used in precision agriculture, there is no literature that

applies these technologies to segmenting and tracking winter

flushes. This paper aims to develop a new approach based on

UAV technology combined with deep learning to segment the

winter flush of litchi trees and then track the growth process of

the flushes.

The main contributions of this paper can be summarized as

follows: 1) A new litchi flush dataset was constructed for the

training and verification of the litchi flush segmentation model. 2)

An improved lightweight semantic segmentation model was
frontiersin.org
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proposed. With litchi flush as the research object, image semantic

segmentation technology was used to segment litchi flush image,

which achieved the expected target and segmentation effectiveness

to solve the problem of extracting growth information of litchi flush

in practical application. 3) The improved segmentation model was

applied in the actual production of litchi orchard to estimate the

area and track the growth process of winter flushes of litchi tree. The

development stage and growth range of flushes were analysed in

combination with temperature, and the changes in the area

proportion of flushes in regional branches were quantitatively

analysed, providing prediction information of early flush

extraction and monitoring information on winter flush growth

changes for accurate management of flush.
2 Materials and methods

2.1 Study areas

The UAV remote sensing image of flushes for litchi trees are

collected in three litchi orchards in Guangzhou, as is shown in
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Figure 2. The orchards are denoted as Area 1, 2 and 3. Area 1 is the

Xianjinfeng planting area of Fruit Tree Research Institute of

Guangdong Academy of Agricultural Sciences, located in Tianhe

District (113°22′44.68″E, 23°9′29.05″N). Area 2, No. 9 of Mache

New Fruit Farm, locates in Zengcheng District (113°47′7.43″E, 23°
14′37.65″N). The main varieties panting in Area 2 are Guiwei and

Nuomici. Area 3 is the litchi Garden of South China Agricultural

University, located in Tianhe District (113°21′59.20″E, 23°14′
37.65″N). There are 200 litchi trees with varieties such as Heiye

and Feizixiao and so on.
2.2 UAV image collection

DJI Phantom 4 Pro is used to get images of three regions. The

parameters for obtaining UAV remoting sensing images are as

follows: Flight altitude: 8-20 meters, aerial image overlap: 30%, lens

and ground Angle: 90°, image resolution: 5472 × 3648 pixels, flight

speed: 2.5m/s, time: April to December 2022, from10:00am to

5:00pm. The specific experimental data collection information is

shown in Table 1.
FIGURE 2

Overview of the study areas. (A) The locations of the study areas. (B–D) digital orthophoto maps of Areas A, B, and C acquired by a
UAV, respectively.
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2.3 Data processing and labeling

In the data preprocessing, the unclear UAV remote sensing

images and the images without litchi trees are removed from the

dataset. When the original images with 5472×3648 pixels are fed

into the deep learning network, it will cause memory overflow.

Therefore, the original images in the litchi flush dataset are cropped

into small images with a resolution of 512 × 512 pixels, and the

small images without flushes are removed. Finally, 358 litchi flush

images are obtained.

Since the supervised deep learning model is adopted for image

segmentation in this paper, positive and negative samples need to be

marked before image segmentation, so the region of interest (ROI)

in the image needs to be manually marked. In this study, labelme is

used to label the samples in the image, and the litchi flush samples

are labeled as two items, flush and background. The label box is an

irregular polygon around the ROI. The image annotation

information for the flush and the background are generated into

the corresponding Json file after the markup process. The Json file

contains the image storage information, the image name, the

comment name, and the coordinate information for the multiple

deformations of each tag. Figure 3 shows a partial image of dataset.
Frontiers in Plant Science 05
2.4 Semantic segmentation of litchi
flush dataset

2.4.1 U-Net
U-Net, a biomedical image semantic segmentation model

proposed by Ronneberger et al. (2015), is designed to train end-

to-end with a small number of images and generates more accurate

segmentations. This makes it very suitable for agriculture yield

because there are not enough labeled data to train complex CNN

architectures (Lin et al., 2019). The model first performs well in

biomedical image segmentation and subsequently outperforms

earlier segmentation methods in many other areas (Ciresan et al.,

2012). U-Net consists of two parts: encoder and decoder. The

encoder is a typical convolutional network structure. Each

module of the encoder contains two convolution layers and a

pooling layer, and each convolution is followed by a ReLu

activation function. This part down-samples the input image,

captures its context, and outputs the coarse feature map. The

decoder which has up-sampling layers receives the coarse feature

map (produced by the encoder) and produces the final fine

prediction image using transposed convolutions. This up-

sampling process makes the output of the network the same size
B

A

FIGURE 3

Image presentation of part of the flush dataset. (A) is the original image of 512 x 512 pixels. (B) is the label image of (A) object.
TABLE 1 The Aerial data details.

Experimental area
Number
of images

Flight
height(m)

Date
of shooting

Variety

Fruit Research Institute, Academy of Agricultural Sciences

77 8

2022.04.03-04.18 Xianjinfeng,Guiwei211 10

136 15

Mache New Fruit Farm
35 15

2022.05.17-10.21 Guiwei,Nuomici
189 20

South China Agricultural University Litchi Garden
94 10

2022.10.14-12.16 Heiye,Feizixiao
65 15
frontiersin.org

https://doi.org/10.3389/fpls.2023.1307492
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bai et al. 10.3389/fpls.2023.1307492
as the input image, thus achieving pixel-level segmentation. Copy

and Crop section mediates between the encoder and decoder

sections. It uses skip connections to connect the middle outputs

of the encoder to the inputs of the middle layers of the decoder at

the appropriate locations, that is, to fuse high-resolution

information (texture information) and low-resolution information

(position information). This connection process can fill in the

underlying information to improve the segmentation accuracy.

2.4.2 MobileNetV3
MobileNetV1 (Howard et al., 2017) introduces deep separable

convolution as an effective alternative to traditional convolution

layers. In the network structure, the first layer is the standard

convolution layer, and the others are deep separable convolution. A

7×7 average pooling layer is connected after convolution, and then

through a fully connected layer. Finally, the output of the fully

connected layer is normalized by using the Softmax activation

function to get the result. MobileNetV2 (Sandler et al., 2019)

introduces Linear Bottlenecks and Inverted Residuals. The bneck

structure is a reverse residual structure consisting of a 1x1 extended

convolution, a deep convolution and a 1x1 projection layer, with the

last convolution using a linearly activated bottleneck structure

instead of the ReLu function. The structure of MobileNetV3

(Howard et al., 2019) is shown in Figure 4. Based on

MobileNetV2, SE module is first added into the bneck structure

and h-swish nonlinear activation function is used, and then Neural

Architecture Search parameter (NAS) is used. Finally, the number

of cores in the first convolution layer is reduced, the Last Stage is

streamlined, and the time-consuming layer structure is redesigned.

MobileNetV3 is defined as two models: MobilenetV3-Large and

MobilenetV3-small. These models target high resource and low

resource usage, respectively.
Frontiers in Plant Science 06
2.4.3 Transfer learning
Deep learning often requires large-scale data to train and

optimize the network model, but in the research on litchi flush

segmentation, the number of images with pixel-by-pixel annotation

tends to be small. Overfitting problems often occur when network

models are trained on a small dataset. At the same time, the

marking of litchi flush data image is time-consuming and tedious,

and it is subject to subjective influence. Transfer learning can solve

the problem of poor training of deep convolutional neural network

model caused by small amount of data. MobileNetV3 network is a

lightweight convolutional neural network focused on mobile

terminals or embedded devices. Compared with traditional

convolutional neural networks, it greatly reduces model

parameters and computation on the premise of a small decrease

in accuracy, and obtains sufficient training on large image datasets

to learn a large number of features required for image classification

and recognition. Therefore, transfer learning idea (Zhuang et al.,

2021) can be applied to optimize litchi flush segmentation model by

making full use of the large amount of knowledge learned from

MobileNetV3 pre-training model. A common transfer learning

method is feature transfer, which removes the last layer of the

pre-training network and sends its previous activation value (which

can be regarded as feature vector) to classifier such as support vector

machine for classification training; The other is parameter

migration, which only needs to re-initialize a few layers of the

network (such as the last layer), and the remaining layers directly

use the weight parameters of the pre-trained network, and then use

the new dataset to fine-tune the network parameters. This paper

adopted the transfer learning mode of feature transfer, and used

MobileNetV3 as the feature extractor of image segmentation. By

replacing the backbone part of U-Net, MobilenetV3_unet was

finally modified to be used for litchi flush segmentation.
FIGURE 4

The network structure of MobileNetV3 model.
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Compared with the new learning (that is, randomly initialize the

weight parameters of all layers of the network and use the training

data set to start the new training of the network from the

beginning), the introduction of the pre-trained network model is

helpful to accelerate the training speed and improve the accuracy.

2.4.4 Attentional mechanism module
When the decoder is used to extract litchi flushes information,

the extraction ability of high-dimensional features is weakened due

to the need of up-sampling. At the same time, cascade structure of

U-Net does not distinguish the usefulness of the information (Su

et al., 2022). In this paper, an attention mechanism was added to the

cascade structure of the U-Net decoder (Hu et al., 2018) as well as

the up-sampling process, and the use of available information was

enhanced by adaptive control of the weight of each channel. This

attention mechanism includes both channel attention and spatial

attention. Given a high-resolution remote sensing image, it will

produce a multichannel feature map F ∈ RC�H�W (where C,

H and W denote the number of channels, the height, the width of

the feature map, respectively) after passing through several

convolutional layers. The information expressed in the feature

map of each channel is different. Channel attention aims to use

the relationships between each channel of the feature map to learn a

1D weight W_ c ∈ RC� 1� 1, and then multiply it to the

corresponding channel. Learning in the channel dimension in this

manner can obtain the importance of each channel and pay more

attention to the semantic information that is meaningful to the

current task. Spatial attention converts the spatial information of

the original image to another space and retains the key information

through the spatial module, and generates a weight mask for each

location and weights the output, thereby enhancing the area of

interest for a specific target and weakening the irrelevant

background. Therefore, the use of spatial attention helps to

summarize spatial information, especially the spatial information

of small objects. In this paper, the Squeeze-and-Excitation (SE) and

Efficient Channel Attention (ECA) modules of channel attention

mechanism and the Convolutional Block Attention Module

(CBAM) module of channel & space attention mechanism are

used respectively.
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• SE: SE module does attention or gating operations on the

channel dimension. This attention mechanism allows

models to focus on the most informative channel features

and suppress the unimportant channel features.

• ECA: ECA module is proposed by QLWang et al. The local

cross-channel interaction strategy without dimensionality

reduction effectively avoids the impact of dimensionality

reduction on channel attention learning.

• CBAM: The representative model of the mixed Attention

mechanism is the CBAM, which uses the combination of

channel attention module CAM and spatial attention

module SAM to process the input feature layer respectively.
2.4.5 Improved U-Net model: Mobileunet-CC
The network structure of the Mobileunet-CC model proposed

in this paper is shown in the Figure 5. The model is constructed

based on U-Net network, of which the encoder is replaced by

MobeilNetV3 backbone network, one convolutional layer is added

in each Double Conv module of the decoder and CBAM modules

are integrated in both encoders and decoders. The bneck module

contains multiple size and depth separable convolution blocks,

batch normalization (BN) layers, and H-Switch activation

function, etc. In addition, bneck modules with different depths

and different quantities are used to extract higher-level image

features according to the position of U-Net encoder part. The

decoder upsamples the features through bilinear interpolation to

compact the feature channels. The compressed features are fused

with the same number of channels in the encoder, then the litchi

flush features are extracted with three convolution kernel sizes of

3×3. CBAM is used to extract hierarchical features of images and

enhance feature extraction capabilities of the model. The final

feature segmentation map is output by a 1x1 convolution. The

3×3 convolutional layer in the original U-Net network does not use

the padding 0 strategy, which makes the output size of the

convolution smaller each time. Therefore, the padding strategy is

used for each convolutional layer in the proposed network, where

the 7×7 convolutional fill is 3 and the 3×3 convolutional fill is 1,

which makes the size of the feature maps before and after the
FIGURE 5

The network structure of Mobileunet-CC.
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convolution consistent. In the section of experiment, the detailed

segmentation results of the improved model are presented.

2.4.6 Performance evaluation
Semantic segmentation is still a pixel classification problem, and

the most commonly used loss function is the Cross Entropy Loss

Function (CEL). But for litchi flush dataset, there is a problem of

imbalance between positive and negative samples, which cannot be

solved well by using cross entropy loss function. In this paper, Dice

Loss function is used to replace the traditional cross entropy loss

function, i.e.

LDice = 1 −o
K

k=1

2wioN
i=1p(k, i)g(k, i)

oN
i=1p(k, i) +oN

i=1g(k, i)
(1)

In addition, pixel Accuracy (PA), Intersection over Union (IoU)

and dice coefficient are the performance metrics selected for

validation of the proposed semantic segmentation model.

PA is the ratio of the correct pixels to the total pixels. The

calculation formula is as follows:

PA =o
k

i=1

Pii

ok
i=1ok

j=1Pij
(2)

MIoU is the most commonly used evaluation index in semantic

segmentation experimental research. First, calculate the ratio of the

real and predicted values of the two sets of real and predicted values

to the union, and then calculate the average value of all categories.

The calculation formula is as follows:

MIoU = 1
k+1o

k

i=1

Pii

ok
j=1Pij +ok

j=1Pji − Pii
(3)
3 Experiment and discussion

3.1 Flush segmentation experiment

This section discusses the training and result analysis of the

semantic segmentation model of litchi flush. The 308 images in
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flush dataset are randomly divided into training set and verification

set with a ratio of 8:2, that is, 246 images were used for training, and

62 images were used for confirmation. And another 50 images were

used as the test set. The model training GPU is RTX 3060 and the

CPU is AMD Ryzen9 5900HS with Radeon Graphics 3.30 GHz.

Deep learning frameworks all used pytorch for semantic

segmentation model training.

3.1.1 Basic model selection
Figure 6 shows the loss function and the pixel accuracy curves

for three network models: FCN (Long et al., 2015), Deeplabv3

(Chen et al., 2018), Deeplabv3 and U-Net. In Figure 6A, the loss

function curve rapidly decreased in the initial epochs for all three

models. In the subsequent process, the loss function of FCN model

(yellow line) and Deeplabv3 model (blue line) had obvious

fluctuations. For the U-Net model, however, the loss function

curve decreased rapidly and steadily. The reason is that the litchi

flush dataset is relatively small due to the production difficulty and

it is not suitable for network structures with too many depth

parameters such as Deeplabv3 and FCN, etc. As can be seen from

Figure 6B, the pixel accuracy of U-Net model reaches the highest

value of 90.95%, which is 0.3% and 5.15% higher than that of

Deeplabv3 and FCNmodels, respectively. This happens because the

skip connection and up-sampling structures of U-Net can obtain

more feature information in the training set. In addition, the

encoder and decoder structure of U-Net can help to better learn

the characteristics of litchi flush dataset. Moreover, the shape,

texture and other features of flushes in litchi flush dataset are

relatively fixed and similar, and the data amount is small. The

characteristic of the flush dataset is similar to the medical image,

where U-Net performs excellent performance. As a result, better

performance can be expected for the U-Net performs in flush

dataset. Based on the above comparison, it can be concluded that

U-Net is more suitable to be selected as the basic network model for

constructing flush segmentation models.

3.1.2 Ablation experiment
Since there are variable modules in Mobileunet-CC model, the

comparison experiment is carried out to ensure that all the module
BA

FIGURE 6

(A) Loss function and (B) pixel accuracy curves of the verification set.
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in the model is optimal. It mainly includes the following three

experiments: 1) Comparing the results of different feature

extraction structures; 2) Comparing the effects of different

attention mechanisms on performance; 3) Comparing the effect

of pre-training weights.

MobilenetV3 network (Howard et al., 2017) uses deep

detachable convolution and introduces the SE module and h-

swish. VGG16 network (Simonyan and Zisserman, 2014) has

smaller filters and deeper networks. With these unique feature

extraction structures, both two models have good segmentation

performance. In addition, the pre-training weights of the two

models can accelerate the training of U-Net. So, MobilenetV3

bneck module and VGG16 are chosen to replace the encoder part

of the U-Net for investigating and comparing the effects of different

feature extraction structure on the model performance. In the

experiments, the feature extraction structure of U-Net encoder is

replaced by MobilenetV3’s bneck module and VGG16, and the

modified models are referred to as MobilenetV3_unet and

VGG16_unet respectively. As is shown in the Table 2, MPA,

MIoU and Dice of VGG16_unet are 1.8%, 1.4% and 0.01 higher

than that of original U-Net model; the training time, however, is

almost seven times that of the latter. As for as MobilenetV3_unet is

concerned, MPA, MIoU and Dice are 1.2%, 1.1% and 0.017 higher

than that of U-Net, and the training time is about one half of the

latter. Guided by these results, MobilenetV3 bneck module is

selected as the feature extraction structure of the proposed model

and the following investigation are focused on optimizing

the MobilenetV3_unet.

Table 2 also shows the comparison of model performance by

adding different attention mechanisms in MobilenetV3_unet. Three

different attention mechanism modules such as SE, CBAM and

ECA, are added to the same location of MobilenetV3_unet. By

comparison, we can see that the addition of attention mechanism
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improves the segmentation effect, and the MPA and MIoU reaches

the highest values after the addition of CBAM. It is 0.6% and 0.4%

higher than that of the original MobilenetV3_unet, respectively.

Therefore, CBAM attention mechanism module is integrated to

construct the optimal model.

Further experiments are performed to investigate the influence

of loading MobilenetV3’s pre-training weights on the performance

of the model. By comparison, MPA and MIoU with trained weights

are 1.85% and 0.4% higher than those without pretrained weights,

respectively. Therefore, this paper improves the network by adding

pre-training weights.

Through the above comparative experiments, the final model

Mobileunet-CC is constructed by replacing the encoder of U-Net

network with MobeilNetV3 with pre-training weights, integrating

CBAM modules in both encoders and decoders, and adding

convolutional layers (Conv) in each double convolutional module

of decoder. The ablation experiments are performed and the results

of ablation experiments are shown in Table 3. In the model,

MobileNetV3 is used as the feature extraction network, which

utilized techniques such as depthwise separable convolution and

global average pooling to provide lower computational cost and

efficient feature extraction capability. Additionally, transfer learning

is employed to address the problem of small sample learning and

accelerate model training. The CBAM added in the encoder can

enhance the network’s perception of important features, thereby

improving the model’s expressive power and resolution. Integrating

CBAM in the U-Net decoder helped the network focus on key

features, thereby improving the localization accuracy and detail

preservation of segmentation results, ultimately enhancing

semantic segmentation in image segmentation tasks. The Conv

added in each layer of the U-Net decoder enhances feature fusion,

nonlinear modelling, and feature extraction capabilities, thereby

improving the segmentation performance and robustness of the
TABLE 2 The evaluation of different feature extraction structures and attention mechanisms.

Evaluation method Model MPA (%) MioU (%) Dice Training Time

Evaluation of different feature extraction structures

U-Net 90.95 83.3 0.797 0:37:58

MobilenetV3_unet 92.15 84.4 0.814 0:18:58

VGG16_unet 92.75 84.7 0.807 2:15:11

Evaluation of different attention mechanisms

SE_ MobilenetV3_unet 92.15 84.7 0.815 0:22:12

CBAM_ MobilenetV3_unet 92.75 84.8 0.818 0:22:33

ECA_ MobilenetV3_unet 92.7 84.7 0.817 0:22:49
TABLE 3 Results of ablation experiment.

U-Net MobilenetV3 CBAM Conv MPA (%) MioU (%) Dice

√ √ 92.15 84.4 0.814

√ √ √ 92.75 84.8 0.818

√ √ √ √ 93.4 85 0.824
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decoder. The comparison between the improved model and U-Net

shows an increase in pixel accuracy (MPA) by 2.45%, MIoU by

1.7%, and Dice coefficient by 3.2%.

3.1.3 Model performance comparison
In order to verify the effectiveness of the proposed Mobileunet-

CC on litchi flush segmentation task, a comparison experiment is

conducted on litchi flush dataset with five models, namely U-Net,

FCN, Deeplabv3, MobileNetV3_unet, and VGG16_unet.

In order to speed up training without compromising accuracy

and meet memory limitations, we chose an image size of 512× 512

pixels. The comparison results of different models are shown in

Table 4. By using encoder and decoding structure, the original U-

Net model can extract the features of the input image and retain the

details while segmenting the image, with MPA reaching 90.95% and

MIoU reaching 83.3%. For FCN models, MPA and MIoU are

relatively low since many details are lost after deconvolution and

other operations. As for as Deeplabv3 model is concerned, MIoU is

relatively low as 75.7%, which may result from the small datasets

and training rounds. The MIoU of VGG16_unet reaches a relatively

high value of 84.7% since it considers transfer learning, but the pre-

trained model has many network parameters and long training time

is then required. The MPA and MIoU of the MobilenetV3_unet

model are relatively high, but there are still some missing details.

For the Mobileunet-CC proposed in this paper, the pixel accuracy

reaches 93.4% and the MIoU reaches 85% with the model size

reduced to be 28.5MB, indicating that the proposed Mobileunet-CC

model has better performance than previous models such as U-Net,

Deeplabv3 and VGG16_unet.

Figure 7 shows the segmentation results of the litchi flush test

image using all models. The first column shows four RGB cropped

images (512×512) collected in the litchi Garden of South China

Agricultural University in December 2022. Columns 2 through 7

present the predicted masks of FCN, Deeplabv3, U-Net,

MobilenetV3_unet, VGG16_unet, and the improved network,
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respectively. The segmentation effect of FCN and DEEPLABV3 is

poor and the leaf contour not obviously segmented. It indicates that

the dataset is too small or the model is not suitable for litchi flush

segmentation. U-Net, MobilenetV3_unet and VGG16_unet all have

a good segmentation performance, but the segmentation of the

proposed Mobileunet-CC is more precise, and it is more suitable to

segment the small flushes and dense flushes.
3.2 Tracking the grown process of
winter flush

In order to verify the practical value of the Mobileunet-CC

model proposed in this paper, we used the Mobileunet-CC model to

track the grown process of winter flush. We used DJI Phantom 4

Pro to take fixed-point aerial images of 15 litchi trees in the Litchi

Garden of South China Agricultural University at a height of 10

meters, and the tracking dates were November 20, 2022, December

4, 2022, December 8, 2022, and December 13, 2022, respectively.

The collection time was from 10 to 12 a.m., and the weather and

temperature on the tracking date were recorded.

The Mobileunet-CC model was used to segment the flushes of

15 litchi tree images on four different acquisition dates. The

segmentation results of three representative litchi trees A, B and

C were superimposed on the original image captured by the UAV to

display the evolution process diagram of the flush, as is shown in

Figure 8. It was observed that the flushes of trees B and C grew in a

large range and the colour gradually turned red. As far as tree A, the

flushes gradually disappeared in one area but gradually grew in the

other two areas. On whole, the overall flush growth for tree A was

less than that for trees B and C.

Based on the segmentation effect of the Mobileunet-CC model,

we calculated the proportion of flush area (POFA) of three trees at

each time for quantitative analysis according to the ratio of the

number of pixels in flush to the number of pixels in the canopy, as
TABLE 4 Performance comparison of different segment models.

Model Name Object PA (%) IoU (%) MPA (%) MIoU (%) Model size (MB)

U-Net
background 98.0 97.1

90.95 83.3 33
flush 83.9 69.5

FCN
background 98.2 96.2

85.8 77.8 269
flush 73.4 59.3

Deeplabv3
background 96.9 95.4

90.65 75.7 320
flush 78.9 56

MobilenetV3_unet
background 98.3 97.4

92 84.4 26.6
flush 87.2 71.4

VGG16_unet
background 98.5 97.5

92.35 84.7 201
flush 86.2 71.9

Mobileunet-CC
background 98.2 97.5

93.4 85 28.5
flush 88.6 72.5
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FIGURE 8

Flush segmentation results of Tree A, B, C. (A1–A4, B1–B4, C1–C4) denote the segmentation results on November 20, December 3, December 8,
and December 13, respectively.
B C D E F GA

FIGURE 7

Segmentation results of different models. (A): original images used for segmentation; (B–G): Predicted masks for FCN, Deeplabv3, U-Net,
VGG16_unet, MobilenetV3_unet and Mobileunet-CC.
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shown in Table 5. Figure 9A showed the change curve of POFA in

the whole tree. It can be observed that the POFA of litchi trees A, B

and C gradually increased, indicating that the autumn and winter

shoots have begun to enter the stage of flush development.

The evolution process of flush of each tree was analysed in

combination with Figure 9 and Table 5: the POFA of tree B and C

increased significantly from November 20 to December 4, from

3.65% and 3.82% to 16.23% and 19.22% respectively. However, the
Frontiers in Plant Science 12
POFA of tree B decreased slightly on December 8, and then

continued to increase, while the POFA of tree C was always rising

during the tracking period. The POFA of tree A increased slightly,

from 3.53% to 5.30%, and had a slight downward trend on

December 4. By observing Figure 8, it can be found that on

December 13, tree B and C had more red and yellowish red

leaves and their distribution ranges were wide, with the POFA for

21.33% and 23.39% respectively. If these flushes cannot grow into
TABLE 5 The POFA of total, region I and II for Tree A, B, C.

Tree Region
POFA (%)

November 20th December 4th December 8th December 13th

A

Total 3.53 3.44 5.28 5.30

I 3.49 1.74 1.34 1.32

II 0 1.31 1.72 2.23

B

Total 3.65 16.23 15.96 21.33

I 2.78 2.73 2.38 1.84

II 0 3.69 4.56 6.08

C

Total 3.82 19.22 19.24 23.39

I / / / /

II 0 8.30 8.33 11.11
B

C D

A

FIGURE 9

(A) POFA of Tree A, B, C; (B) POFA of region I for Tree A, B; (C) POFA of region II for Tree A, B, C; (D) temperature change during the
tracking period.
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green leaves in the near future, the tops with flush cannot provide

enough nutrients for flower bud differentiation, so it is necessary to

continue tracking and carry out effective tip control operations. The

flush area of tree A was more concentrated and less distributed, so

we only need to track the flush area. By continuously monitoring

the flushes of each litchi tree, the changes of the location, range and

area of the flushes can be accurately obtained, which provides

information and guidance for the subsequent control operation.

In order to further show the evolution of flush and analyse the

reasons for the change of flush, we carried out accurate analysis of

regional branches. In Figure 8 A1, B1, C1, three representative

regions shown in the red box were selected for research and named

as region D, E and F respectively. The region D, E and F were

enlarged and displayed in Figure 10. Firstly, YOLOv5-SBiC late-

autumn shoot identification model (Liang et al., 2023) proposed by

our laboratory was used to identify the images of the late-autumn

shoots from the images of these three regions on November 20. The

recognition results are shown in the red boxes in D1, E1 and F1 in

Figure 10. Then, through observation, the regions D, E and F were

further subdivided into region I (flushes gradually growing into

mature leaves) and region II (late-autumn shoots growing into

flushes), which were the blue box part and the small red box part in

D1, E1 and F1 of Figure 10 respectively. Finally, the POFA in the
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two regions was calculated, as shown in Table 5, and its change

curve was shown in Figures 9B, 9C.

The evolution process of flushes in region I and II of trees A, B

and C are analysed. In tree A, POFA of region I decreased from

3.49% to 1.74% in the period of November 20 to December 4, and

then slowly decreased to 1.32%. The POFA in region II increased

from 0% to 2.23%, and the growth offlushes was small. In the region

where flushes grew at December 3, December 8, and December 13, a

few late-autumn shoots can be identified by AI model on November

20 (see Figure 10D1). In other word, the flushes in region II grow

from the late-autumn shoots, which can be recognized by YOLOv5-

SBiC model (Liang et al., 2023). Shoots control operation should be

carried out before they grow into flushes.

For tree B, POFA of I region decreased from 2.78% to 1.84%

between the period of November 20 to December 13. The flushes on

December 13 were in the yellowish green stage, which can be

quickly changed to green without intervention. As far as region II is

concerned, the POFA increased from 0% to 6.08% at this time

period and a sudden increase in flush was observed on December.

This happened because the late-autumn shoots spread out into

flushes when encountering low-temperature environments during

winter. It is supported by the facts that a large number of late-

autumn shoots were identified in region II by the AI model (see
D1

E1

F1

D2

E2

F2

D3

E3

F3

D4

E4

F4

E5

F5

D5

FIGURE 10

(D1, E1, F1) show late-autumn shoots in regions D, E and F of Tree A, B and C on November 20, 2022, respectively (red boxes represents late-
autumn shoots identified by AI model). (D2–D5, E2–E5, F2–F5) denote the visual image of the evolution process of flushes in region D, E and F on
November 20, December 3, December 8, and December 13, respectively.
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Figure 10E1) and there was a sudden drop in temperature from

November 28 to November 31 (see Figure 9D).

No flushes were observed in region II of Tree C on November

20, as is shown in Figure 10F1. On December 3, however, the flush

increased significantly and reached a high POFA of 8.30% due to

the temperature drop during November 28 to November 31. The

relatively low temperature environments rendered the late-autumn

shoots quickly grow into flushes, cover the entire canopy and the

POFA further increased to 11.11% on December 13. Since the late-

autumn shoots can be identified by AI model obtained on

November 20 (see Figure 10F1), one can accurately predict the

generation of flush in the future time according to the temperature

prediction by the meteorological department.

Through the above experiments and analysis, it can be

concluded that the Mobileunet-CC model proposed in this paper

had good segmentation effect, and can be practically applied to the

flush growth monitoring of the whole litchi tree and regional

branches. Secondly, the Mobileunet-CC model combined with

YOLOv5-SBiC late-autumn shoots identification model proposed

in our research group (Liang et al., 2023), can be used to predict the

generation of flush in the early stage and then analyse the evolution

process of flushes in a particular region of tree according to

temperature changes and accurate statistical data. In other words,

UAV remote sensing combined with the AI models provides

guiding significance for the management of flush in the early,

middle and late stages of litchi orchards.
4 Conclusions

An efficient approach based on UAV remote sensing and deep

learning technology is developed to segment the flush of litchi tree and

then used to estimate the area and monitor the growth process of the

winter flush. We conducted experiments to evaluate six deep neural

networks for semantic segmentation of litchi flush images based on

UAV remote sensing images and the results demonstrates that

semantic segmentation is very suitable for separating and extracting

litchi flushes from UAV remote sensing images. First, we preprocessed

the RGB images collected by the UAV and build the flush dataset for

constructing segmentation model. Then, we propose a lightweight

semantic segmentation model of Mobileunet-CC, which is based on U-

Net network with the encoder replaced by MobeilNetV3 backbone

network and CBAM modules integrated in both encoders and

decoders. The experimental results showed that the improved

semantic segmentation model can segment litchi flush accurately and

efficiently, withMPA increased from 90.95% to 93.4%,MIoU increased

from 83.3% to 85% and model size reduced by 15% to 28.5MB.

In order to verify the practical value of the segmentation model

proposed in this paper, the segmentation model was also used to

segment the flushes of winter litchi tree growth images tracked by

UAV. Two growth processes of litchi flushes (late-autumn shoots

growing into flushes and flushes growing into mature leaves) were

quantitatively analysed according to different branch regions of the

same litchi tree by combining the identification model of late-autumn

shoots and the change of flush area. The method can quickly and

accurately segment the flushes of litchi trees. It is used to monitor the
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growth change of flushes and predict the generation of flush in the

next stage by combining the extracted flush information with the

quantitative analysis and trend of temperature change. The results

demonstrate that UAV remote sensing combined with the AI models

can be used to predict the generation of flush from late-autumn

shoots according to the temperature prediction by the meteorological

department. The results presented in this paper provide the

possibility of accurate analysis for branch management and flush

control operation in litchi orchard, and help to reduce the labour cost

of litchi orchard management.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

SB: Conceptualization, Formal analysis, Methodology, Project

administration, Software, Writing – original draft, Writing – review

& editing. JL: Conceptualization, Data curation, Investigation,

Supervision, Writing – review & editing. TL: Conceptualization,

Formal analysis, Investigation, Visualization, Writing – review &

editing. CL: Resources, Validation, Writing – review & editing. JXZ:

Data curation, Writing – review & editing. WG: Validation, Writing

– review & editing. BH: Resources, Writing – review & editing. YuL:

Project administration, Writing – review & editing. YoL:

Conceptualization, Funding acquisition, Project administration,

Supervision, Writing – review & editing. JZ: Conceptualization,

Funding acquisition, Project administration, Supervision, Writing –

review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This research

was funded by Science and Technology Plan Project of Guangzhou

(2023B03J1392), Specific University Discipline Construction Project

of Guangdong Province (2023B10564002) and GuangDong Basic and

Applied Basic Research Foundation(2021A1515012112).
Acknowledgments

The authors would like to thank the editor and reviewers for

their constructive comments.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1307492
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bai et al. 10.3389/fpls.2023.1307492
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Plant Science 15
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Anand, T., Sinha, S., Mandal, M., Chamola, V., and Yu, F. R. (2021). AgriSegNet:
deep aerial semantic segmentation framework for IoT-assisted precision agriculture.
IEEE Sens. J. 21 (16), 17581–17590. doi: 10.1109/JSEN.2021.3071290

Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., and Gueltekin, S. S.
(2022). A comprehensive survey of the recent studies with UAV for precision
agriculture in open fields and greenhouses. Appl. Sci.-Basel. 12 (3), 1047.
doi: 10.3390/app12031047

Ball, J. E., Anderson, D. T., and Chan, C. S. (2017). Comprehensive survey of deep
learning in remote sensing: theories, tools, and challenges for the community. J. Appl.
Remote Sens. 11, 042609–042609. doi: 10.1117/1.JRS.11.042609

Behera, T. K., Bakshi, S., and Sa, P. K. (2023). A lightweight deep learning
architecture for vegetation segmentation using UAV-captured aerial images. Sust.
Comput. 37, 100841. doi: 10.1016/j.suscom.2022.100841

Chen, H. B., Huang, H. B., and Liu, Z. L. (2004). Flower formation and patterns of
carbohydrate distribution in litchi trees. Acta Hortic. Sin. 31 (1), 1–6.
doi: 10.1300/J064v24n01_09

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). “Encoder-
decoder with atrous separable convolution for semantic image segmentation,” in
Proceedings of the European conference on computer vision (ECCV). Berlin, Germany:
Springer 801–818.

Ciresan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2012). Deep
neural networks segment neuronal membranes in electron microscopy images. Adv.
Neural Inf. Process. Systems. 25, 2843–2851.

Genze, N., Ajekwe, R., Guereli, Z., Haselbeck, F., Grieb, M., and Grimm, D. G.
(2022). Deep learning-based early weed segmentation using motion blurred
UAV images of sorghum fields. Comput. Electron. Agric. 202, 107388.
doi: 10.1016/j.compag.2022.107388

Heaton, J. (2017). Ian goodfellow, yoshua bengio, and aaron courville:Deep learning.
Genet. Program. Evol. Mach. 19, 305–307. doi: 10.1007/s10710-017-9314-z

Hieke, S., Menzel, C. M., and Ludders, P. (2002). Shoot development, chlorophyll, gas
exchange and carbohydrates in lychee seedlings (Litchi chinensis). Tree Physiol. 22 (13),
947–953. doi: 10.1093/treephys/22.13.947

Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., and Tan, M. X. (2019).
“Searching for mobileNetV3,” in Proceedings of the IEEE/CVF international conference
on computer vision. New York, USA: IEEE 1314–1324.

Howard, A. G., Zhu, M. L., Chen, B., Kalenichenko, D., Wang, W. J., Tobias, W., et al.
(2017). MobileNets: efficient convolutional neural networks for mobile vision
applications. arXiv. preprint. arXiv. 1704, 04861.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. H. (2018). “Squeeze-and-excitation
networks,” in Proceedings of the IEEE conference on computer vision and pattern
recognition. New York, USA: IEEE 7132–7141.

Hunt, E. R., and Daughtry, C. (2018). What good are unmanned aircraft systems for
agricultural remote sensing and precision agriculture. Int. J. Remote Sens. 39 (15),
5345–5376. doi: 10.1080/01431161.2017.1410300

Kamal, S., Shende, V. G., Swaroopa, K., Madhavi, P. B., Akram, P. S., Pant, K.,
et al. (2022). FCN network-based weed and crop segmentation for ioT-aided
agriculture applications. Wirel. Commun.Mob.Com. 2022, 1–10. doi: 10.1155/
2022/2770706

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Liang, J. T., Chen, X., Liang, C. J., Long, T., Tang, X. Y., Shi, Z. M., et al. (2023). A
detection approach for late-autumn shoots of litchi based on unmanned aerial vehicle
( UAV ) r emo t e s e n s i n g . Comp u t . E l e c t r o n . A g r i c . 2 0 4 , 1 – 1 0 .
doi: 10.1016/j.compag.2022.107535

Lin, K., Gong, L., Huang, Y. X., Liu, C. L., and Pan, J. (2019). Deep learning-based
segmentation and quantification of cucumber powdery mildew using convolutional
neural network. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00155
Liu, J., Xiang, J. J., Jin, Y. J., Liu, R. H., Yan, J. N., and Wang, L. Z. (2021). Boost
precision agriculture with unmanned aerial vehicle remote sensing and edge
intelligence: A survey. Remote Sens. 13 (21), 1–31. doi: 10.3390/rs13214387

Liu, P., Huang, J. J., Cai, Z. Y., Chen, H. T., Huang, X., Yang, S. N., et al. (2022).
Influence of girdling on growth of litchi (Litchi chinensis) roots during cold-dependent
floral induction. Sci. Hortic. 297, 1–10. doi: 10.1016/j.scienta.2022.110928

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE conference on computer vision and
pattern recognition. New York, USA: IEEE 3431–3440.

Mo, J. W., Lan, Y. B., Yang, D. Z., Wen, F., Qiu, H. B., and Chen, X. (2021). Deep
learning-based instance segmentation method of litchi canopy from UAV-acquired
images. Remote Sens. 12 (19), 1–17. doi: 10.3390/rs13193919

Olson, D., and Anderson, J. (2021). Review on unmanned aerial vehicles, remote
sensors, imagery processing, and their applications in agriculture. Agron. J. 113 (2),
971–992. doi: 10.1002/agj2.20595

Osco, L. P., Marcato, J., Ramos, A., Jorge, L., Fatholahi, S. N., Silva, J. D., et al. (2021).
A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 102,
1–21. doi: 10.1016/j.jag.2021.102456

Pareek, S. (2016). Nutritional and biochemical composition of lychee (Litchi
chinensis sonn.) cultivars. Nutr. Composition. Fruit Cultivars., 395–418. doi: 10.1016/
B978-0-12-408117-8.00017-9

Qi, W. E., Chen, H. B., Li, W. W., and Zhang, H. J. (2016). Development situation,
trend and suggestions of Chinese litchi industry. Guangdong. Agric. Sci. 43 (6),
173–179.

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany,
October 5-9, 2015. 234–241 (Berlin, Germany: Springer International Publishing).

Sandler, M., Howard, A., Zhu, M. L., Zhmoginov, A., and Chen, L. C. (2019).
“MobileNetV2: inverted residuals and linear bottlenecks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition. New York, USA: IEEE
4510–4520.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. Comput. Sci. 1–16 doi: 10.48550/arXiv.1409.1556

Su, Z. B., Wang, Y., Xu, Q., Gao, R., and Kong, Q. M. (2022). LodgeNet: Improved
rice lodging recognition using semantic segmentation of UAV high-resolution remote
sensing images. Comput. Electron. Agric. 196, 1–14. doi: 10.1016/j.compag.2022.106873

Torres-Sanchez, J., Pena, J. M., de Castro, A. I., and Lopez-Granados, F.
(2014). Multi-temporal mapping of the vegetation fraction in early-season
wheat fields using images from UAV. Comput. Electron. Agric. 103, 104–113.
doi: 10.1016/j.compag.2014.02.009

Xu, Y. J., Wen, J., Xiao, G. S., Zhang, M. W., Li, S. F., and Wu, J. J. (2010).
Comparative studies of processing characteristics of different litchi varieties. Food
Scinence. 31 (1), 33–37. doi: 10.7506/spkx1002-6630-201001007

Yang, H. F., Kim, H. J., Chen, H. B., Rahman, J., Lu, X. Y., and Zhou, B. Y. (2015).
Carbohydrate Accumulation and Flowering-related Gene Expression Levels at
Different Developmental Stages of Terminal Shoots in Litchi chinensis. HortScience
49 (11), 1381–1391. doi: 10.21273/HORTSCI.49.11.1381

Yang, T. T., Zhou, S. Y., Xu, A. J., Ye, J. H., and Yin, J. X. (2023). An approach for
plant leaf image segmentation based on YOLOV8 and the improved DEEPLABV3+.
Plants-Basel 12 (19), 1–17. doi: 10.3390/plants12193438

Zhao, L., Wang, K., Wang, K., Zhu, J., and Hu, Z. Y. (2020). Nutrient components,
health benefits, and safety of litchi (Litchi chinensisSonn.): A review. Compr. Rev. Food.
Sci. Food Saf. 19 (4), 2139–2163. doi: 10.1111/1541-4337.12590

Zhuang, F. Z., Qi, Z. Y., Duan, K. Y., Xi, D. B., Zhu, Y. C., and Zhu, H. S. (2021). A
comprehensive survey on transfer learning. Proc. IEEE. 109 (1), 43–76.
doi: 10.1109/JPROC.2020.3004555
frontiersin.org

https://doi.org/10.1109/JSEN.2021.3071290
https://doi.org/10.3390/app12031047
https://doi.org/10.1117/1.JRS.11.042609
https://doi.org/10.1016/j.suscom.2022.100841
https://doi.org/10.1300/J064v24n01_09
https://doi.org/10.1016/j.compag.2022.107388
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1093/treephys/22.13.947
https://doi.org/10.1080/01431161.2017.1410300
https://doi.org/10.1155/2022/2770706
https://doi.org/10.1155/2022/2770706
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.compag.2022.107535
https://doi.org/10.3389/fpls.2019.00155
https://doi.org/10.3390/rs13214387
https://doi.org/10.1016/j.scienta.2022.110928
https://doi.org/10.3390/rs13193919
https://doi.org/10.1002/agj2.20595
https://doi.org/10.1016/j.jag.2021.102456
https://doi.org/10.1016/B978-0-12-408117-8.00017-9
https://doi.org/10.1016/B978-0-12-408117-8.00017-9
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1016/j.compag.2022.106873
https://doi.org/10.1016/j.compag.2014.02.009
https://doi.org/10.7506/spkx1002-6630-201001007
https://doi.org/10.21273/HORTSCI.49.11.1381
https://doi.org/10.3390/plants12193438
https://doi.org/10.1111/1541-4337.12590
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.3389/fpls.2023.1307492
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	An efficient approach to detect and track winter flush growth of litchi tree based on UAV remote sensing and semantic segmentation
	1 Introduction
	2 Materials and methods
	2.1 Study areas
	2.2 UAV image collection
	2.3 Data processing and labeling
	2.4 Semantic segmentation of litchi flush dataset
	2.4.1 U-Net
	2.4.2 MobileNetV3
	2.4.3 Transfer learning
	2.4.4 Attentional mechanism module
	2.4.5 Improved U-Net model: Mobileunet-CC
	2.4.6 Performance evaluation


	3 Experiment and discussion
	3.1 Flush segmentation experiment
	3.1.1 Basic model selection
	3.1.2 Ablation experiment
	3.1.3 Model performance comparison

	3.2 Tracking the grown process of winter flush

	4 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


