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Proteomic exploration reveals a
metabolic rerouting due to low
oxygen during controlled
germination of malting barley
(Hordeum vulgare L.)
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Barley (Hordeum vulgare L.) is used in malt production for brewing applications.

Barley malting involves a process of controlled germination that modifies the

grain by activating enzymes to solubilize starch and proteins for brewing. Initially,

the grain is submerged in water to raise grain moisture, requiring large volumes

of water. Achieving grain modification at reduced moisture levels can contribute

to the sustainability of malting practices. This study combined proteomics,

bioinformatics, and biochemical phenotypic analysis of two malting barley

genotypes with observed differences in water uptake and modification

efficiency. We sought to reveal the molecular mechanisms at play during

controlled germination and explore the roles of protein groups at 24 h

intervals across the first 72 h. Overall, 3,485 protein groups were identified

with 793 significant differentially abundant (DAP) within and between genotypes,

involved in various biological processes, including protein synthesis,

carbohydrate metabolism, and hydrolysis. Functional integration into metabolic

pathways, such as glycolysis, pyruvate, starch and sucrose metabolism, revealed

a metabolic rerouting due to low oxygen enforced by submergence during

controlled germination. This SWATH-MS study provides a comprehensive

proteome reference, delivering new insights into the molecular mechanisms

underlying the impacts of low oxygen during controlled germination. It is

concluded that continued efficient modification of malting barley subjected to

submergence is largely due to the capacity to reroute energy to maintain vital

processes, particularly protein synthesis.

KEYWORDS

barley, malt, controlled germination, malting, low-oxygen, proteomics, mass
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Introduction

Barley (Hordeum vulgare L.) is an economically important

cereal crop in world malt production. Raw barley grain is

converted to malt in a process of controlled germination called

malting. Malting involves physical and biochemical changes to

obtain fermentable products necessary for brewing. The quality

attributes of malted barley are a critical factor in the brewing

process, affecting the color, flavor, and overall beer quality. The

Kolbach index (KI) is a key indicator of the level of enzymatic

activity or protein hydrolysis during the malting process, with

desirable levels around 35.0-49.9% (Fox et al., 2003). Genomic

diversity and breeding have contributed to producing quality malt

from barley grown worldwide, where efficient water uptake and

timely uniform germination are pivotal determinants of malt

quality (Chandra et al., 1999; Briggs, 2002; MacLeod and

Evans, 2016).

Controlled germination or malting is a three-stage process that

begins with water uptake (imbibition) during steeping, where the raw

grain is submerged in water, raising grain moisture to above 42%.

Although there are periods of air rest, the immersed grain experiences

phases of low-oxygen (hypoxia <21% O2) resulting from reduced air

diffusion (Gibbs and Greenway, 2003). This oxygen deficiency leads to

impaired mitochondrial activity. It triggers a switch from aerobic to

anaerobic respiration, rapidly reducing cellular adenosine triphosphate

(ATP) production (Bailey-Serres and Voesenek, 2008; Magneschi and

Perata, 2009). Aerobic respiration is returned in the second stage,

germination, where the imbibed grain is incubated for 4-5 days in an

aerated (normoxic >21% O2), moist atmosphere with rotation. This is

the most metabolically active stage, and enzymes such as proteases,

amylases, hemicellulases, and oxidases are involved in the continued

embryo growth and formation of green malt. In the final stage, kilning,

the green malt is heat treated, reducing the moisture to around 12%

and decreasing enzymatic activity. Followed by a second drying step to
Abbreviations: ADH, alcohol dehydrogenase; AlaAT, alanine aminotransferase;

ALDH, aldehyde dehydrogenase; AMY, a-amylase; APX, ascorbate peroxidase;

BMY, b-amylase; CAM, crassulacean acid metabolism; CS, citrate synthase; DAP,

differentially abundant protein; DDA, data-dependent acquisition; DIA, data-

independent acquisition; ERF-VII, ethylene response factor; Fructose-1,6P2,

fructose 1,6-bisphosphate; Fructose-6P, fructose-6-phosphate; FRK,

fructokinase; Glucose-1P, glucose-1-phosphate; Glucose-6P, glucose-6-

phosphate; HAI, hours after imbibition; HIG, hypoxia induced protein; HK,

hexokinase; HRPE, hypoxia response promoter element; HRG, hypoxia response

gene; KI, kolbach index; LC-MS/MS, liquid chromatography tandem mass

spectrometry; LDH, lactate dehydrogenase; MS, mass spectrometry; PCK,

phosphoenolpyruvate carboxykinase; PDC, pyruvate decarboxylase; PDH,

pyruvate dehydrogenase; PEPC, phosphoenolpyruvate carboxylase; PEP,

pho sphoeno lpy ruva t e ; PGK , pho sphog l y c e r a t e k ina s e ; PGM,

phosphoglucomutase; PFK, ATP-dependent phosphate dehydrogenase; PFP,

PPi-dependent phosphofructokinase; PGI, phosphoglucose isomerase; PK,

pyruvate kinase; PPDK, pyruvate phosphate dikinase; PYR, pyruvate; MDH,

malate dehydrogenase; MS, mass spectrometry; OAA, oxaloacetate; SUS, sucrose

synthase; SWATH, sequential window acquisition of all theoretical spectra;

UGPase, UDP-glucose pyrophosphorylase.
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stop all biological processes, reducingmoisture contents to 4-5%

and stabilizing the final characteristics of the malt (Briggs et al.,
2004; Daneri-Castro et al., 2016a). Overall, malting is a resource-

intensive process, and one critical area of concern is reducing water

usage with efforts to maintain modification efficiency crucial for the

industry’s long-term sustainability (Daneri-Castro et al., 2016b;

Izydorczyk and Edney, 2017). By exploring the molecular

mechanisms of controlled germination, we can gain insights into

implementing reduced water usage while maintaining malt quality,

which is an attractive proposition in an internationally

competitive market.

Proteomics, the large-scale study of the protein complement of

a cell, tissue, or organism under a specific, defined set of conditions,

is a powerful approach for investigating the changes in protein

abundance that occur during barley germination. The barley

proteome and metabolome have been widely studied due to their

importance in agriculture and the malting and brewing industry,

recently reviewed by Bahmani, O’Lone (Bahmani et al., 2021),

Fox and Watson-Fox (2021), and Fox and Bettenhausen (2023).

In the present study, we used quantitative proteomics via the

sequential window acquisition of all known theoretical spectra-

mass spectrometry (SWATH-MS) (Gillet et al., 2012) to quantify

proteins across the malting time course in a newly developed

breeding line, IGB1467, that demonstrated efficient proteolysis at

a lower moisture content than a traditional malting barley cultivar,

Flinders. In early stages of controlled germination, aerobic

respiration is inhibited due to an O2 deficiency caused by

submergence, and despite the grain’s sensitivity to low-O2

conditions, the stress can be managed for a limited time by

inducing an adaptive response in protein synthesis and changes

to carbohydrate metabolism. Previous studies have revealed that in

low-O2 environments, a metabolic shift occurs to increase the

anaerobic production of ATP via cytosolic glycolysis, influencing

the mobilization of carbohydrates to promote substrate-level ATP

production (Lasanthi-Kudahettige et al., 2007; Bailey-Serres et al.,

2012). The objective of this study was to evaluate the proteomic and

physiochemical changes that occur at 24-hour intervals during the

first 72 hours of malting, where the grain experiences submergence

stress. We aimed to identify key protein groups responsible for the

observed differences in malting phenotypes under low-O2 stress to

help improve our understanding of their molecular roles. Our study

highlights metabolic patterns of proteins and enzymes involved in

signaling and regulating mRNAs associated with core metabolic

responses, including reconfiguring the carbohydrate metabolism to

develop a more efficient grain modification while maintaining malt

quality for sustainable malting practices.
Materials and methods

Plant material, malting conditions,
and malt analysis

Malt barley (Hordeum vulgare L.) breeding line IGB1467 (IGB;

experimental) and its’ parental breeding line, cultivar Flinders

(FLN; control), were grown at an InterGrain (Bibra Lake,
frontiersin.org
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Western Australia) experimental field site, Brookton, Western

Australia (32°18’05’ S, 117°14’32’ E). Grain evaluation data is

provided in Supplementary Table S1. These two closely related

barley genotypes were selected based on demonstrated phenotypic

trait differences in water uptake, malting potential, and malt

characteristics from a previous project carried out at Pilot

Malting Australia (PMA, Edith Cowan University, Australia

(Supplementary Figure S1).

Grains (100 kg) were pilot malted at PMA (Supplementary

Tables S2, S3) and sampled at approximately 0, 24, 48, and 72 hours

after imbibition (HAI). The four sampling times corresponded to

key stages along the malting time course: (1) 0 HAI, raw barley

grain; (2) 24 HAI, exit steep, following periods of grain

submergence (with aeration) and air rest; (3) 48 HAI,

germination, stage 1 and (4) 72 HAI germination, stage 2. Pilot

malting at PMA closely aligns with industrial-scale malting sample

sizes in comparison to micro- and benchtop-malting but was

limited in that it did not allow for directly comparable malting

run samples. Each genotype was malted to meet accepted malt

quality parameters (Supplementary Table S4), specifically a similar

KI between 37-47%. The KI was calculated using Equation 1.

Equation 1 :  Kolbach   Index   ( % ) = (
Soluble   Protein
Protein  Content

)� 100

For each time point, 20 g of grain with rootlet maintained

(removed for malt quality analysis), was collected, snap-frozen, and

stored at -80°C until processing. All grains were thawed and

inspected to exclude contamination and freeze-dried for 72 h to

remove all moisture. The grains were milled using a Retsch Mixer

Mill MM 400 (Metrohm, NSW, AUS) and sieved using a 300 μm

sieve (Endecotts Pty Ltd. Sieves, London, UK) to produce a fine

grade wholemeal flour.
Protein extraction and digestion

Protein was extracted from wholemeal flour without defatting (20

mg, n = 4) of malting barley grain at each time point using 400 μL (20

μL/mg) of 8 M urea and 2% (w/v) dithiothreitol (DTT) buffer. The

suspension was vortexed and sonicated (Soniclean Ultrasonic Cleaner

25HD, 650W, 43 kHz) for 5 min at room temperature. The samples

were incubated on a shaker block (Thermo-Scientific, AUS) at 400

rpm for 45 min at room temperature (RT). The solutions were

centrifuged for 15 min at 20,800 x g, and the protein extracts

(supernatant) were used for subsequent reduction, alkylation, and

filter-aided (MWCO 10kDa) digestion using trypsin (Promega,

NSW, AUS) as per established methods (Colgrave et al., 2016).

Protein concentrations were determined via a Varioscan plate

reader (Thermo-Scientific, AUS) using Bradford protein assay

(California, USA) following the manufacturer’s protocol with

dilutions and BSA standard curve. The tryptic peptides were re-

suspended in ddH2O containing 1% formic acid with the addition of

iRT reference peptide solution (1 pmol/mL; Biognosys, Zurich, CHE)

for subsequent LC-MS/MS analysis.
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Sequential window acquisition of
theoretical mass spectra (SWATH-MS)

data acquisition

The peptide fractions (1 mL) were separated through reverse-

phase chromatography Ekspert nanoLC415 (Eksigent, Dublin, CA,

USA) and analyzed online in a TripleTOF 6600 mass spectrometer

(SCIEX, Redwood City, CA, USA) as described previously (Bose

et al., 2020). In brief, peptides were desalted by loading on a

ChromXP C18 (12 nm, 3 mm, 120 Å, 10 × 0.3 mm) trap column

at a flow rate of 10 mL/min and separated on a ChromXP C18 (12

nm, 3 mm, 120 Å, 150 × 0.3 mm) column at a flow rate of 5 mL/min.

The mobile phase A (0.1% formic acid with 5% dimethyl sulfoxide,

DMSO in 94.9% ddH2O) and mobile phase B (0.1% formic acid

with 5% DMSO in 90% acetonitrile and 4.9% ddH2O) were used to

establish a linear gradient composed of 68 min of 3-25% B, 5 min

25-35% B with an increase to 80% B for 2 min, and a 2 min hold at

90% B, return to 3% B over 1 min, followed by re-equilibrating at

3% B for 8 min. The flow rate was 0.3 μL/min, and the elute from

the HPLC was directly coupled to the DuoSpray source of the

TripleTOF 6600 MS (SCIEX). The ion spray voltage was set to 5,500

V; the curtain gas was set to 138 kPa (20 psi), and the ion source gas

1 (GS1) and gas 2 (GS2) were set to 103 and 138 kPa (15 and 20 psi).

The heater interface was set to 150°C. The TOF–MS survey scan

was collected over the mass range of m/z 360–2000 with a 250 ms

accumulation time, and the product ion mass spectra were acquired

over the mass range of m/z 150–1800 with a 30 ms accumulation

time using rolling collision energy and a collision energy spread

(CES) of 5. Variable window SWATH acquisition was employed

using 30 SWATH windows (including 1 Da overlap) spanning the

mass range of m/z 150–2000 with SWATH windows determined

using the SWATH Variable Window Calculator 1.0 (SCIEX) for a

total cycle time of 1.15 s.
Protein identification and quantitative
data processing

SWATH-MS files were processed in DIA-NN ver.1.8 using deep

neural networks (DNNs) inference algorithm (Demichev et al.,

2020). The spectral output was searched against in silico tryptic

digests of Hordeum vulgare subset of the UniProt-KB database

(ver.2022/10; 54,629 sequences) appended, with Biognosys iRT

pseudo-protein sequence and the common Repository of

Advantageous Proteins database (cRAP) (Frankenfield et al.,

2022). DIA-NN quantitative analysis was performed using tryptic

peptides of 7 to 30 amino acids in length, with up to one missed

cleavage. As a fixed modification, carbamidomethylation of cysteine

was selected, and no variable modifications were allowed. The

precursor m/z range, 300-1800, was selected, and the fragment

ion m/z range was 200-1800. The algorithm settings included the

automatic modes for mass accuracy, MS1 accuracy, and scan

window with and removing likely interferences the software

predicted. The neural network classifier was run in single-pass
frontiersin.or
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mode with a high-accuracy quantification strategy, and cross-run

normalization was performed in a retention time-dependent

manner. Peptides were identified after applying a 1% False

Discovery Rate (FDR). Identifications from the cRAP database

were ignored.
Bioinformatics and statistical analysis

Protein sequences of interest were BLAST searched against the

Morex genome ver.21 using CLC Main Workbench (QIAGEN;

ver.22.0.2). Protein Gene Ontology term annotations were

predicted using eggNOG-mapper2, Gene Ontology (GO)

database3, and UniProt mapping database4 (all databases accessed

2023/03). Additional GO annotation was taken from the previously

published barley genome annotation files (Mascher et al., 2017) and

cross-referenced with the Barley Reference Transcript dataset

(BaRT) downloaded (2022/10) from the Barley Expression

Database (EoRNA)5 GO annotation for the BaRT gene IDs

dataset was done using the available spreadsheet6. Functional

pathway analysis was performed using the Kyoto Encyclopedia of

Genes and Genomes (KEGG) mapper and reconstruct software

tools7 to annotate protein KEGG ortholog numbers and

corresponding functional distributions (Supplementary Data S1).

Unsupervised principal component analysis (PCA) was

conducted to identify possible outliers resulting from technical

(processing and instrumental) procedures and to evaluate

groupings within the data set. The identification of differentially

abundant proteins (DAPs) within genotype over the time course

was carried out using DESeq2 analysis (Love et al., 2014) of the

following pairwise comparisons 24/0, 48/24, and 72/48 HAI (log2
Fold Change (log2 FC) ≥1.5, p ≤0.05). Parametric Analysis of Gene

Set Enrichment (PGSEA; p ≤0.05, Gene set size min. 5, max. 2000)

(Kim and Volsky, 2005; Furge et al., 2012) with GO enrichment

analysis (biological process) was performed using iDEP.96 Shiny R

platform8. Hierarchical Cluster Analysis (HCA; one minus Pearson

correlation with complete linkage, cluster cut-off height 0.65) was

performed on the 50 topmost significant pathways (p =<1.0e-13)
1 https://www.ipk-gatersleben.de/ (Mascher, 2019)

2. http://eggnog-mapper.embl.de/ (Cantalapiedra et al., 2021)

3. http://geneontology.org/docs/go-enrichment-analysis/ (GO-

Consortium, 2021)

4. https://www.uniprot.org/id-mapping (UniProt-Consortium, 2022)

5. https://ics.hutton.ac.uk/eorna/index.html (Rapazote-Flores et al., 2019)

6. https://ics.hutton.ac.uk/eorna/download.html

7. https://www.kegg.jp/kegg/pathway.html (Kanehisa et al., 2023)

8. http://bioinformatics.sdstate.edu/idep96/ (Ge et al., 2018)
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using the Morpheus9 web tool. The mean relative abundance

of log2 transformed data (n=4) was visualized using
Morpheus9 and integrated into pathway diagrams using

BioRender10. The compositional statistical analyses were carried

out using R ver.3.6.111 in RStudio ver.2023.09.1+49412.
Measurement of
physiochemical parameters

The physiochemical parameters of malting barley grain were

measured at approximately 0, 24, 48, and 72 HAI, using 10 mg of

wholemeal flour in triplicates for total starch, expressed as percentage

dry weight; free glucose and ethanol-soluble carbohydrate expressed in

milligrams per gram wholemeal; and total a-amylase activity

expressed in ceralpha units (CU) per gram wholemeal. Total starch

was measured using a Total Starch Assay Kit (Megazyme, Neogen

Australasia, AUS) and modified as described by Zhang, Pritchard

(Zhang et al., 2022). Absorbance was read at 510 nm after a 20-minute

incubation at 50°C using a SPECTROstar Nano Microplate Reader

(BMG LABTECH, AUS). A standard curve was generated using kit-

supplied glucose at 1 mg/ml concentration. Total soluble sugar and

free glucose were extracted as described by Zhang, Pritchard (Zhang

et al., 2022), and all ethanol-soluble fractions were pooled. Total

soluble sugar was measured using anthrone reagent (0.2% anthrone, in

70% H2SO4 v/v) and glucose at 1 mg/mL concentration standard

curve (Whan et al., 2014). Free glucose was determined following the

method described by Campbell, Hansen (Campbell et al., 1999). Total

a-amylase activity was measured using a a-Amylase Assay Kit

(Megazyme) adapted for flat-bottom 96-well microplate, following

the manufacturer’s protocol using SPECTROstar Nano Microplate

Reader (BMG LABTECH).
Results

In this study, a comprehensive proteome-wide approach was

employed to explore differences between two malting barley

genotypes, (i) IGB; experimental breeding line, and (ii) FLN;

control cultivar, that malted to meet malt quality specification

(Supplementary Table S4). While the two genotypes took different

treatment times in the steep to meet these specifications, they were

malted to a similar KI, IGB, 45%, and FLN, 43%, a key parameter

indicative of the level of grain proteolysis. The aim was to dissect the

proteome of IGB and FLN to identify key protein groups and

explore differences in abundance patterns in the complex metabolic

processes affected by water uptake and modification efficiency

differences in the two genotypes at each time point.
9. https://software.broadinstitute.org/morpheus/

10. https://www.biorender.com/

11. https://www.r-project.org/

12. https://rstudio.com
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Protein identification and profiling
of malting barley during
controlled germination

SWATH-MS processing identified, quantified, and annotated

3,485 protein groups (Supplementary Data S1). Unsupervised

preliminary data exploration via principal component analysis

(PCA) was applied to characterize the samples. Along PC1,

significant variation (33.6%) was seen due to the time point, while

PC2 (13.0%) separated the samples based on the genotype

(Supplementary Figure S2). In IGB and FLN, 3,193 and 3,142,

respectively, out of the 3,485 proteins detected were seen in all four

time points. The results show that the proteomes were significantly

altered after imbibition and during controlled germination, with

clear separations between genotypes and the four-time points.
Differentially abundant protein (DAP)
identification and exploration of malting
barley during controlled germination

DAP identification and pairwise analysis
In the six pairwise comparisons, 793 DAPs were identified and

presented in multiple comparisons (Supplementary Data S2). Of the

DAPs, 620 and 645 were found in IGB and FLN, of which 472 were

shared, and 148 or 173 were uniquely present in either IGB or FLN,

respectively (Figure 1A). The DAPs of IGB and FLN and their

overlapping relationships and abundance changes (increase/

decrease) across the controlled germination time course are
Frontiers in Plant Science 05
shown in the UpSet analyses (Figure 1B; Supplementary

Data S3). The DAPs with decreased abundance shared a
similar pattern across both genotypes and controlled germination

time points. However, DAPs with increased abundance had varied

patterns between genotypes. In IGB, the DAP increase was similar

at 48/24 HAI (254) and 72/48 (280). However, in FLN, the greatest

increase was observed at 72/48 HAI with 357 DAPs. Most DAPs

shared between IGB and FLN were identified at 72/48 HAI for both

increased (53) and decreased (24) DAPs (Figure 2C). The

subsequent most significant alteration was noted in the

comparison at 48/24 HAI (IGB) and 72/48 HAI (FLN) with 24

DAPs. (Figure 1C).

Gene set enrichment analysis highlights DAPs
involved in controlled germination of
malting barley

To illustrate the significant difference in the biological response to

controlled germination, identified DAPs from IGB and FLN across all

time points were analyzed via clustering of the PGSEA results.. The 50

topmost significant pathways (p ≤1.0e-13) were clustered into six

distinct accumulation patterns (Figure 2, cluster cut-off height = 0.65,

Supplementary Data S3). The six clusters identified are explained here

briefly with detailed data and discussion shown in the supplementary

document (Supplementary TableS5).

Overall, cluster I (Figure 2; light blue) highlighted increased

protein abundance at 48 and 72 HAI. This cluster is primarily

enriched in proteins involved in the ‘Cellular macromolecule

catabolic process’ (p=5.2e-19), ‘Catabolic process’ (p=4.2e-15) and

‘Proteolysis’ (p=3.8e-17). Although both genotypes shared a similar
A

B

C

FIGURE 1

Differentially abundant protein (DAP) groups (log2 FC ≥1.5, p ≤0.05) in two malting barley genotypes comparing time points at 0, 24, 48, and 72 HAI.
(A) Venn diagram of DAPs observed uniquely or commonly (overlap) in IGB1467 and Flinders. (B) UpSet Plot with bar graph and matrix representing
the up-and down-regulation of the DAPs with comparisons across time points. (C) Column graph illustrating the shared intersections in the matrix
of DAPs between genotype and time points.
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pattern, IGB demonstrated an earlier increase in abundance, with

many changes occurring by 48 HAI seen in FLN at 72 HAI. Cluster

II (Figure 2; dark blue) demonstrated to be significantly greater

abundance in FLN, across all time points. This cluster included GO

terms related to ‘Transmembrane transport’ (p=1.1e-12)’, ‘Response

to oxidative stress’ (p=2.5e-14), and ‘Hydrogen peroxide catabolic

process’ (p=5.7e-13). Cluster III (Figure 2; light green) highlighted

greater protein abundance at 0 HAI in IGB, while in FLN, the

greatest abundance is present at 48 HAI. The two GO terms in this

cluster are related to ‘Signaling ’ (p=1.1e-12) and ‘Cell

communication’ (p=2.2e-14).

Clusters IV (Figure 2; dark green) were related to ‘Response to

stimulus’ (p=5.7e-18), with shared abundance patterns at 0 and 24 HAI

between the genotypes. However, IGB abundance decreased earlier

decrease at 48 HAI, as seen in FLN at 72 HAI. Cluster V (Figure 2;

pink) demonstrated significantly greater abundance in IGB and was

related to GO terms, ‘Translation’ (p=1.6e-16), ‘Peptide biosynthetic

process’ (p=2.5e-16), and ‘RNA metabolic process’ (p=8.1e-15), all

linked to protein synthesis. Finally, cluster VI (Figure 2; red) terms

highlighted the greatest abundance in both genotypes in the early stages

at 0 and 24 HAI, decreasing over the time course. This cluster was

enriched with proteins involved in ‘Regulation of biological process’

(p=5.0e-13) and ‘Protein modification’ (p=1.9e-16). DAP abundance
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varied significantly amongst Clusters I, II, and V, with the most

significantly enriched GO term ‘Carbohydrate metabolic process’

(p=3.5e-22).

Functional proteome analysis reveals metabolic rerouting due to

low oxygen during controlled germination Pathways-associated

analysis found that of the 793 DAPs, 55.9% (443) were successfully

mapped to 20 KEGG functional categories (Supplementary Figure S4;

Supplementary Data S1), with 20.0% (89) of proteins involved in

carbohydrate metabolism, followed by genetic information processing,

making up a further 14.4% (64) and biosynthesis of other secondary

metabolites contributing 7.0% (31) to the protein classification. Similar

to the findings in the PGSEA, the highest number of DAPs were found

to be associated with carbohydrate metabolism.

To further explore the impacts of low-O2 on carbohydrate

metabolism we carried out KEGG functional analysis. First, we

visualized mitochondrial proteins known to be impacted by low-O2

and their influence on energy and signaling proteins

(Supplementary Figure S3). This was followed by exploration of

carbohydrate metabolic pathways, primarily glycolysis, starch and

sucrose, and pyruvate metabolism (Figure 3). The results of protein

groups and abundance patterns involved in these pathways revealed

a metabolic rerouting associated with oxygen deficiency, explained

further in the discussion.
FIGURE 2

Parametric analysis of gene set enrichment (PGSEA, with all DAPs, min. gene set size, 5; p ≤0.05), with hierarchical clustering analysis (HCA; cut-off
0.65, Pearson correlation, complete linkage) of the top 50 significant gene ontology (GO) enriched biological process pathways for the identified
differentially abundant protein groups (log2 FC≥1.5, p ≤0.05).
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FIGURE 3

Schematic revealing changes in abundance patterns of DAPs related to signaling, carbohydrate, and fermentation metabolism in malting barley germination:
(A) Signaling; (B) Glycolysis; (C) PPi-linked glycolysis; (D) Pyruvate metabolism; (E) Starch and sucrose metabolism (F) Fermentation metabolism; and (G)
Phosphoenolpyruvate (PEP) carboxylase metabolism. Differentially abundant proteins (DAPs, log2 FC≥1.5, FDR≤0.05) were mapped onto the metabolic
pathways. The log2 protein abundance across the time course of IGB and FLN (n=4, see Materials and Methods) has been plotted into dots as shown in the
Key; 1, 2, 3, and 4 represent IGB at 0, 24, 48, and 72 HAI, while dots; 5, 6, 7, 8 represent FLN at 0, 24, 48 and 72 HAI. Scale: Dark blue dots indicate
decreased protein abundance, and red dots indicate increased protein abundance (created with BioRender.com). (ADH, alcohol dehydrogenase; AlaAT,
alanine aminotransferase; ALDH, aldehyde dehydrogenase; AMY, a-amylase; BMY, b-amylase; CS, citrate synthase; ERF-VII, ethylene response factor;
Fructose-1,6P2, fructose 1,6-bisphosphate; Fructose-6P, fructose-6-phosphate; FRK, fructokinase; Glucose-1P, glucose-1-phosphate; Glucose-6P, glucose-
6-phosphate; HK, hexokinase; HRPE, hypoxia-responsive promotor element; HRG, hypoxia response gene; LDH, lactate dehydrogenase; PCK,
phosphoenolpyruvate carboxykinase; PDC, pyruvate decarboxylase; PDH, pyruvate dehydrogenase; PEPC, phosphoenolpyruvate carboxylase; PEP,
phosphoenolpyruvate; PGK, phosphoglycerate kinase; PGM, phosphoglucomutase; PFK, ATP-dependent phosphate dehydrogenase; PFP, PPi-dependent
phosphofructokinase; PGI, phosphoglucose isomerase; PK, pyruvate kinase; PPDK, Pyruvate phosphate dikinase; PYR, pyruvate; MDH, malate dehydrogenase;
OAA, oxaloacetate; SUS, sucrose synthase; UGPase, UDP-glucose pyrophosphorylase).
Frontiers in Plant Science frontiersin.org07

https://www.biorender.com
https://doi.org/10.3389/fpls.2023.1305381
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


O'Lone et al. 10.3389/fpls.2023.1305381
Phenotypic compositional verification
of malting barley during
controlled germination

Physiochemical analysis (Figure 4; Supplementary Data S4)

showed that the onset of germination significantly impacted the total

starch content in IGB but not seen in FLN (Figure 4A). In IGB, the

largest abundance of starch was seen at 0 and 72 HAI, with a significant

drop in starch composition at 24 and 48 HAI, whereas FLN

demonstrated no significant changes. There was a significant increase
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in compositional free glucose of both IGB and FLN across the

germination time points (Figure 4B). IGB had an earlier onset
increase at 0 to 24 HAI (p=1.55e-06), not seen in FLN. However, FLN

increased from 24 to 48 HAI (p=3.17e-06), with no significant change

observed in IGB. IGB and FLN had the greatest increase of free glucose

from 48 to 72 HAI (p=1.49e-09 and p=9.20e-11, respectively). Finally,

a-amylase activity presented a similar trend for both genotypes, with a

non-significant gradual increase from 0-24 HAI and an increase from

24-48 HAI in both IGB and FLN (p=1.18e-06, and p=2.65e-04,

respectively) (Figure 4C).
A

B

C

FIGURE 4

Grain compositional analysis of two malt barley genotypes across four key germination stages (hours after imbibition, HAI). Total starch (A) is
expressed as a percentage per gram of wholemeal. Free glucose (B) is expressed in milligrams per gram wholemeal. Total amylase activity (C) is
expressed in ceralpha units (CU) per gram wholemeal. The data are presented as the mean ± SD (n = 3 independent technical replicates). Statistical
significance was analyzed using one-way ANOVA multiple comparisons followed by a t-test. Asterisks indicate significant differences among the time
point (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).
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Discussion

This study explored the proteome and composition of two

malting barley genotypes, demonstrating differences in the

proteome as measured across controlled germination. The

IGB1467 barley genotype demonstrates a more rapid proteome

alteration in response to controlled germination with earlier protein

abundance changes seen from 24 to 48 HAI, whereas Flinders

demonstrates greater changes from 48 to 72 HAI (Figure 1;

Supplementary Figure S2). These findings further contribute to

the previously described malting phenotypes and support the

hypothesis that IGB1467 demonstrates efficient protein hydrolysis

requiring less moisture in contrast to Flinders with slower

germination and greater water uptake.

Proteome exploration uncovered several key protein groups

responsible for metabolic advantage via alternate modulation

between the genotypes in adaptive tolerance to low-O2, where

IGB1467 demonstrated less sensitivity than Flinders under low-

O2 conditions. The steep, during controlled germination, is known

to enforce periods of O2 deficiency due to submergence regardless

of steeping conditions (Wilhelmson et al., 2006). In addition,

attempts to aerate the water are inefficient due to the poor

solubility of oxygen in water (Kelly and Briggs, 1992). Therefore,

we hypothesize that observed differences in IGB1467 and Flinders

(Figures 2; 3, Supplementary Figure S3) are related to varied

metabolic adaptations (‘tolerance’) during controlled germination

to low-O2 conditions with the regulation of previously reported

submergence-responsive pathways (Luan et al., 2018; Borrego-

Benjumea et al., 2020; Luan et al., 2022). The observed difference

in metabolic modulation of protein groups under low-O2 enforced

by submergence during controlled germination saw varied patterns

between IGB1467 and Flinders related to signaling, protein

synthesis, energy metabolism, including glycolysis, fermentation,

and finally, the impacts of low-O2 metabolic activity and generation

of reactive oxygen species. Our results serve as a foundation

revealing physiological changes related to water usage of the

malting barley grain during the controlled germination process.
Sensing and signaling low-O2 stress
is a key adaptive response to
controlled germination

In plants, ethylene plays a central role in signaling and

modifying responses to low-O2 (Bailey-Serres et al., 2012). We

found GO terms related to signaling (Figure 2, cluster III) that

include the ethylene response factor (ERF-VII; APETALA2/

Ethylene Response Factor; AP2/ERF) and the hypoxia induced

protein (HIG1). Under submerged conditions, O2 deficiency

reduces pyruvate dehydrogenase (PDH) expression, limiting the

entry of acetyl-CoA into the mitochondria required for aerobic

oxidative phosphorylation (Shingaki-Wells et al., 2014). This leads

to an energy crisis and the expression of ERF-VII, known to

enhance hypoxia survival in barley (Mendiondo et al., 2016).

ERF-VII is a transcription factor that functions as a master
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regulator of low-O2 response, controlled by the cysteine

branch of the N-degron pathway (Licausi et al., 2011; van
Dongen and Licausi, 2015). During normoxia conditions, ERF-VII

is degraded via the ubiquitin-proteasome pathway. However, in

hypoxic conditions, ERF-VII is stabilized and protected from

proteolysis, allowing for the transcription of hypoxia genes

(Fukao et al., 2019; Loreti and Perata, 2020). The ERF-VII

transcription factor subfamily is also a master activator of the

hypoxia-responsive promotor element (HRPE), which up-

regulates a core set of conserved hypoxia-responsive genes (HRG)

(Loreti, E., and Perata, 2020; Licausi et al., 2010; Gasch et al., 2015),

such as pyruvate decarboxylase (PDC), and alcohol dehydrogenase

(ADH) (Mustroph et al., 2010; Gibbs et al., 2011; Giuntoli et al.,

2017) discussed in further sections. Both genotypes were responsive

to hypoxic conditions with an observed decrease in PDH and

mitochondrial respiratory chain protein abundance and an

increased abundance of HIG1 and ERF-VII (Figure 3A;

Supplementary Figure S3). IGB1467 demonstrated a greater

abundance of ERF-VII earlier than Flinders (Figure 3;

Supplementary Figure S3). This finding suggested that IGB1467

and Flinders both experienced hypoxic conditions enforced by

submergence during steeping, sharing similar patterns of HIG1.

However, IGB1467 demonstrates earlier low-O2 sensing via ERF-

VII, possibly contributing to a more responsive and adaptable

metabolism. Further studies are required to explore the possible

difference signaling cascades involved in the differential, adaptive

response mechanism seen in IGB1467 and Flinders.
IGB1467 demonstrates an earlier onset of
reserve mobilization driven by increased
protein synthesis

During the controlled germination process, germinating grain

lacks photosynthesis and mineral absorption, relying mainly on

stored energy and nutrients to maintain normal seed germination.

We found several protein GO terms related to storage reserve

mobilization (Figure 2, cluster I), for example, ‘Macromolecule

metabolic process,’ including ‘Proteolysis.’ These terms shared

similar abundance patterns between the two genotypes, with low

abundance at 0 HAI and increasing over time. However, IGB1467

demonstrates an earlier increase and greater overall abundance.

Previous findings on enzymes that aid in the breakdown of these

reserves were found to be activated, releasing energy and enzymes,

for example, b-amylase, necessary for endosperm modification and

embryo growth (Shewry and Halford, 2002; Bewley et al., 2013; Cai

et al., 2013; Wang et al., 2015). Our findings confirm an increased

abundance of proteins related to storage reserve mobilization, such

as proteases, after imbibition and reassumption of metabolism in

both genotypes. However, IGB1467 demonstrates a greater

abundance of related proteins that may contribute to increased

storage reserve mobilization and modification efficiency.

Protein synthesis is crucial to storage reserve mobilization,

where enzyme activation and de novo synthesis of proteins are

required for endosperm modification (Sano et al., 2020). It has been
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previously reported that mature, dry grain can rapidly restart

metabolic activity, including protein synthesis, after imbibition

(Bai et al., 2020) by utilizing ‘Long-life mRNAs’ that, upon

imbibition, meet the de novo protein biosynthesis (He et al.,

2011). Our results demonstrated that IGB1467 showed a higher

abundance of proteins involved in ‘RNA biosynthesis processes’ and

‘Ribosomal activities’ (Figure 2, cluster V), crucial for de novo

protein synthesis during controlled germination. The significantly

higher abundance of these proteins in IGB1467 may allow for a

faster adaptive response to imbibition and stress response to low-O2

conditions. This leads to elevated protein synthesis and enzyme

production to readily mobilize storage reserve during controlled

germination. Our findings are supported by earlier studies,

suggesting that the synthesis of new proteins and continued gene

expression are essential for the acclimation of rice (Oryza sativa L.)

coleoptiles to low-O2 conditions (Huang et al., 2005; Lasanthi-

Kudahettige et al., 2007).
Differentially abundant proteins highlight
contrasting adaptive responses to
controlled germination

Starch and sucrose metabolism feeding glycolysis
during controlled germination

During controlled germination, the grain experiences a strong

energy and carbon availability decline. Previous studies in rice

found some accession can germinate under low-O2 conditions but

require large reserves of readily available sugars to do so (Magneschi

and Perata, 2009; Loreti et al., 2017; Cho et al., 2021). We found that

IGB1467 had a greater amount of total starch in the grain,

significantly decreasing over the early stages of controlled

germination, in contrast to Flinders (Figure 4A). To help

maintain supply with increased carbon demand under low-O2

conditions requires an increase in the conversion of starch to

glucose involving amylases, for example, a- and b-amylase, as

seen in anoxia-tolerant rice (Lasanthi-Kudahettige et al., 2007).

We found greater amylase abundance in IGB1467 (Figure 3E),

which may have contributed to the increased conversion of starch to

glucose, resulting in the earlier increased abundance of free glucose

also seen in IGB1467 (Figure 4B). However, we did not see a similar

increase in compositional a-amylase activity (Figure 4C). This

suggests that rather than a-amylase, b-amylase activity may

contribute to starch degradation and increased free glucose

content. Additionally, b-amylase is known to accumulate in the

endosperm in both free and bound forms (Ziegler, 1999). During

seed germination, bound b-amylase is released in a soluble active

form by proteolysis, resulting in a transient increase in total b-
amylase activity (Sopanen and Laurière, 1989). Therefore, we can

further suggest that the increased proteolysis of IGB1467

contributed to a greater abundance of released b-amylase.

Previous studies have shown that greater amylase abundance can

be induced in response to low-O2 during germination and that

expression changes between 24 and 72 HAI positively correlate to

embryo growth (Ismail et al., 2009; Hsu and Tung, 2017). This

finding suggests that IGB1467, in contrast to Flinders, had greater
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available free glucose content for glycolysis and energy

production via ethanolic fermentation, contributing to the
observed increase in modification efficiency.

In addition to starch degradation, SUS is a key enzyme for

channeling sucrose into the glycolysis pathway. Under hypoxic

conditions, the conversion of sucrose to fructose switches from

invertase to SUS, as seen in anoxia-tolerant rice (Lasanthi-

Kudahettige et al., 2007; Magneschi and Perata, 2009; Loreti et al.,

2017), helping to maintain supply with increased carbon demand

(Stark et al., 1992; Kumutha et al., 2008). Both genotypes

demonstrated an increased abundance of SUS in the earlier time

points (Figure 4E). In IGB1467, SUS was present at 24 HAI and

increased in abundance over time, whereas Flinders had an

increased SUS in the grain (0 HAI) that decreased during

controlled germination. In low-O2 environments, over-expression

of SUS genes in barley conferred tolerance to hypoxic stress (Luan

et al., 2022), suggesting the increase in IGB1467 supports greater

tolerance to low-O2 during controlled germination.

Glycolysis and Pyrophosphate-linked glycolysis
energy supply during controlled germination

Under hypoxic conditions, the glycolysis pathway is upregulated.

We found many proteins involved in catalyzing the conversion of

glucose to pyruvate via glycolysis with shared abundance patterns

(Figure 3B), suggesting both genotypes undertook glycolysis for

energy production, reported previously in barley (Borrego-

Benjumea et al., 2020). Moreover, these results are similar to

findings in canola (Brassica napus L.) under waterlogging stress,

with both tolerant and sensitive varieties showing high induction of

glycolysis-related genes (Zou et al., 2015). This suggests that glycolysis

is a shared response irrespective of tolerance to submergence during

controlled germination (Zou et al., 2015). Therefore, the abundance

of these proteins was not seen as a key contributor to low-O2

tolerance between genotypes.

In addition to glycolysis, pyrophosphate-dependent

phosphofructokinase (PPi-PFK) and pyruvate orthophosphate

dikinase (PPDK) proteins demonstrated varied abundance in

IGB1467 and Flinders. In IGB1467, we saw a significant increase in

PPi-PFK and PPDK (Figure 3C). Previous studies in rice found that

low-O2 conditions led to increased expression of PPi-PFK and PPDK

and are involved in PPi-linked glycolysis as an alternative energy

currency (Huang et al., 2005; Lasanthi-Kudahettige et al., 2007; Atwell

et al., 2015; Hsu and Tung, 2017). PPi-PFK plays a role in conserving

ATP levels by utilizing PPi generated by PPDK instead of ATP-

dependent 6-phosphofructokinase (ATP-PFK) in the glycolytic

pathway, conserving ATP (Gibbs and Greenway, 2003; Ferjani et al.,

2011; Igamberdiev and Kleczkowski, 2021). Our findings suggest

IGB1467 switched to PPi-linked glycolysis, substituting PPi-PFK for

ATP-PFK during glycolysis and increasing ATP yield under low-O2

conditions. In rice, PPi utilization alleviated the anoxia ATP deficiency

to preserve cellular processes, including protein synthesis (Huang et al.,

2005). Therefore, we hypothesize this alternate energy source may

provide IGB1467 flexibility not seen in Flinders to preserve energy,

maintain cellular processes, and support previously discussed protein

synthesis for continued grain modification under low-O2 conditions

during controlled germination.
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In Flinders, despite the observed increased abundance of PPDK,

there was a low abundance of PPi-PFK and a higher abundance of

ATP-PFK, suggesting the PPi is used in an alternate pathway to

support sucrose (Suc) conversion of UDP-glucose to glucose-1-

phosphate (Glc-1-P), which can then be directed toward glycolysis

(Atwell et al., 2015). Our results support this hypothesis with

Flinders demonstrating an increased abundance of subsequent

enzymes, phosphoglucomutase (PGM) and phosphoglucose

isomerase (PGI), involved in feeding fructose into the glycolysis

pathway (Figure 3). Therefore, it has been demonstrated that PPi

can generate equilibrium changes to bypass ATP-dependent

metabolism, providing plasticity in the metabolism during the

energy crisis of low-O2 stress during controlled germination

(Igamberdiev and Kleczkowski, 2021).

Rerouting of energy metabolism via pyruvate
during controlled germination

The final product of glycolysis is NADH and pyruvate, which

are transferred to the TCA cycle via PDH under normoxic

conditions to create more ATP. However, under controlled

germination conditions, we saw a decrease in mitochondrial PDH

in both IGB1467 and Flinders (Figure 3D; Supplementary Figure

S3). As discussed earlier, PDH plays an important role in the

conversion of pyruvate to acetyl-CoA for entry into the TCA,

therefore limiting carbon entering the TCA cycle and re-routing

energy metabolism (Bailey-Serres and Voesenek, 2008; Zhang et al.,

2023). This finding suggests that both genotypes experienced

hypoxic conditions and that adaptive flexibility within the

controlled germination pivots on the pyruvate metabolism.

The pyruvate metabolism under low-O2 involves three pathways:

(1) alanine synthesis, (2) lactic acid fermentation, and (3) ethanol

fermentation (Figure 3F). While these three pathways utilize pyruvate

as a substrate, ethanolic and lactic acid fermentation regenerate NAD+

via PDC and lactate dehydrogenase (LDH). Whereas alanine synthesis

via alanine aminotransferase (AlaAT) stores carbon and nitrogen

(Ricoult et al., 2005). We found several proteins in the pyruvate

metabolism. LDH was low in IGB1467 and Flinders in the early

stages of controlled germination, with a greater abundance of PDC

and AlaAT, respectively. This finding suggests that in both genotypes,

pyruvate was diverted away from lactic acid fermentation, and different

genotype-specific re-rerouting strategies were employed under low-O2

stress of controlled germination.

AlaAT is responsible for increased alanine synthesis detected in

both genotypes at 24 HAI with greater abundance in IGB1467.

However, abundance in IGB1467 decreased from 24 to 48 HAI, not

seen in Flinders (Figure 3F). This suggests increased carbon/

nitrogen storage in Flinders (Diab and Limami, 2016). Ricoult,

Cliquet (Ricoult et al., 2005) found in Medicago (Medicago

truncatula), AlaAT expression increased under anoxic conditions,

competing with ethanolic fermentation for pyruvate to increase

alanine synthesis. Alanine accumulation contributed to anoxia

tolerance, saving carbon as stored nitrogen and limiting

the accumulation of the toxic compound acetaldehyde

(Ricoult et al., 2005). In addition, during post-hypoxia recovery,

stored carbon can be mobilized to produce pyruvate via the reverse

reaction of AlaAT/glutamate dehydrogenase and funneled into the
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TCA cycle (Diab and Limami, 2016). This finding suggests

that in contrast to IGB1467, Flinders rerouted pyruvate to
alanine instead of ethanolic fermentation. In addition, this strategy

may aid in energy production upon the reassumption of aerobic

respiration during germination. Overall, our data support the

hypothesis that genotype-specific re-routing strategies in the

pyruvate metabolism are key to sensing low-O2 and facilitating

adaptability in response to low-O2 conditions during

controlled germination.

IGB1467 demonstrated ethanol fermentation with a greater

abundance of PDC involved in turning pyruvate into

acetaldehyde, which is then reduced to ethanol by ADH (Ismond

et al., 2003; Shingaki-Wells et al., 2014; Ventura et al., 2020). These

enzymes are among the ‘core hypoxia response’ genes (Lee et al.,

2014; Mustroph et al., 2014) known to be essential for submergence

tolerance in barley under hypoxic conditions caused by

waterlogging stress (Zhang et al., 2016; Zhang et al., 2017; Luan

et al., 2018; Luan et al., 2022). Our study found that ADH had

greater abundance in IGB1467 compared to Flinders (Figure 3F).

The increased abundance of PDC at 24 HAI may have contributed

to the increased abundance of ADH also seen at 24 and 48 HAI in

IGB1467. The observation that IGB1467 had a greater abundance

and earlier onset of essential anaerobic proteins PDC and ADH

suggests switching to the fermentation metabolism to maintain

energy via glycolysis. Additionally, we can hypothesize that this

alternative energy supply could further support greater protein

synthesis and increased protein hydrolysis observed in IGB1467

seen to a lesser extent in Flinders.

In contrast to fermentation, Flinders demonstrated differential

modulation of pyruvate metabolism, as seen in the significantly

increased abundance of phosphoenolpyruvate carboxylase (PEPC)

not seen in IGB1467 (Figure 3G). PEPC is at the core of plant

carbon fixation, assimilating CO2 during crassulacean acid

metabolism (CAM) photosynthesis (O'Leary et al., 2011).

However, PEPC also plays a role in several non-photosynthetic

functions. For example, when coupled with malate dehydrogenase

(MDH) and NAD+-dependent malic enzyme (NAD-ME), it forms

an alternative flux that can function in place of pyruvate kinase (PK)

to generate pyruvate (Sweetlove et al., 2010; O'Leary et al., 2011) as

seen in Flinders. However, previous findings in rice have found a

strong suppression of PEPC in hypoxic-tolerant lines compared to a

low-level reduction in hypoxia-sensitive lines (Lasanthi-

Kudahettige et al., 2007; Hsu and Tung, 2017). Hsu and Tung

(2017) hypothesized that because PEPC converts PEP into

oxaloacetate rather than pyruvate, there is insufficient pyruvate

for ethanol production, bypassing alcohol fermentation and

contributing to increased sensitivity to low-O2 conditions (Hsu

and Tung, 2017). This redirection of pyruvate was evident in

Flinders, where we saw a significantly lower abundance of

fermentation-related proteins than IGB1467. This finding further

supports Flinders’s sensitivity to low-O2, where previous studies

have demonstrated that the abundance of enzymes participating in

fermentative ethanol production involving PDC and ADH are

significantly higher in ‘hypoxia tolerant’ germinating rice seeds

compared to ‘hypoxia sensitive’ lines (Ismail et al., 2009; Miro et al.,

2017). Therefore, this suggests impaired ethanol production in
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Flinders leads to hypoxic sensitivity due to insufficient energy

generation for embryo growth via transcriptional regulation (Hsu

and Tung, 2017).
Impacts of rerouting for efficient
modification under controlled germination

Submergence and low-O2 stress experienced during controlled

germination leads to the accumulation of reactive oxygen species

(ROS). Under oxygen deficiency, disruption of the electron transport

chain in mitochondria results in excess hydrogen peroxide (H2O2),

and increased ROS generation causing cell oxidative damage (Fukao

and Bailey-Serres, 2004; Shabala et al., 2014; Jacoby et al., 2018). As

seen in previous studies of barley under waterlogging conditions and

in the early stages of malting (Gill et al., 2019; Mahalingam et al.,

2021). However, an effective antioxidant metabolism can alleviate the

harmful impacts of ROS (Apel and Hirt, 2004; Mittler, 2017) aided by

several antioxidant enzymes, for example, superoxide dismutase

(SOD), peroxidase (POD), ascorbate peroxide (APX) and catalase

(CAT) (Blokhina et al., 2003). In our study, 32 proteins involved in

‘Cellular oxidant detoxification’ activity were found with contrasting

abundance patterns between the two genotypes (Figure 2, cluster II),

IGB1467 having low abundance and Flinders having significantly

greater abundance. The proteins involved in this cluster included

APX and POD, most of which were related to peroxidases (24

proteins, 85% of 28). Luan, Guo (Luan et al., 2020) found that

over-expression of barley HvERF2.11 in Arabidopsis (Arabidopsis

thaliana) triggered the increased expression level of antioxidant

enzyme biosynthesis genes (AtSOD1, AtPOD1) and ethylene

biosynthesis gene (AtACO1). They conferred resistance to

waterlogging stress (Luan et al., 2020). This suggests that although

IGB1467 demonstrates greater tolerance to low-O2 conditions, the

grain may not have the protective functions that exist in Flinders for

ROS detoxification, which may have an undesirable impact on malt

quality. However, this will require further investigation to confirm the

ROS production and specific effects of antioxidant enzyme activities

and their influence on malt quality.
Conclusion

In this study, we explored the proteomes of two malting barley

genotypes with different malting phenotypes during controlled

germination. In contrast to Flinders, we identified differences in

protein abundance patterns that suggest IGB1467 has better

adaptability or ‘less sensitivity’ to low-O2 conditions experienced
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during submergence of controlled germination, contributing

to more efficient endosperm protein hydrolysis at lower
grain moisture. Although the treatments were varied, it was

evident that both genotypes experienced low-O2 conditions with

an increase in ethylene and hypoxic response signaling. The stress

induced by this O2 deficiency led to various metabolic adaptations

and rerouting carbohydrate metabolism, where the continued

efficient proteolysis in IGB1467 may be attributed to increased

protein synthesis (seen in the mature grain) and a switch to

fermentation and PPi-linked energy pathways to support the

boosted protein synthesis and overall modification. However, the

greater low-O2 tolerance seen in IGB1467 is likely a result of several

interaction factors at the molecular, biochemical, and anatomical

levels. Further studies are required to understand the ethylene

signaling pathway and the potential impacts of reduced

antioxidant activity seen in IGB1467 on malt quality. Our

findings shed light on the consequence submergence during

controlled germination, providing insight into mechanisms for

low-O2 sensing in barley grain, the underestimated role of the

fermentative metabolism in efficient grain modification,

highlighting possible adaptive metabolic traits as breeding targets

for optimizing malting practices.
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