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Plants are frequently subjected to heavy metal (HM) stress that impedes their

growth and productivity. One of the most common harmful trace metals and HM

discovered is chromium (Cr). Its contamination continues to increase in the

environment due to industrial or anthropogenic activities. Chromium is severely

toxic to plant growth and development and acts as a human carcinogen that

enters the body by inhaling or taking Cr-contaminated food items. Plants uptake

Cr via various transporters, such as sulfate and phosphate transporters. In nature,

Cr is found in various valence states, commonly Cr (III) and Cr (VI). Cr (VI) is soil’s

most hazardous and pervasive form. Cr elevates reactive oxygen species (ROS)

activity, impeding various physiological and metabolic pathways. Plants have

evolved various complex defense mechanisms to prevent or tolerate the toxic

effects of Cr. These defense mechanisms include absorbing and accumulating Cr

in cell organelles such as vacuoles, immobilizing them by forming complexes

with organic chelates, and extracting them by using a variety of transporters and

ion channels regulated by various signaling cascades and transcription factors.

Several defense-related proteins including, metallothioneins, phytochelatins, and

glutathione-S-transferases aid in the sequestration of Cr. Moreover, several

genes and transcriptional factors, such as WRKY and AP2/ERF TF genes, play a

crucial role in defense against Cr stress. To counter HM-mediated stress stimuli,

OMICS approaches, including genomics, proteomics, transcriptomics, and

metallomics, have facilitated our understanding to improve Cr stress tolerance

in plants. This review discusses the Cr uptake, translocation, and accumulation in

plants. Furthermore, it provides a model to unravel the complexities of the Cr-

plant interaction utilizing system biology and integrated OMICS approach.
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Introduction

Heavy metals (HMs) contamination is a severe environmental

issue on a global scale because it affects soil quality, food safety and

food yields, which can have adverse effects on human health (Rai

et al., 2019). The lack of planning and regulation in urban and

industrial development, pollutants and waste management

contributes to environmental pollution (Dabir et al., 2019; Wei

et al., 2022). According to the World Health Organization (WHO),

exposure to dangerous pollutants like HMs resulted in more than

1.7 million human fatalities (Xu et al., 2018). In the ecosystem at

various trophic levels, bioaccumulation and movement of these

HMs take place (Pushkar et al., 2021). Chromium (Cr) is one of the

HMs that is hazardous to plants, animals, and humans. The

extensive use of Cr in industrial and mining activities has led to

the release of large amounts of Cr (VI) into the environment,

causing a severe environmental problem. (Mehmood et al., 2022).

Cr is found in the Earth’s mantle in the 17th highest abundance, and

its valence state controls how harmful it is to plants. Many

industries, including chemical, mining, steel, tanneries, and Cr

plating, employ Cr extensively (Pushkar et al., 2021). Because it is

an oxidizing metal, Cr interacts easily with atmospheric oxygen.

Cr can exist in various oxidation states in nature, ranging from 0

to +6. The two most stable forms of Cr in the environment are

trivalent and hexavalent (Shahid et al., 2017; Wani et al., 2022). In

comparison to Cr (III), Cr (VI) is thought to be more mobile and

soluble at all pH levels, which increases its bioavailability and

toxicity (Ceballos et al., 2023). Plants lack Cr transporters and

absorption pathways, as it is a non-essential element. However,

plants can accumulate Cr by using other transporter ions, such as Fe

transporters for Cr (III) and phosphate and sulfate transporters for

Cr (VI) (Anjum et al., 2016). The capacity of plant roots to absorb

vital nutrients was found to be decreased by Cr absorption (Wakeel

et al., 2020). Cr causes phytotoxicity upon entering the plant by

immediately interacting with it, altering its metabolic pathways, and

producing and accumulating reactive oxygen species (ROS), which

results in membrane damage (Arif et al., 2019). Excess amounts of

ROS can cause cell death by damaging DNA and RNA, inactivating

enzymes, oxidizing proteins, and causing lipid peroxidation

(Srivastava et al., 2021). Despite this fact, it has been found that

Cr (III) is less harmful than Cr (VI), and animals need it to maintain

their metabolic processes (Mohan and Pittman Jr, 2006; Urrutia

et al., 2008). There is contradictory evidence from different research

studies, on whether or not Cr is essential for plant metabolism.

While few studies suggest that Cr is not a necessary element for

plants, others have shown that small amounts can boost plant

growth and yield (Ghosh and Singh, 2005).

Our understanding of the complex and multifaceted interactions

between plant metabolism and HMs like Cr has improved as a result of

research studies with new and improved omics technologies. In order

to analyze the molecular mechanisms behind plants’ stress tolerance to

HMs, high-throughput OMICS techniques have been widely used

recently. Under conditions of HM stress, plants have evolved

coordinated homeostatic systems to control the absorption,

mobilization, and intracellular concentration of harmful metal ions

in order to reduce the damaging effects of stress. Omic studies give us a
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responsible for cellular detoxification and the tolerance mechanism

against HM toxicity. It may be possible to adapt recent omics

discoveries into a dependable, efficient, and ecologically friendly

technology. In this regard, it is imperative that “Omics” studies—

which include proteomics, metallomics, and genomics—be taken into

account for the sake of the improvement and selection processes.

The advancements in research on Cr uptake and effects inside

plants is the main focus of this review. To close the knowledge gap

concerning gene expression regarding the fate of Cr inside the plants,

we compiled pertinent research about the underlying mechanism of

Cr uptake and insights on molecular aspects. This review will aid in

advancing investigations into the complex relationship between Cr

and plants. Furthermore, understanding the mechanisms at the

molecular level of Cr-plant interactions and its biogeochemistry

can provide new insights into how it could be managed by

chemical, microbiological, and genetic methods, which will protect

crop production, crop yields and agricultural sustainability.

Additionally, the accumulation of Cr in crops grown on

contaminated soils causes substantial risks to human and animal

health. The growth of long-lasting remediation techniques and a

complete understanding of Cr’s biogeochemical activity in soil is thus

required for its alleviation. An extensive review of the available

knowledge shows that the present evidence in the study of HM

plant interactions provides the ability to comprehend the HM-related

changes in plants through OMICS methodologies, which we can

combine with other methods to minimize the negative impacts of Cr

on plants. Additionally, OMICS techniques can be used to develop

HM-tolerant crop varieties using targeted breeding programs.
Sources and occurrence of chromium

The Cr containing products are widely used inmany industrial and

agricultural operations. Due to this, its pollution has grown to be a

significant issue in the environment. Environmental Cr toxicity results

from both man-made and natural sources. Groundwater is a natural

source of chromium, and its dominant form in groundwater is Cr (VI).

It is presumed that Cr (VI) is derived from the leaching of minerals.

However, Cr pollution in the environment is primarily caused by

anthropogenic activities, such as paper and pulp mill effluent streams,

the leather tanning industry, non-ferrous base metal smelter refineries,

discharges from thermal power generating stations, and urban

stormwater runoff (World Health Organization, 2020). Cr is released

from the tanning industry, which utilizes Cr2(SO4)2 as a tanning agent

but discards unused 40% of it into the environment (Rahman, 2018).

The concentration of Cr in the soil impacts plants’ physiology,

development activity and nutrient uptake. In plants, Cr (III) is a

stable form. At the same time, Cr (VI) is the phytotoxic form where

they are present as a compound like the reaction between Cr (VI)

and oxygen gives chromate (CrO4
2-) or dichromate (Cr2O7

2-),

whereas Cr (III) exists as chromite (FeOCr2O3) (Ertani et al.,

2017; Wani et al., 2022). Cr accumulates many anions and causes

the soil pH to rise, due to which dehydrogenase activity and alkaline

phosphatase are suppressed in the soil due to Cr slag (Liu

et al., 2019).
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Chromium uptake

The entire plant Cr uptake process is poorly understood, but as a

nonessential element, it lacks any particular mechanism. However, Cr

(III) is taken up passively, that is, without any energy consumption (Ao

et al., 2023). Cr (VI) shares structural similarities with sulfate and

phosphate, so its absorption occurs via phosphate and sulfate

transporters by an energetically dependent active mechanism (Ding

et al., 2019). Therefore, metal speciation, which determines its

absorption, translocation, and accumulation, determines its uptake.

The solubility of Cr (VI) is higher than Cr (III); thus, it is more toxic at

lower concentrations than the latter and has a propensity to formmore

persistent complexes in soil (Abdulmalik et al., 2023). The absorption

and translocation of Cr (VI) have produced inconsistent results; some

authors argue that Cr (VI) is converted to Cr (III) on the surface of the

roots (Wani et al., 2022), while others postulate that plants can absorb

dissolved Cr (VI) without reduction (Malaviya and Singh, 2011).
Chromium accumulation
and translocation

The accumulation and translocation of Cr is plant species

dependent and varies with the oxidation state and concentration of

Cr present in the growth media or soil (Shahid et al., 2017). Its

concentration in roots is reportedly much higher than in shoots due

to its low mobility in the plants (Gupta and Sinha, 2006). Various

researchers have investigated the cause of its low mobility (Karimah

et al., 2021). Cr follows Michaelis-Menten kinetics at low

concentrations because sulfate competitively inhibits it (Skeffington

et al., 1976), as the sulfate concentration in the soil is relatively high.

Poor translocation of Cr to the shoots may be caused by the majority

of Cr being sequestered into the root cell’s vacuoles to render it non-

toxic, which is a defensive approach of the plant (Shanker et al.,

2004). Its toxicity also results in differential uptake and distribution of

various other metal elements. For instance, Cr increases zinc (Zn)

concentration in the roots, stem, and seeds, but in leaves, its

concentration decreases, whereas iron (Fe) concentration decreases

in the stem, leaves, and seeds and increases in roots (Tiwari et al.,

2009). This Fe deficiency and restriction of Fe from root to shoot

suggests that Fe can be displaced from physiologically active sites by

Cr (Chatterjee and Chatterjee, 2000). Thus, it is understood that the

translocation of Cr is poor from root to shoot and follows an order of

root > stem > leaves > seeds (Tiwari et al., 2009). It has also been

suggested that Cr (III) can bind with cell walls in plant tissues, further

restricting its translocation (Kabata-Pendias and Szteke, 2015).
Impact of chromium on plants

Cr toxicity has been shown to have a negative impact on a number

of elements of plant biology, including growth, physiology,

development, and crop output. According to Rath et al. (2019), Cr

toxicity causes a number of physiological changes in plants, such as

impaired seed germination, decreased plant growth and development,
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reduced leaf area, decreased photosynthetic activity, altered cell

membrane characteristics, leaf chlorosis, and damage to cell walls. Cr

interferes with the absorption and utilization of vital mineral elements,

which is one of the main negative effects it has on plant physiology. It

competes with the uptake of some essential minerals including Ca and

Fe, which causes an imbalance in nutritional levels. This disruption in

nutrient absorption manifests as symptoms of nutrient deficiency,

resulting in stunted growth and decreased photosynthetic efficiency,

ultimately impacting plant growth and crop yield (Kotaś and Stasicka,

2000). It has been observed that Vigna radiata plants grown in soil

contaminated with 50% Cr exhibited a significant decrease in their

amino acid, starch, and chlorophyll levels (Rath et al., 2019).

Furthermore, another study by Sundaramoorthy et al. (2010)

reported that Cr inhibits the process of mitotic cell division in Oryza.

sativa seedlings subjected to Cr stress, leading to a delayed and

prolonged cell cycle. Additionally, Cr induces oxidative stress within

plants by generating ROS such as superoxide radicals and hydrogen

peroxide. These ROS can cause damage to vital cellular components

like proteins, lipids, and DNA, disrupting normal cellular functions,

impairing metabolism, and retarding the growth and development of

plants (Shanker et al., 2005).

Roots serve as the primary interface between plants and soil

contaminated with Cr. Research studies have shown a notable

reduction in root elongation, root diameter, and root hair growth

in conjunction with root dieback when plants are exposed to

elevated levels of Cr (Zulfiqar et al., 2023). High concentrations of

Cr can lead to structural alterations in roots. This compromised

root system restricts the plant’s capacity to absorb both water and

essential nutrients from the soil, consequently impeding overall

growth and crop yield (Shahid et al., 2017). Moreover, Cr-induced

stress disrupts the efficient allocation of resources within the plant,

resulting in diminished leaf size, reduced flower production, and

lower yields of fruits or seeds (Shanker et al., 2005).

To alleviate the detrimental effects of Cr on plants, it is imperative

to attain a comprehensive understanding of the underlying molecular

mechanisms involved. Cutting-edge techniques within the field of

‘omics,’ including genomics, transcriptomics, proteomics,

metabolomics, and ionomics, hold the potential to provide valuable

insights into how plants respond to Cr-induced stress. By pinpointing

key genes, proteins, and metabolites associated with detoxification and

tolerance mechanisms, researchers can formulate strategies aimed at

bolstering a plant’s ability to withstand Cr pollution. The application of

‘omics’ approaches has great promise in unraveling the intricate

dynamics of Cr-plant interactions and in developing effective

measures to mitigate the harm caused by Cr to agricultural ecosystems.
Recent advancements in plant
responses to chromium stress
(omics approach)

Although numerous studies have been conducted on the effects of

Cr stress, the molecular mechanisms underlying Cr phytotoxicity,

plant defense mechanisms, and transportation and accumulation in

plants remain unclear (Wani et al., 2022). However, due to recent
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developments in the “omics” disciplines, investigations in this area

may now be carried out with much better precision and analysis of a

more significant number of variables associated with physio-

molecular responses to stress from Cr as depicted in Figure 1.

Furthermore, “omics” disciplines have enormous potential to

understand the mechanisms that underlie the toxicological impacts

of chemical contaminants, and as a result, leading to the discovery of

novel biomarkers which are impacted by stress and can be used as

screening tools to identify tolerant genotypes.
Biparental QTL mapping for
chromium tolerance in plants

Advances in genomics resources in various crop plants have

greatly facilitated the uncovering of multiple QTLs controlling HM

tolerance using a bi-parental mapping population (Qiu et al., 2010;

Qiu et al., 2011). QTL mapping, as a popular and effective method

for genetic analysis, has yielded numerous notable results in the

field of metal stress tolerance in plants (Raj and Nadarajah, 2022;

Hassan et al., 2023). However, very limited studies have been

carried out about the genetic analysis of QTL related to Cr

accumulation and tolerance in plants. Aiming to elucidate QTLs

maintaining Cr tolerance in O. sativa, three QTLs preventing Cr

accumulation were identified from a double haploid mapping

population in O. sativa (Qiu et al., 2010). The qRCA7 QTL

contributed to Cr accumulation, explaining 21.3% phenotypic

variation (PV) on Chromosome 7, and qSCA QTL attributed to

shooting Cr accumulation, explaining 22.7% phenotypic variation

(PV) on Chromosome 9 was uncovered. Another QTL qSRA7
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Cr accumulation (SCR) and root Cr accumulation (RCA),

explaining 12.7% PV, was also elucidated (Qiu et al., 2010).

Further, Qiu et al. (2011) uncovered another two major QTLs,

qSCC10, existing on chromosome 10, explaining >10% PV, and

qSRC10, explaining 11% PV and overlap with the qSCC10 QTL on

chromosome 10 from double haploid mapping population.

However, the number of Cr-tolerant QTLs reported in O. sativa

and other crops remain limited.
Functional genomics studies

Recent investigations through genomic technologies have

improved our understanding of how plants cope with Cr stress by

examining myriads of gene expression at a time. The expression

profiles were analyzed using a microarray test to demonstrate how O.

sativa roots responded to Cr (VI) stress (Huang et al., 2014). Around

2688 genes were found to be responsive to Cr and participate in

binding activity, metabolism, biological control, catalysis, and cellular

function. Exposure to Cr for a shorter period (1-hour and 3-hour

combined, 1181 genes) resulted in fewer transcripts associated with

Cr than exposure for a more extended period (24 hours, 2097 genes).

This suggests that the exposure period to Cr may affect transcriptome

profiles (Huang et al., 2014). Additionally, short-term Cr exposure

resulted in the upregulation of many kinases.

Another study observed that the endonuclease attack and multi-

copy transposition on DNA are averted by high methylation levels,

which favors HM tolerance in O. sativa (Feng et al., 2016). Based on

data from earlier research, it appears possible that DNA
FIGURE 1

Combined OMICS strategies to combat the toxicity of HMs in plants are shown schematically. Integrated Omic approaches such as genomics,
transcriptomics, proteomics, and metallomics have a wide scope to combat heavy metal stress in plants. These high throughput techniques
contribute to the comprehensive analysis of genes, regulators, proteins, and signaling networks that facilitate advancement in plant stress responses
and crop improvement.
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methylation regulates plant reactions to HMs via two different

pathways (Arif et al., 2016). The first mechanism has to do with

methylation’s ability to shield DNA against HM-induced single-

strand breaks or multi-copy transposition. Gullì et al. (2018) found,

that the genomes of Noccaea caerulescens plants-a Ni

hyperaccumulator species—grown in high Ni doses were

substantially more hypermethylated than those of A. thaliana

plants, which are susceptible to high Ni doses. Controlling gene

expression is a second kind of epigenetic response to HM stressors.

This control extends to the coding regions of genes as well as their

promoter regions. Oono et al. (2016) showed a positive relationship

between the Cd dose response in plants and the expression of genes

coding metal ion transporters where DNA methylation markers

were found.

Using MSAP and immunolabelling techniques, Cr modifies the

methylation level of the rape genome, and levels of hypermethylation

and the stress dose of Cr correlated well (Yang et al., 2007). Contrarily,

some research has shown that Cr stress lowers cytosine methylation

levels by 20–40% in clover and industrial hemp (Aina et al., 2004;

Shaikh et al., 2022). These differences showed that various plant

species have specific methylation processes for Cr resistance (Peng

and Zhang, 2009).

Micro RNAs (miRNAs) regulate HM tolerance in plants,

including Cr (Mendoza-Soto et al., 2012). miRNAs could be the

next target for enhancing plant adaptability and stress tolerance by

boosting gene expression that encodes different transcription agents

and defense-associated proteins (Ghosh et al., 2022). Understanding

the differences in miRNA and their related target genes under Cr (VI)

stress inO. sativa, Nicotiana tabacum, and Raphanus sativus has only

been addressed in a few isolated studies (Bukhari et al., 2015; Liu

et al., 2015; Dubey et al., 2020). In tobacco plants, a comparative

genomic study on 41 conserved Cr-responsive miRNA families

revealed that, under Cr stress, around 11 families of miRNA were

found to be increased only in species that are Cr-tolerant but

remained unchanged in Cr-sensitive ones, whereas 17 families of

miRNAwere found to be increased in the species that are Cr-sensitive

(Bukhari et al., 2015). Only a single family, miR6149, was

downregulated in the Cr-sensitive genotype but remains unaltered

in Cr-tolerant ones. In the two genotypes under Cr stress, 14 of the 29

newly discovered distinct miRNA families expressed differentially,

providing crucial information on the function of miRNAs in Cr

tolerance (Bukhari et al., 2015). Similarly, several well-conserved up-

or down-regulated miRNAs were discovered in O. sativa; in response

to short-term Cr stress, six miRNA families were up-regulated, and

six were down-regulated. The expression of only three miRNAs (osa-

miR5072, osa-miR444, and osa-miR396) was suppressed by

continuous stress, whereas only two miRNAs (osa-miR166 and

osamiR171) were upregulated (Dubey et al., 2020).
Transcriptomic studies

Transcriptome profile analysis (TPA) provides novel insights

for identifying the numerous genes associated with Cr stress (Nie

et al., 2021). Advent of the next-generation sequencing

(NGS) method has recently made gene expression profiling,
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(Satam et al., 2023). Thus, allowing us to examine an organism’s

gene activity at various stages under varied circumstances (Geng

et al., 2011). These methods disclosed some crucial genes encoding

glutathione S-transferase (GSTU6), multidrug resistance protein 4,

and PDR-like ABC transporter involved under Cr stress in O. sativa

(Dubey et al., 2010). Likewise, several differentially expressed genes

(DEG) have been identified in radish under Cr stress by Xie et al.

(2015). Some of the DEGs like MAO (monoamine oxidase) and

UGT (glucuronosyl transferase) which were down-regulated under

Cr stress, work in a pathway like drugs and xenobiotics

metabolism and serine and threonine metabolism respectively.

Moreover, GST (glutathione S-transferase) and AGXT (serine-

pyruvate transaminase) were up-regulated and work in the same

pathway asMAO and UGT. This suggested that certain genes might

interact with one another to do specialized functions in particular

biological processes (Xie et al., 2015). Calcium-binding protein

genes and calcium-dependent protein kinases like CML42,

CML44, and CML50, were up-regulated under Cr stress in radish

roots (Xie et al., 2015. De novo transcriptome assembly of radish

root treated with Cr stress allowed the identification of 30,676

unigenes representing 60,881 transcripts. Substantial differences in

the expression of 2,985 unigenes from Cr-free and Cr-treated

libraries were noted. Among these genes, 1424 were upregulated

and 1,561 were down-regulated (Xie et al., 2015). In radish, some

miRNA families (miR156/157, miR159, and miR5293) play a

crucial role in Cr homeostasis by targeting SPLs (SQUAMOSA

promoter-binding protein-like) that are found to be involved in

different development processes like flowering (Yu et al., 2012),

shoot growth (Nonogaki, 2010) and metal homeostasis (Pilon

et al., 2009).

In one of the recent findings in germinating seedlings in

soybean (Chen et al., 2023), transcriptome sequencing yielded a

total of 13,777 differentially expressed genes (DEGs), and weighted

correlation network analysis (WGCNA) revealed that 1298 DEGs

across six gene modules had a strong connection with physiological

characteristics. It has been suggested that the DEGs encoding

antioxidant enzymes, ion transporters, and transcription factors

provide Cr tolerance in soybean germinating seedlings by lowering

the level of ROS, preventing Cr uptake and translocation, and

maintaining the osmotic balance in germinating seedlings. Cr-

induced ROS activates MAPKs, which are involved in the signal

transduction in radish by regulating the transcription factors

(Sanchita et al., 2014). Eight DEGs are homologous to genes that

encode MAPKs in which MAPK18, MAPK20, and other calcium-

binding-related protein genes express themselves differently (Wang

Y. et al., 2013).
Proteomic analysis

Proteomics allows us to study the dynamic changes of entire

proteins of an organism in response to a particular stress, including

HM stress in plants (Yadav et al., 2021). In one of the studies, maize

(Zea mays L.) plant leaves were subjected to a short time Cr (VI)

stress for 1, 6, and 24 hours. A total of 1200 spots were found using
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two-dimensional electrophoresis (2-DE), of which 60 spots were

found to accumulate differentially under Cr stress. Of the Cr-

regulated proteins, 58 were identified using tandem mass

spectrometry (MS/MS). These controlled proteins are primarily

engaged in protein folding and synthesis, processing of rRNA and

mRNA, photosynthesis and chloroplast organization, ROS

detoxification and defense responses, cytoskeleton, and DNA

damage response (Wang R. et al., 2013).

The protein level alterations were assessed in one study using the

MALDI-TOF assay after Pseudevernia furfuracea was exposed to Cr

stress (Özenoğlu-Aydınoğlu et al., 2021). Roughly nine common

proteins were found, of which six had up-regulated expression levels

(HSP 60, BNI5, VSP64, KIP3, OP4 and BCK1) and three had down-

regulated expression levels (MNS1, ATG4, and ABZ2). These

proteins were shown to be useful in biological processes including

transcription regulation, cellular detoxification metabolisms, and

stress signaling. Moreover, HSP60 protein was examined using a

western blot technique to verify the degree of protein expression. In

comparison to the control sample, it has been demonstrated that P.

furfuracea exposed to Cr (VI) increased the quantity of HSP60

protein (Özenoğlu-Aydınoğlu et al., 2021). Similarly, a comparative

proteomic technique was done between two cultivars of Brassica

napus grown hydroponically (Cr-sensitive Sary and Cr-tolerant NK

Petrol) to examine the variations in protein abundance under S

deficiency and Cr (VI) stress. Two-dimensional gel electrophoresis

(2-DE) protein pattern analysis showed that 58 protein spots were

controlled differentially by Cr (VI) stress (+S/+Cr), combined stress

(−S/+Cr), and S-deficiency (−S/−Cr). Thirty-nine protein spots were

determined using MALDI TOF/TOF spectrometry. Differentially

regulated or controlled proteins were primarily involved in protein

folding, stress defense, energy metabolism and stabilization, sulfur

metabolism, redox regulation, signal transduction, and

photosynthesis. Six stress defense-associated proteins, including

glutathione S-transferase, 2-Cys peroxiredoxin BAS1, L-ascorbate

peroxidase, ferritin-1, thiazole biosynthetic enzyme, and

myrosinase-binding protein such as At3g16470 show a substantial

increase in NK Petrol. Under changing S conditions, stress-related

proteins are crucial for detoxifying Cr (VI) and preserving the

homeostasis of cells (Yıldız and Terzi, 2016).

In a similar study, two varieties of sunflower (Helianthus annus;

AHO-33 and RA-713) were exposed to varying levels of Cr (control,

200 ppm, and 400 ppm). Applying SDS-PAGE to study plant

proteomic modulation revealed that three bands, 60, 40, and 42 kDa,

and two protein bands, 49 and 13 kDa, were upregulated in the seeds of

AHO-33 and RA-713, respectively. New bands (48, 49, and 26 kDa)

had also appeared. In the leaf tissues of both varieties, a few proteins

(52, 16 kDa) had their expression downregulated. However, only the

six and 81 kDa proteins displayed up-regulation, and the 154 kDa

protein showed down-regulation in the shoot. This demonstrates how

plants change the protein expression pattern in response to Cr stress

(Sardar et al., 2022). Another study used two O. sativa genotypes with

different Cr tolerance and accumulation levels to examine how the

proteomewill respond to Cr (VI) stress. Proteomic studies show thatO.

sativa proteome response to Cr stress depends on the tissue, the dosage

of Cr, and the genotype. Sixty-four proteins that exhibit differences of at

least a factor of four under either of two Cr levels have been successfully
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found. They participate in various cellular functions, such as the

synthesis of cell walls, production of energy, primary metabolism,

transport of electrons, and detoxification (Zeng et al., 2014).
Metallomics approach

Metallomics includes qualitative and quantitative analysis of

metals, which aids in building applications for novel techniques in

soils with metal contamination (Singh and Verma, 2018; Mahawar

et al., 2023). A significant proportion of molecules involved in cellular

metabolism and behavior are biomolecules that bind to metals, and

understanding the functional roles of a protein’s metal cofactor can

help us understand the pathways of cells (Haraguchi, 2017). These

metal-binding proteins are environmental biomarkers (López-Barea

and Gómez-Ariza, 2006). Studies related to metallomics are still

lacking, which may be due to the complexity of the matrices or the

low concentration of trace elements in plant tissues (Gómez-Ariza

et al., 2004). However, with the advancements of techniques like X-

ray absorption spectroscopy (XAS), mass spectrometry (MS), X-ray

fluorescence (XRF), proteomic approaches like 2D electrophoresis or

different types of chromatography (affinity/liquid), and sensitive

techniques like (ESI-MS/ICP-MS) are used that led to new

prospects in this area of study (Shi and Chance, 2008).

In relation to Cr, the precise and quantitative measurement of Cr

content in plants can be achieved with the help of micro-proton-

induced X-ray emission (m-PIXE) technology (Kachenko et al., 2008;

van Der Ent et al., 2018). X-ray absorption near edge structure

(XANES) technique allow us to study the interconversion of Cr (VI)

to Cr (III) in roots. Furthermore, information regarding potential

modifications in the oxidation of Cr atoms attached to the biomass was

obtained using XANES. The XANES analysis revealed that the oxygen

atoms in the samples were arranged in an octahedral pattern around

the core Cr (III) atom (Bluskov et al., 2005). The coordination

surroundings, the closest neighboring atoms, and the ligands

involved in Cr binding by saltbush biomass were all revealed by

Sawalha et al. using extended X-ray absorption fine structure

(EXAFS) (Sawalha et al., 2005), Cr localization site and its

sequestration in cortical and epidermal cells in roots and spongy

mesophyll and epidermal cells in leaves is shown by X-Ray

microprobe. In addition to knowing the specific metal or metalloid

present in a plant, it is also essential to understand the biomolecules to

which it is bound, the coordination groups involved, and its speciation

(Arruda and Azevedo, 2009). In this context, different oxidation states

of Cr have been studied in Cr (VI) treated wood samples (beech and

pine) by applying X-ray absorption near-edge structure (XANES),

while with heat exposure, Cr (VI) was wholly reduced to Cr (III) (Strub

et al., 2008; da Conceicao Gomes et al., 2017).

Reactive oxygen species-induced
stress and its impact on
signaling cascades

Plants orchestrate various adaptive mechanisms to withstand

the challenging and toxic impacts of Cr-HM (Azeez et al., 2021).
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When exposed to stressful environments, plants produce ROS, a

defense mechanism (Gielen et al., 2017). The overabundance of

ROS causes endogenous stress that may adversely affect plant

growth and development (Wakeel et al., 2019). These are

produced in plants as a result of the Haber-Weiss and Fenton

reactions by redox metals like Cr, which causes oxidative damage

(Flora, 2009) that leads to protein, DNA, pigment damage, and lipid

peroxidation (Choudhury and Panda, 2005). In response to HM

toxicity, this process is thought to be one of the main factors causing

changes in plant biology at the biochemical level (Sharma et al.,

2020). The active sites of the enzymes are deactivated when Cr

reacts with the protein’s catalytic site by binding to a specific

functional group; thus, it changes the activity of enzymes (Gupta

et al., 2010). There are still a lot of unraveled molecular mechanisms

of Cr signaling from the interior (plasma membrane and cytosol)

and exterior (cell wall). Based on available data, this review presents

a model describing the Cr signaling cascade in plants, as shown

in Figure 2.

However, with the development of multiomics, few studies have

lately demonstrated metabolic, translational, and transcriptional

reprogramming in different plant systems subjected to Cr exposure,

offering a unique understanding of Cr sensing and signaling.

For instance, in O. sativa, the presence of Cr (VI) induces ROS

and Ca2+, followed by the activation of calcium-dependent protein

kinase and NADPH oxidase, which are essential for the subsequent

signaling process (Trinh et al., 2014). NADPH (nicotinamide

adenine dinucleotide phosphate hydrogen) oxidase in the plasma

membrane also causes oxidative stress since it is related to Cr

(Pourrut et al., 2013). Several defensive signaling cascades,
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including hormonal (primarily auxin, cytokinins, and ethylene),

calcium, and MAPK signaling, are also stimulated by HM stress

(Sun et al., 2010). There is growing proof that the ROS and calcium

signaling systems interact, which has significant implications for

optimizing cellular signaling networks. Many transcription factors,

including the WRKY and AP2/ERF TF genes, are involved in Cr

signaling cascades, which strengthened the case for their function in

metal stress resistance. Similarly, most phosphate kinase genes

(PP2C-A, PP2C-D, and PP2C-F) were found in response to Cr

(VI) stress, proving that they might be involved in controlling

different signaling processes during Cr stress. Prior gene expression

profiling of O. sativa under Cr stress indicated the inactivation of

ethylene (ET), abscisic acid (ABA), jasmonate-mediated signaling

cascades, and the silencing of gibberellic acid-related pathways

(Trinh et al., 2014).

Along with ROS production, Cr also activates the signaling of

antioxidant defenses, defense proteins like glutathione-S-

transferases (GSTs), metallothionine (MTs), and phytochelatins

(PCs) , which is fol lowed by phytosequestrat ion and

compartmentalization (Yu et al., 2019). PCs and MTs are crucial

in the detoxification and homeostasis of Cr. Furthermore, they

make a complex with the HM, making them non-toxic and

transported to vacuoles (Wu et al., 2013; Yu et al., 2019).

Increased PC synthesis and glutathione generation were recorded

upon Cr (VI) exposure of the Arabidopsis plant treated with H2S

(Fang et al., 2016).

In one of the studies on O. sativa, it was observed that with the

HM stress, the activity of CDPK-like kinases was increased (Yeh

et al., 2007). In similar findings in O. sativa plants, CDPK-like
FIGURE 2

Model illustration showing Cr uptake and accumulation in plant cells. Here, Cr uptake is done through different transporters. Different sensors
perceive Cr toxicity, such as receptor-like kinases and channels. After Cr sensing, ROS is generated, which is sensed by different sensors like protein
kinases and calcium sensor that makes changes at transcriptional, translational, and genomic levels.
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kinase was induced in response to the Cr (VI) stress (Trinh et al.,

2014). To regulate the production of ROS in plasma membranes,

two CDPKs (StCDPK4 and StCDPK5) can phosphorylate NADPH

oxidases (Kobayashi et al., 2007). So, it may be concluded that

NADPH oxidase and CDPKs may control ROS production during

Cr (VI) treatment.
Conclusions and future research

This review article provides a comprehensive overview of the

intricate interplay between Cr and plants, elucidated through

cutting-edge omics approaches in systems biology. We have

gained insights into the molecular mechanisms governing Cr-

plant interactions by integrating genomics, transcriptomics,

proteomics, and metallomics data. These insights deepen our

understanding of the stress responses and detoxification strategies

employed by plants in the presence of Cr and hold immense

promise for developing sustainable agricultural practices and

phytoremediation tactics for detoxifying Cr-contaminated soils.

As we unravel the complexities of this dynamic relationship, it is

evident that systems biology will remain indispensable for decoding

the fascinating world of Cr-plant interactions. Furthermore, delving

into the intricate mechanisms of Cr-plant interactions not only

enhances our comprehension of plant stress responses but also

opens avenues for innovative biotechnological applications. The

exploration of plant-specific genetic pathways and signaling

cascades triggered by Cr exposure offers a blueprint for

engineering crops with enhanced resistance to metal stress. This

knowledge could revolutionize crop breeding programs, leading to

the development of resilient varieties capable of thriving in Cr-

contaminated environments, ultimately contributing to global

food security.

Through the use of omics techniques and systems biology,

significant advancements have been achieved in our comprehension

of the intricate interaction between Cr and plants. However, a number

of knowledge gaps and barriers still exist, necessitating additional

research in the years to come. Even though the bulk of studies have

concentrated on the immediate effects of Cr exposure, further research

is necessary to fully understand how long-term Cr pollution affects

plant growth, reproduction, and ecosystem dynamics. For a thorough

evaluation of its overall effect on agricultural systems and natural

environments, this area of research is essential. Additionally, further

study is required to understand how environmental elements, such as

soil qualities and climate conditions, affect the response of plants.

Moreover, using plants for Cr phytoremediation holds promise, it will

be difficult to put this technology into practice in contaminated areas.

Innovative methods for boosting phytoremediation efficiency and

effectiveness should be explored in further research. Beyond

individual plants, there are obvious study gaps when it comes to

assessing Cr’s effects on ecosystem services, soil microbial

communities, and the larger food web in field trials. Our grasp of

this complex relationship and turning it into action will be greatly
Frontiers in Plant Science 08
advanced by continuing multidisciplinary research and

collaborative projects.
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