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1Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National
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Introduction: Drought detection, spanning from early stress to severe

conditions, plays a crucial role in maintaining productivity, facilitating recovery,

and preventing plant mortality. While handheld thermal cameras have been

widely employed to track changes in leaf water content and stomatal

conductance, research on thermal image classification remains limited due

mainly to low resolution and blurry images produced by handheld cameras.

Methods: In this study, we introduce a computer vision pipeline to enhance the

significance of leaf-level thermal images across 27 distinct cotton genotypes

cultivated in a greenhouse under progressive drought conditions. Our approach

involved employing a customized software pipeline to process raw thermal

images, generating leaf masks, and extracting a range of statistically relevant

thermal features (e.g., min and max temperature, median value, quartiles, etc.).

These features were then utilized to develop machine learning algorithms

capable of assessing leaf hydration status and distinguishing between well-

watered (WW) and dry-down (DD) conditions.

Results: Two different classifiers were trained to predict the plant treatment—

random forest and multilayer perceptron neural networks—finding 75% and 78%

accuracy in the treatment prediction, respectively. Furthermore, we evaluated

the predicted versus true labels based on classic physiological indicators of

drought in plants, including volumetric soil water content, leaf water potential,

and chlorophyll a fluorescence, to provide more insights and possible

explanations about the classification outputs.

Discussion: Interestingly, mislabeled leaves mostly exhibited notable responses

in fluorescence, water uptake from the soil, and/or leaf hydration status. Our

findings emphasize the potential of AI-assisted thermal image analysis in
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Renó et al. 10.3389/fpls.2023.1305292

Frontiers in Plant Science
enhancing the informative value of common heterogeneous datasets for

drought detection. This application suggests widening the experimental

settings to be used with deep learning models, designing future

investigations into the genotypic variation in plant drought response and

potential optimization of water management in agricultural settings.
KEYWORDS

thermal imaging, drought, plant phenotyping, machine learning, leaf classification,
artificial intelligence
Introduction

Climate change is exerting a profound impact on global crop

production, primarily driven by the escalating variability in

precipitation patterns and the increased occurrence of droughts

(IPCC, 2022). These shifts in water availability have far-reaching

consequences, affecting the productivity, quantity, and quality of all

agricultural crops, including those essential for anthropic use.

One such crop is Gossypium hirsutum L., important for its

significant contributions to fiber production, seed oil extraction,

and livestock fodder. Thriving in arid environments where water

resources are already limited, this species necessitates a substantial

volume of annual water (60–120 cm) to support its robust growth

(Wegier et al., 2016; Khan et al., 2020). With 25 million tons of fiber

produced per year and an economic impact exceeding 600 billion

dollars, cotton plays a pivotal role in supplying over 80% of the

global natural fiber demand, underscoring its critical importance to

both individuals and global economies (Townsend, 2020). In recent

years, the production of this crop has been decreasing due to more

severe weather events (Meyer et al., 2023), and projections suggest

that the world cotton production may struggle to meet the

burgeoning demand in the next decades (Li et al., 2021).

However, a silver lining is represented by the substantial genetic

diversity inherent within this species constituting an unprecedented

avenue for the selection, breeding, and cultivation of varieties that

are inherently better equipped to endure and thrive amidst

increasing climatic pressures.

Plant phenotyping consistently applies image processing (IP)

techniques (either classical or modern ones to data acquired from

visible, infrared, and hyperspectral cameras, showing the potential

to enable for non-destructive, high-throughput detection and

selection of desirable traits across different temporal and spatial

scales (Zhao et al., 2019). Thermal imaging, also known as infrared

thermography, is a powerful and non-invasive technique that has

found widespread relevance in recent years to assess canopy

temperature and their responses to both abiotic and biotic

stressors, from salt stress, heat, and drought stress to bacterial

and fungal infections (Pineda et al., 2021). The analysis of canopy

temperatures has been connected to traditional physiological

measurements—leaf water potential, gas exchange, and
02
chlorophyll a fluorescence (Cohen et al., 2005; Casari et al., 2019)

—and utilized to screen for genotypic variation across several

species (Casari et al., 2019; Bhandari et al., 2021; Ferguson et al.,

2021). The processing of thermal images usually starts by separating

the canopy impression from the background pixels that may

include soil particles and other structures. This initial pixel

exclusion process can be completed through a variety of different

approaches: manual isolation of the canopy and leaf via polygon

selection, gray scaling, image segmentation, two-means clustering,

and bimodal peak detection (Mohanty et al., 2016; Prakash et al.,

2021; Stutsel et al., 2021; Sakurai et al., 2023). Despite the utilized

methodology, the postprocessing times for the analysis of thermal

images are usually long and often affected by the low resolution of

the images (Kohin and Butler, 2004).

To cope with the constraints imposed by traditional IP

methods, over the last few years, the scientific community has

largely adopted machine learning (ML) and, particularly, deep

learning (DL) techniques to deal with data acquired by plant

phenotyping platforms or, more in general, from high-throughput

measurements (Solimani et al., 2023). These algorithms can also

represent a great opportunity to implement the postprocessing of

thermal images captured with handheld cameras and indeed

increase their final throughput. ML algorithms have already been

used to analyze thermal images, specifically to enhance stomatal

count, surface recognition, and crop disease classification (Cho

et al., 2018; Ferguson et al., 2021; Pignon et al., 2021; Batchuluun

et al., 2022). Three different ML algorithms, namely, random forest,

multivariate linear regression, and gradient boosting, were

previously used to correlate thermal data—acquired by thermal

IR images—to environmental drivers, such as solar radiation, air

temperature, relative humidity, and wind speed, to assess the

relationship between the stomatal conductance in crop canopies

and changes in environmental factors (Zhao et al., 2021). Another

approach consisted of two models based on variations for decision

trees used to define a relationship between the regression of thermal

indexes for droughted and well-watered scenarios of vineyard crops

(Gutiérrez et al., 2018). DL approaches have also been proposed by

developing a custom architecture based on convolutional neural

networks (CNNs) to classify five different crop diseases and defects

(e.g., blast, bacteria leaf blight, leaf folder) (Batchuluun et al., 2022).
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In that case, the model was first trained on the Paddy crop dataset

and then refined on a new empirical dataset consisting of 4,720

images. The results were further investigated by using class

activation maps to highlight the parts of the image that were

considered relevant by the network to achieve the classification

result. Finally, indexes of classification, such as the crop water stress

index (CWSI), have been computed to distinguish between

droughted and well-watered crops. Despite these significant IP

applications to thermal images and the correlations to different

physiological indicators from various crops, models that use

thermal crop response to water stress across extreme genotypes

using deep learning are scarce (Berni et al., 2009; Pratap et al., 2019).

Here, we provide an evaluation of the response of different

genotypes to different levels of water limitations, from mild to

severe drought. First, we screened a panel of 27 geographically

different genotypes (Supplementary Figure S2) in the species

Gossypium for their response to water limitation using a

handheld IR camera. These imaging data were used as the basis

to develop a hybrid IP/ML processing software pipeline, which used

IP techniques to extract the region of interest from each leaf and

then feed a statistically enhanced ML algorithm to predict the leaf

water status, as either well-watered (WW) or subjected to dry-down

(DD) at two different times during the complete water withholding

(mild and severe drought). Finally, we coupled additional leaf-level

physiological measurements, such as water potential and

chlorophyll a fluorescence to the IP/ML analysis, providing a

meaningful interpretation of the modeled results.
Materials and methods

Plant materials

A panel of 27 different genotypes was utilized for the experiment,

and all seeds were obtained from the USDA Germplasm Collection.

Genotypes originate from Australia, China, Guatemala, Mexico,

Trinidad and Tobago, and the USA, covering all four zones that have

the highest production of cotton in the world (Wendel et al., 2009).

Aside from being geographically diverse, the selected genotypes also

span a large range in leaf size, plant and leaf architecture, and coloration

(Figure 1). This extreme genotypic variation inevitably affects the

physiology of these genotypes, including their water status and their

ability to maintain leaf turgor despite water limitations (e.g., large versus

small leaves, significantly impacting transpiration rates) making the

panel of choice perfectly suited for testing our pipeline, due to expected

great variation in the thermal features of the leaves under

progressive drought.
Growth conditions

The cotton panel was grown in a greenhouse research bay of the

Plant Growth & Phenotyping Facility at the University of Wyoming

(Laramie, Wyoming, USA) for a total of 122 days from seed to seed,

planting to harvesting, during the winter of 2022–2023. The cotton

panel, 27 genotypes × 3 replicates each, was grown following a
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random block design, and the greenhouse environmental

conditions were controlled by state-of-the-art climate control

systems (Argus, British Columbia, Canada). Temperature was set

to 27°C ± 3°C/26°C ± 3°C (day/night), and relative humidity was

between 10% and 30%. Additional lighting was given by a four-

channel Heliospectra growth light system (Heliospectra AB,

Gothenburg, Sweden). The intensity of the Elixia LED channels

was set as follows: 450 nm (blue) at 500 units, 660 nm (red) at 500

units, 735 nm (far-red) at 500 units, and the white 5,700K LED

channel at 1,000 units. All intensities are reported as 0–1,000 units

corresponding to 0%–100% of max LED output as for the

Heliospectra manual. The photoperiod was 14/10 (D/N), 0600h–

0800h; the highest recorded photosynthetically active radiation

(PAR) was 1,600 mmol photons m−2 s−1 with the sensor located

in the middle of the canopy. Aside from the OMNI sensors from

Argus, the environmental conditions were also tracked using

CR1000 Data Logger (Campbell Scientific Inc. Logan, UT, United

States) monitoring: air temperature and relative humidity

HMP45AC (VAISALA, Vantaa, Finland); PAR, LI-COR

Quantum (LI-COR, Lincoln, NE, United States); and soil

moisture, Delmhorst GB-1 (Delmhorst Instrument Co., Towaco,

NJ, United States). Sensors were spaced across the entire area

covered by canopy in the ~40-m/420-ft2 greenhouse bay.
Experimental design

One seed per pot (10 quarts/11 L in volume) was sown in a

substrate made up of sand (80% v/v; Premium Play Sand, Quickrete,

Atlanta, GA), fritted clay (10% v/v; Greens Grade, Buffalo Grove,

IL), and organic soil mix (10% v/v; Miracle-Gro moisture control

Potting Mix, Marysville, OH) amended with ½ tablespoon of

Osmocote 16–6–12 fertilizer (Scotts, Marysville, OH). Sown seeds

were covered and placed centrally in the pot at a depth of ~½ inch/

1.2 cm and covered in vermiculite to aid in the germination. Plants

were hand-watered with reverse osmosis (RO) water daily to

maintain soil field capacity and a soil water potential close to

saturation until 105 days after sowing (DAS) when all genotypes

and replicates had at least 50% of opened flowers (Figure 2). At 106

DAS, two randomly chosen replicates for each genotype were

subjected to complete water withholding for the rest of the

experiment forming the dry-down cohort of plants (DD), while

one replicate per genotype was maintained at the daily watering

regime in the well-watered (WW) cohort. All physiological

measurements occurred at two points in time, at 110 DAS (mild

drought) and 121 DAS (severe drought), after 4 and 14 days of

uninterrupted progressive drought, respectively.
Leaf-level physiological measurements

On measurement days, chlorophyll a fluorescence was

measured on two separate fully developed leaves of the mid-

canopy with a handheld fluorometer (FluorPen FP100, Photon

System Instruments, Drásov, Czech Republic). Measurements of

photosystem II efficiency were taken using a saturation pulse that
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FIGURE 2

Experimental design. A panel of 27 diverse genotypes of cotton was grown for a total of 122 days after sowing (DAS). All plants were watered at
saturation until 105 DAS when drought was applied as complete water withholding for a subset of plants (dry-drown). All data presented in the
manuscript were collected at 110 DAS (mild drought) and 121 DAS (severe drought).
FIGURE 1

In-vivo pictures of extreme genotypes in the cotton panel. Striking examples of plant architecture, leaf types, and coloration differences in the
experimental panel. Red/dark green medium size leaf for Red Dwarf Harrison (A); large, with low venation leaves in TX_180 (B); inverted margins for
the leaves of Cup Leaf (C); trilobate morphology for Gumbo leaves (D); pale green and short overall plant size for Virescent nankeen (E); and short-
overall plant size and okra-like leaves for Pronto (F). All plants were WW and imaged on the same day (70 DAS).
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was applied (1,500 mmol photons m−2 s−1) to measure Fv/Fm or Fv

′/Fm′ on dark- or light-acclimated leaves, respectively (Murchie and

Lawson, 2013). During the same measurement days, one fully

developed leaf per plant was also harvested and used to measure

leaf water potential (PMS Instrument Company, Albany, OR,

United States). Soil moisture measurements were also taken using

a HydroSense II (Campbell Scientific Inc., Logan, UT, United

States). Leaf water potential, chlorophyl a fluorescence, and soil

moisture measurements were taken over a 24-h time course during

the hours of 10:00–12:00 h, 16:00–18:00 h, and 22:00–24:00 h. After

the start of the dry-down, all physiological measurements were

taken during the hours of 04:00–06:00 h (predawn) and 11:00–13:00

h (midday).
Thermal imagery collection

Thermal images were taken using a handheld FLIR Thermal

Camera T560, 640 × 480 pixel resolution, wide angle lens f = 10

mm (FLIR Systems Inc., Wilsonville, OR, United States). Fully

developed leaves near the top of the canopy were chosen for

imaging, and one leaf per replicate plant across all genotypes and

treatment was imaged at the same time as the other leaf-level

physiological measurements. A white paper backdrop was placed

directly behind the leaf, and an image was taken holding the

camera objective facing both the leaf and backdrop to allow for a

full frontal view of the images (Figure 3). Image parameters were

set using leaf emissivity, 0.95, and with focus regulation (Buitrago

et al., 2016). A total of 648 images was made up from two images
Frontiers in Plant Science 05
per leaf, from three replicate plants for 27 genotypes at two times

of the day (predawn and midday) and at two drought treatments.

After initial QC, the final dataset used for the ML analysis was a

balanced dataset of 419 images between WW and DD. All

thermal images were converted to CSV format using FLIR

Thermal Studio.
Data analysis

Physiological data were processed using Excel and R 4.3.1 (R

Core Team, 2013) with packages dplyr (Wickham et al., 2023) and

tidyverse (Wickham et al., 2019). The presented graphs were

generated using the packages ggplot2 (Wickham, 2016) and

ggrepel (Slowikowski, 2023).
Hybrid IP/ML software pipeline for
thermal data

The hybrid IP/ML pipeline used in this work is summarized in

Figure S2, and it includes the following computational steps.

1. Data parsing: First, raw format data exported by the FLIR

thermal camera were parsed by a specific software routine to store the

data in an interoperable format such as comma-separated value (CSV)

files. Each one of these files held two separate representations, that is, a

thermal representation, where each pixel represented a thermal value

stored as a floating point number, and an RGB value, used for

visualization purposes.
B C DA

FIGURE 3

Leaf thermal variation in extreme cotton genotypes. Bright green, large leaf from Delta Pine 16 (A); red/dark green medium size leaf from Red Dwarf
Harrison (B); okra-like leaf from Siokara L23 (C), and dark green medium to large leaf from Tipo Chaco (D).
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2. Data preprocessing: After the parsing step, a preprocessing

step aimed at obtaining a high-pass-filtered version of the raw

thermal image, as well as its gradient, was performed. To this end,

the fast Fourier transform (FFT) of the raw thermal image was first

computed (Figure 4A). Then, a binary mask was computed to keep

all the FFT pixels whose value was less than the continuous

component, considered as the central, brighter, pixel (Figure 4B).

Then, the inverse transform was applied, as shown in Figure 4C.

Finally, the gradient of the filtered image was computed (Figure 4D)

and used to compute the leaf mask in the next step.

3. Leaf mask computation: The computation of the leaf mask is

performed starting from the gradient obtained during the

preprocessing step. First, the first quartile q1 and the third quartile

q3 of the values of the gradient image are computed. Then, the

interquartile range IQR = q3 − q1 is the used to compute a threshold

thrdw = q1 − 1:5 · IQR. Let d be the gradient image; a binary maskM

is then obtained according to the following binarization logic:

M(i, j) =
1,   if   d (i,   j)  ∨ d (i, j) < thrdw  

0,   otherwise

(

To enhance the mask M, the morphological operations of

dilation, hole filling, and erosion, followed by a blob analysis,

were performed, computing the connected components of the

image. The final mask M is then selected as the region with the

greatest number of contiguous pixels turned on. Some examples of
Frontiers in Plant Science 06
leaf masks for different genotypes are shown in Figure 5. The pixel

values in the region highlighted by the leaf masks are used to

compute thermal features. As such, the temperature values are first

statistically filtered removing the outliers, hence making the

algorithm robust to small leaf mask misalignments. Then, a set of

eight statistical thermal indicators are computed from raw thermal

values, that is, mean, standard deviation, median, 25th and 75th

percentiles, interquartile range, max, min, and temperature range.

The IP/ML software pipeline was developed and tested, and all

the AI applications were run on a machine equipped with an Intel

Core i9-11900K, 32 GB of RAM, and an Nvidia GeForce RTX 3080

GPU with 10 GB of RAM. The software was developed in Python

3.10, and the Scikit Image (Van der Walt et al., 2014) and Scikit

Learn (Pedregosa et al., 2011) libraries were used.
Results and discussion

Statistical analyses

The first step was to use the IP preprocessing techniques (Figure

S1) to extract all the leaf masks from the raw thermal data along

with the associated features. The algorithms used at this stage are

non-parametric, meaning that they automatically tune the

parameters after a preprocessing step of each thermal image, so

that the leaf mask can be estimated (Figure 6) and the thermal
B

C D

A

FIGURE 4

Data preprocessing details. Raw thermal image (A), a fast Fourier transform (FFT) of the raw thermal image is computed to keep all the FFT pixels
whose value is less than the continuous component, considered as the central, brighter, pixel (B), inverse transform application (C), computed
gradient of the filtered image (D) used to compute the actual leaf mask.
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features are extracted almost in real time. This step was mandatory

for providing the baseline data to be used for the next steps of

the pipeline.

The thermal features extracted from this initial data parsing step

were then used as the basis for the ML processing software pipeline.

For this, a first exploratory analysis was performed using a two-

sample Kolmogorov–Smirnoff test on single features. This led to a

comparison between well-watered leaves and droughted ones,

aiming at identifying those features that were not sampled from

the same statistical distribution. In other words, this test allowed the

evaluation of features that were likely to be used to discriminate

between WW and DD leaves.

As no assumptions were made on the distribution for WW and

DD leaves, two non-parametric distributions were anticipated. A

comparison was performed using the median, mean, standard

deviation, range, and interquartile range of each distribution

(Figures 5, 7). Median (Figure 5A), mean (Figure 5B), and standard

deviation (Figure 5C) were statistically compared for the two

distributions, and they all showed an extremely low p-value, below

the standard threshold a = 0:05. As a consequence, the null hypothesis

stating that data come from the same distribution could be rejected for

these variables. When the data range and the interquartile range (IQR)

were statistically compared (Figures 5A, B), the p-value was not lower

than the standard threshold a , with p = 0.00764 and p = 0.0753,

respectively. Hence, in this case, the null hypothesis could not be

rejected, and we could not conclude that these quantities were drawn

from different data distributions. From this statistical evaluation, we

can assume that features related to the median, mean, and standard

deviation of the values for the thermal features of the leaves can be

effectively used to distinguish between WW and DD leaves. However,

the range of the features and the interquartile range cannot be

confidently considered during the evaluation since it cannot be

concluded whether they are drawn from different distributions.
Machine learning algorithms

A complete comparison between two different processing

software pipelines was performed. Specifically, two different
Frontiers in Plant Science 07
classifiers were trained to predict the plant treatment (DD or

WW), that is, random forest (RF) and multilayer perceptron

(MLP). The dataset used for the ML algorithms training, test, and

validation was composed of 419 samples, 212 of them for WW

leaves and 207 for DD leaves. Each sample is obtained by joining the

automatically computed thermal features with the respective plant

treatment (DD or WW), removing all the non-discriminating

features from the dataset. The dataset subset split strategy was as

follows: 75% of the samples (314) to compute the T subset (for the

training and test) and 25% of the samples (105) to compute the V

subset (for the validation). Each one of the ML algorithms was

inserted in a pipeline, which first scaled each feature to match a

normal distribution N(0, 1), namely, a distribution with zero-

average and unitary standard deviation. A feature selection

procedure was then performed using the mutual information

criterion. Finally, the T subset was used to train and test the

classifier using a random search for hyperparameter optimization

and a K-fold cross-validation with k = 10. A summary of the results

for optimization is shown in Table 1 for both the RF and

MLP pipelines.

The resulting classification report (computed on the V subset)

for the RF classifier showed weighted average values for precision

and recall of 78% and 71%, respectively (Table 2). Overall, the

weighted accuracy on a total support of 105 leaves across all

genotypes was approximately 75%, meaning that the classifier was

incorrect in predicting 25% of the original images during validation.

Comparing the true labels of the leaves against the predicted labels

using the RF classifier, 40 WW and 38 DD leaves across all

genotypes were correctly predicted, while a total of 27 leaves were

miscategorized (Figure 8A).

The MLP classifier showed slight overall improvements: the

classifier achieved improved recall on DD leaves and precision on

WW leaves, at the cost of lower values of precision and recall for

DD and WW leaves, respectively (Table 3). However, there was an

improvement in terms of the overall accuracy, increasing to 78%. It

is important to highlight that for this second classifier, the data

support was changed, although not significantly, due to the random

generation process for the validation dataset used to ensure the

generalization properties of the classifier. The higher overall
B CA

FIGURE 5

Statistical comparisons of data distributions (significant). Statistical comparison using the KS test of the median (A), mean (B), and variance (C)
computed over the distributions of WW and DD leaves.
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accuracy of the MLP approach was reflected in the confusion matrix

showing that the correct predictions across all 27 genotypes

increased for both treatments (Figure 8B). Specifically, the MLP

correctly categorized a total of 82 leaves between WW (37) and DD

(45), compared with the 78 total of the RF classifier.

Both the RF and MLP classifiers resulted in an accuracy greater

than 70%, considering support data (105 leaves) pooled from 27

different genotypes for both WW and DD treatments, in mild and

severe drought, corresponding to 4 and 14 days after the beginning

of the progressive water withholding (Figure 2).
Frontiers in Plant Science 08
Testing the physiological soundness of the
AI analysis

Since the presented ML pipelines were built using the data from

the entire panel of Gossypium under different degrees of water

limitation, the accuracy results of the classifications can be

considered in line with previous results (Solimani et al., 2023).

The great genotypic diversity of the experimental cotton panel

inevitably caused extreme variability in leaf size, plant and leaf

architecture, and coloration (Figure 1). These diverse genotypes
BA

FIGURE 6

Leaf mask comparison. Examples of thermal images (A) and correspondent computed masks (B).
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have already been reported to be indeed affected by their physiology

resulting in a large spectrum of water status and drought response

(Wendel et al., 2009; Wendel et al., 2010; Sreedasyam and Schmutz,

2019). This variability was clearly visible in the range of leaf

temperatures captured already in WW conditions (Figure 3). For

instance, the Delta Pine16 genotype showed a leaf temperature

mean almost 5°C lower than Tipo Chaco in the same WW

conditions, while two morphologically dissimilar genotypes,

namely, Dwarf Red Harrison and Siokara L23—one with dark

red/green, medium-size leaves and one with green, okra-like type

of leaves—showed very similar leaf temperatures. It is known that

leaf temperature is affected by changes in the microclimate at the

canopy level and this can be somewhat variable in greenhouse

conditions based on the spatial locations of the pots and on the time
Frontiers in Plant Science 09
of the day (Beverly et al., 2020). However, drawing significant

relationships between leaf temperature per se and genotypic

variation was not the scope of the current work, and the diverse

experimental panel was used as a robust testbed for the

development of the novel IP/ML software pipeline for thermal data.

To understand the misclassifications from the ML classifiers, we

more closely analyzed the environmental and the volumetric soil

water content associated with each image (Supplementary

Table S3). First, we confirmed that the applied drought

treatments caused a reduction of volumetric soil water content

(%) for the DD plants compared with the WW, and this reduction

was more evident under severe drought (Figure S4). As expected,

the 27 genotypes responded differently to the progressive drought,

with the most water-efficient genotypes like Cup Leaf, L23, and
TABLE 1 Hyperparameters selected for random forest and multilayer perceptron processing software pipelines.

Processing pipeline Hyperparameter Value Description

RF pipeline (feature selection +
random forest)

K 3 Number of the most relevant features selected according to the mutual information criterion

Minimum samples
per leaf

5
Minimum number of samples to determine whether a node of each tree in the decision
forest can be marked as a terminal one (i.e., a leaf)

Max depth 5 Maximum depth of each tree in the decision forest

MLP pipeline (feature selection +
multilayer perceptron)

K 7 Number of the most relevant features selected according to the mutual information criterion

Solver ADAM Optimization algorithm used during backpropagation

Learning rate Constant
Learning rate schedule used during backpropagation. In this case, constant means that no
adaptive scheduling is used.

Hidden layer sizes 50 Number of neurons used in the hidden layer of the multilayer perceptron
BA

FIGURE 7

Statistical comparisons of data distributions (non-significant). Statistical comparison using the KS test of the data range (A) and interquartile range
(IQR) (B) computed over the distributions of WW and DD leaves.
TABLE 2 Classification report for the random forest.

Class Precision Recall F1 score Weighted accuracy Support

DD 0.78 0.71 0.74 0.75 51

WW 0.71 0.78 0.74 0.74 54
fr
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Lorinator, maintaining their leaf water potential closer to the WW

value even under drought conditions (Figure 9). When comparing

soil moisture and the efficiency of PSII from chlorophyll a

fluorescence values for a random subset from all classified images,

we found that the leaves wrongly classified by the ML pipeline also

showed an outlier behavior in either one or both traits under both

mild and severe drought conditions (Figure 10, Figure S4). For

instance, under mild drought, the mislabeled genotypes (TM1,
Frontiers in Plant Science 10
Lorinator, and Durango) were the ones that did not significantly

decrease their soil moisture although they were sitting in the DD

cohort of the panel, most likely due to microclimate variations in

the greenhouse. The same validation with soil moisture was

revealed for mislabeled plants under severe drought as well, and it

similarly applied for plants sitting in the WW cohort, such as Tipo

Chaco that for the true label of WW resulted in a predicted label of

DD for the image pipeline (Figure 8B). While soil moisture seems to
BA

FIGURE 8

Confusion matrix outcomes. Confusion matrix for the random forest (A) and the multilayer perceptron (B) classifiers.
TABLE 3 Classification report for the multilayer perceptron.

Class Precision Recall F1 score Weighted accuracy Support

DD 0.74 0.87 0.80 0.79 52

WW 0.84 0.70 0.76 0.78 53
fr
FIGURE 9

Leaf water potential across the 27 experimental genotypes. The distribution of leaf water potentials is observed across genotypes in both mild and
severe drought. The well-watered plants (WW) are represented in gray and the plants under dry-down (DD) in black.
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be sufficiently explanatory for the mislabeled leaves, the efficiency of

PSII seems to be less correlated to the ML outcomes. While the

randomly chosen DD leaves in severe drought showed high PSII

efficiency, such as expected from their still relatively high soil

moisture, the mislabeled Tipo Chaco sitting in the WW cohort was

misclassified as DD by the ML pipelines even if it maintained a PSII

efficiency of 0.55 (Figure 10B). Chlorophyll a fluorescence as the

efficiency of PSII has previously been shown to follow drought

response dynamics across different species (Guadagno et al., 2017),

and this mismatch between soil moisture value and fluorescence

might be due to a particular resistance of the photosynthetic

machinery of this specific genotype to severe drought, which is not

the focus of the presented work. This analysis of the software pipeline

outcomes indicated soil moisture as a highly possible driver of the

misclassification and the efficiency of PSII evidently being a less but

still correlated physiological trait. From the physiological ground

truthing, thermal imaging and the classifiers had lower than 25% and

22%mislabeled leaves (Supplementary Table S3) considering that the

actual label was not meaningful of the actual treatment and/or

physiological status of the plant.
Conclusions

Our work confirmed the efficiency of thermal imaging data in

detecting water limitations and the invaluable assistance of AI

analysis in increasing the throughput of handheld IR cameras

(Kamarudin and Ismail, 2022). Our results are suggestive of

increased efficiency in the postprocessing of thermal data time

even when extreme genotypic variation is present. In the utilized

experimental panel, the spectrum of thermal features for different

genotypes was in fact extremely variable even for WW samples. The

presented classification becomes more meaningful considering that

the support data for the ML application were coming from leaves

exposed to two different levels of water limitation—aside from the
Frontiers in Plant Science 11
WW control—triggering a large variety of physiological interplays

across the 27 genotypes. Our leaf-level experimental approach

coupled other physiological measurements to the thermal

imaging, allowed us for further testing of the ML results. We

found that mislabeled leaves also had a significantly different

behavior in other means of plant water status such as soil water

potential and content to partly account model errors. Overall, our

study confirms that AI can be an incredible resource to optimize the

throughput of handheld thermal cameras despite genotypic

variation, extreme morphological and temperature features, and

over a large combination of G × E, allowing for more generalized

applications in water management across different geographical

agricultural scenarios. In the future, we auspicate for the

development of more targeted designs aimed to dissect the

temporal progression of water limitation across different

genotypes and its correlation with peculiar leaf venation types

and architectures. Higher accuracy in thermal image classification

will allow for the development of more complex ML pipelines,

representing an essential aid in breeding and water management

efforts,especially for globally relevant crop species like cotton.
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SUPPLEMENTARY FIGURE S1

The processing image pipeline. Building blocks of the developed pipeline

used in this work includes four computational steps: CSV parsing, pre-
process, leaf mask computing, and thermal stats computing.

SUPPLEMENTARY FIGURE S2

Genotypes included in the experimental panel. All 27 genotypes included in

the cotton experimental panel and their correspondent abbreviations used in
during the experiment.

SUPPLEMENTARY TABLE S3

Single measurements of volumetric soil water content across all
collected images.

SUPPLEMENTARY FIGURE S4

Volumetric soil water content across the 27 experimental genotypes.

Distribution of leaf water potentials are observed across genotypes in both
mild and severe drought. The well-watered plants (WW) are represented in

grey and the plants under dry down (DD) in black.
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