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Integrated web portal for non-
destructive salt sensitivity
detection of Camelina sativa
seeds using fluorescent and
visible light images coupled with
machine learning algorithms
Emilio Vello*, Megan Letourneau, John Aguirre
and Thomas E. Bureau*

Department of Biology, McGill University, Montreal, QC, Canada
Climate change has created unprecedented stresses in the agricultural sector,

driving the necessity of adapting agricultural practices and developing novel

solutions to the food crisis. Camelina sativa (Camelina) is a recently emerging

oilseed crop with high nutrient-density and economic potential. Camelina seeds

are rich in essential fatty acids and contain potent antioxidants required to

maintain a healthy diet. Camelina seeds are equally amenable to economic

applications such as jet fuel, biodiesel and high-value industrial lubricants due to

their favorable proportions of unsaturated fatty acids. High soil salinity is one of

the major abiotic stresses threatening the yield and usability of such crops. A

promising mitigation strategy is automated, non-destructive, image-based

phenotyping to assess seed quality in the food manufacturing process. In this

study, we evaluate the effectiveness of image-based phenotyping on fluorescent

and visible light images to quantify and qualify Camelina seeds. We developed a

user-friendly web portal called SeedML that can uncover key morpho-

colorimetric features to accurately identify Camelina seeds coming from plants

grown in high salt conditions using a phenomics platform equipped with

fluorescent and visible light cameras. This portal may be used to enhance

quality control, identify stress markers and observe yield trends relevant to the

agricultural sector in a high throughput manner. Findings of this work may

positively contribute to similar research in the context of the climate crisis,

while supporting the implementation of new quality controls tools in the agri-

food domain.
KEYWORDS

phenotyping, phenomics, artificial intelligence, AI, abiotic stress, salinity, Camelina
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1 Introduction

In recent years, an ever increasing demand for land along with

unprecedented environmental consequences due to climate change

has significantly impacted agricultural productivity. The prevalence

of saline soils is increasing worldwide due to a lack of fresh water,

prolonged periods of drought and rising sea levels (Hassani et al.,

2021). It is estimated that over one billion hectares (ha) of global

land are currently affected by salinity, with this number increasing

by two Mha per year. The issue is widespread and affects over 100

countries with severe impacts in India, China, the United States,

Turkey and many other regions. For example, over 30% of land in

Iran is salt-affected, leading to ongoing economic and

environmental implications including decreased productivity and

soil erosion, which numerous countries stand to face (Singh, 2021).

Increased concentrations of sodium chloride (NaCl), lead to ionic

toxicity and osmotic stress in plants. While some plants such as

halophytes have the ability to tolerate salt stress, traditional crops

for food use are severely impacted by NaCl, leading to inhibition of

growth and low yield production (Morales et al., 2017). When

coupled with other abiotic stresses such as drought, heavy metal

exposure, high temperatures, and reduced humidity, these factors

become limiting for crop production, leading to huge economic

losses and social concerns regarding food security (Shah et al., 2018;

Razzaq et al., 2021).

Camelina sativa (Camelina) is an undervalued oilseed crop

belonging to the Brassicaceae family, closely related to Arabidopsis

thaliana and other economically relevant Brassicaceae such as

canola and the cabbage (Berti et al., 2016). This crop is native to

East European/West Asian regions and was first domesticated in the

late Neolithic era before being largely replaced by other competitor

crops. Despite being well adapted to Canada and the northern

United States due to the semi-arid, temperate and short-season

climates, Camelina is not widely produced in North America

(Vollmann and Eynck, 2015). It is only in more recent decades

that Camelina has begun to receive a renewed interest due to its

advantageous properties including low input requirements,

tolerance to cold temperatures and pests and a high nutrient-

density (Masella et al., 2014). Camelina seeds also contain

uncommonly high levels of alpha-linolenic acid, an essential

omega-3 fatty acid required for proper physical and cognitive

maintenance, making it a nutritious food source (Kagale et al.,

2014; Berti et al., 2016).

In recent years, there has been a surge in plant phenomics

equipment and platforms, ranging from compact desktop setups to

large-scale field phenotyping machines and even unmanned aerial

vehicles (Vello et al., 2022; Sarkar et al., 2023). However, there is a

limited availability of user-friendly tools for analyzing the vast

amount of data generated by these systems, and many of the

existing tools are challenging for non-computer science users to

navigate (Vello et al., 2015). Furthermore, Camelina, being an

emerging crop, has not been as extensively investigated as other

established crops such as Brassica napus (canola). Our
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understanding of the effect of abiotic stresses such as NaCl

concentration on Camelina seeds therefore remains limited

(Zanetti et al., 2021). In this study, we aim to address these

challenges by investigating the potential of image-based

phenotyping and automated analysis through a user-friendly web

portal. The SeedML portal enables the analysis of morpho-

colorimetric attributes of Camelina seeds and can in turn predict

their salt status. This prediction is based on image analysis and

machine learning algorithms, utilizing fluorescent or visible light

images acquired from a plant phenomics platform. As phenomic

systems continue to innovate in response to adapting needs in the

agricultural sector, the availability of accessible and powerful

analysis tools will play a vital role in their success.
2 Materials and methods

2.1 Plant growth and salt treatment

Protocol 1. Three Camelina sativa (Camelina) seeds (Celine

variety), were sown in 5” pots with 250 g of Sunshine mix (75-85%

Canadian Sphagnum peat moss, perlite and dolomite limestone)

and 450 mL of water. Plants were grown in the McGill phytotron

greenhouse with a 14 h / 10 h light/dark photoperiod at a

temperature of 27°C/20°C day/night. Seven days after sowing

(DAS), seedlings were thinned to one per pot based on size

similarity. At DAS 20, salt stress was induced through saline

water treatment (final NaCl concentrations of 0, 50, 100, 150 and

200 mM), prepared using a final volume of 450 ml of water (soil

water capacity). Salt treatment was progressively applied twice a day

over two days. Pots were watered every day to 700g to maintain a

constant NaCl concentration. Classic 20-20-20 (N-P-K) fertilizer

diluted 1:10 was applied at DAS 15. Plants were randomized three

times a week to avoid any positional effect in the greenhouse.

Protocol 2. Similar to protocol 1 but using a water capacity of

350 mL and a final weight of 600 g. Environmental temperature was

set at 24°C/20°C day/night and three salt concentrations were used

(NaCl at 0, 200 and 250 mM). Fertilizer was applied at DAS 8

and 15.

Protocol 3. Similar to protocol 2 but plants were watered twice

a week without weight control and only two levels of salt

concentration were used (NaCl at 0 and 200 mM). Plants were

fertilized once a week.

Protocol 4. Similar to protocol 1 but using 200 g of soil and a

400 mL water capacity at 0 and 200mM of salt. Plants were watered

to 600 g twice a week. Salt stress was induced at DAS 34.

Plant batches: Four different batches of plants were grown in

different seasons and using different protocols in a semi-controlled

environment (greenhouse) in which light and temperature may

fluctuate according to the external environmental conditions. Plants

in batch A were grown using protocol 1 in Spring-Summer 2018,

batch B using protocol 2 in Spring 2019, batch C using protocol 3 in

Fall 2020 and batch D using protocol 4 during Winter 2018.
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2.2 Seed preparation and imaging

Harvested seeds were dried for 30 days at room temperature

and then stored at 4°C. A weighing pan and an electronic balance

(PB3002 DeltaRange) were used to select 0.1g or 0.05 g seeds from

each plant according to the set (Table 1). Seeds were then

transferred to petri dishes and identified with barcodes. The

image acquisition was performed with the LemnaTec HTS

installed at the McGill Plant Phenomics Platform (MP3, http://

mp3.biol.mcgill.ca), using the visible light camera piA2400-17gc

and the fluorescent light camera scA1400-17gc. Three

configurations were selected; visible light top illumination

(VISFRONT); visible light back illumination (VISBACK); and

fluorescent illumination between 400 and 500 nm (FLUO).
2.3 Software development

The three main components of the web portal software (the web

interface, the image analysis and the machine learning

implementation), were implemented on Java OpenJDK 17 + 35

and Apache Tomcat 10.1.10. The web portal was developed using

JSP, HTML, JavaScript, CSS. The image analysis and machine

learning modules were developed using ImageJ 1.53a (Schneider

et al., 2012), Fiji (Schindelin et al., 2012) and weka 3.9.4 (Frank

et al., 2016), respectively as main packages and Java as

programming language. An adapted version of the “combined

contour tracing and region labeling” proposed by Burger and

Burge (2008, 2016) was implemented as part of the segmentation

algorithm. SeedML was assigned as the name of the portal.
2.4 SeedML web portal

The web portal runs on a Dell R910 server with 512 GB of RAM

and two MD1200 storage devices 72 TB at McGill University. The

SeedML web portal is accessible through the internet address

https://sites.google.com/view/seedml or http://mp3.biol.mcgill.ca/

seedml. The prediction of the salt status analysis is performed in

the following steps. 1) Seed detection setup; 2) Training images; 3)

Testing images; 4) Process; 5) Phenotypic traits; 6) Seed
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classification. The portal could also be used to analyze morpho-

colorimetric traits alone. In this case, steps 1, 3, 4 and 5 are required.
2.5 Seed detection setup

In this step, the user can select different thresholds for some

image properties or the application of determined algorithms in

order to set up the segmentation parameters, seed and background

identification. It is possible to set the scale of pixels per centimeter

assuming a pixel aspect ratio of one. The segmentation parameters

are easily set up by clicking or dragging and dropping a sample

image of a plate on the box under the title “original image”. After

clicking the refresh button, the processed images on the right box

will give a preview of some intermediary (pre-processed) and final

results of the segmentation. The adjustment and refreshing of the

segmentation parameters is performed until the identification of the

seeds is archived. This configuration can be downloaded to the local

disk to be reused in future analysis. The portal has three pre-set

configurations used for this article, visible light top illumination,

visible light back illumination and fluorescent light.
2.6 Training images

One or more images for each growth condition (salt and

normal) are uploaded by clicking or dragging and dropping to

the respective panel. These images are used to train the different

machine learning algorithms. The garbage icon allows the user to

clean up the content of the panel. The uploading operation is

successfully achieved when a scaled image and its names are shown

in the corresponding list.
2.7 Testing images

The center panel is designed to upload the images of the seed

plates to be analyzed by dragging and dropping or clicking. This

section is also used if a morpho-colorimetric analysis only is

desired. Before moving to the next step, the user has to wait until

a small-scale copy of each image is shown in the center panel.
TABLE 1 Seed sets and plate batches.

Set Plate number Seed weight x plate Image date Batch Growth season Salt concentration (mM)

1 23 0.10 g 2019-11-14 B Spring 2019 0, 200, 250

2 35 0.10 g 2020-01-17 A Spring-Summer 2018 0,50, 100, 150, 200

3 18 0.10 g 2021-02-25 C Fall 2020 0, 200

4 40 0.10 g 2021-03-02 A Spring-Summer 2018 0, 50, 100, 150, 200

5 10 0.05 g 2021-03-02 A Spring-Summer 2018 0, 200

6 15 0.10 g 2021-04-27 D Winter 2018 0, 200

M 18 0.10 g 2020-01-22 A/B A and B mixed 0, 200
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2.8 Image analysis and
classification process

Once the training and testing images are uploaded, the user can

run the process of image analysis and classification using the start

button. The classification process can be based on all, only morpho or

only color attributes (Tables 2, 3 respectively). The button in the

middle panel allows the user to change the option. Once the process is

complete, the third panel central label will change from “X” to “✓”.
2.9 Phenotypic traits

A summary table with the seed count and the average seed size,

seed length, seed width and seed circularity per plate is shown. If the

pixels/metric scale is set up, the metric attributes are displayed in

millimeters. Clicking on the image name, a new web page is

presented with the object (seed) research region, the original

objects (seeds), the color classification, the false color

representation and a table with selected morpho-colorimetric

attributes per seed (Joly-Lopez et al., 2017; Vello et al., 2022).

Each seed can be traced into the image using the ID attribute of the

table in the “original objects” image. Most of the table can be

downloaded in a comma-separated values (CSV) file format

supported by a large variety of software such as Microsoft Excel,

Google Sheets, LibreOffice, R.
2.10 Seed classification

The salt status of each plate is determined by the average of the

percentage of salt/non-salt among all algorithms Table 4 included in

the portal (Figure 1). If the percentage is greater than 50, then the plate

is marked with the stress status. This section of the software displays a
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table containing the individual percentages for each algorithm and the

predicted status of the plate. As described in “phenotypic traits”, the

details of the plate can be obtained by clicking on its name.
2.11 Testing procedure

All the output data shown in this work has been processed using

the SeedML portal in order to assess its power to identify morpho-

colorimetric features of seeds and predict the salt status of the

plates. The exception is the performance of the machine learning

algorithms that has been done before the portal implementation.

After uploading and processing the images into the portal, the

morpho-colorimetric features were downloaded using the

phenotypic traits option and plotted in R. The prediction tests
TABLE 2 Description of morphological features.

Identification Definitions

Area
Number of pixels representing the seed in the image.
(Joly-Lopez et al., 2017)

Perimeter
Length of the outer contour of the pixels representing the
seed in the image. (Joly-Lopez et al., 2017)

Circularity
Ratio between the circumference square and the area.
(Camargo et al. 2014)

Compactness
Ratio between the area and the perimeter (Burger and
Burge, 2008, 2016).

Major axis

Axis where a physical body requires less effort to rotate. It
extends from the centroid (center of gravity) to the widest
part of the object (Burger and Burge, 2008, 2016), in this
case the pixels presenting the seed in the image.

Minor axis Axis perpendicular to the major axis.

Eccentricity

Ratio between the major axis and the minor axis of the
digital plant (Burger and Burge, 2008, 2016). The minor
axis extends from the centroid to the narrowest part
perpendicular to the major axis.
TABLE 3 Description of colorimetric features.

Identification Description

Grey intensity
peak (hisgreypeak)

Intensity value having the bigger frequency from the
pixels representing the seed. It is the higher peak of the
intensity value histogram. (Joly-Lopez et al., 2017)

Q1 grey
pixels (q1grey)

First quartile of the pixel grey value distribution. (R+G
+B)/3.

Q2 grey
pixels (q2grey)

Second quartile of the pixel grey value distribution. (R+G
+B)/3.

Q3 grey
pixels (q3grey)

Third quartile of the pixel grey value distribution. (R+G
+B)/3.

Q1 red channel
pixels (q1r) First quartile of the pixel red channel value distribution.

Q2 red channel
pixels (q2r)

Second quartile of the pixel red channel
value distribution.

Q3 red channel
pixels (q3r) Third quartile of the pixel red channel value distribution.

Q1 green channel
pixels (q1g) First quartile of the pixel green channel value distribution.

Q2 green channel
pixels (q2g)

Second quartile of the pixel green channel
value distribution.

Q3 green channel
pixels (q3g)

Third quartile of the pixel green channel
value distribution.

Q1 blue channel
pixels (q1b) First quartile of the pixel blue channel value distribution.

Q2 blue channel
pixels (q2b)

Second quartile of the pixel blue channel
value distribution.

Q3 blue channel
pixels (q3b) Third quartile of the pixel blue channel value distribution.

Higher 16 color
class (hue16max)

Color class having the higher number of pixels from a
hue channel 16 class pixel division in the HSB
color space.

Higher 32 color
class (hue32max)

Color class having the higher number of pixels from a
hue channel 32 class pixel division in the HSB
color space.

Higher 64 color
class (hue64max)

Color class having the higher number of pixels from a
hue channel 64 class pixel division in the HSB
color space.
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were divided into two groups: inside sets and between sets. For

inside sets, three tests for each camera (FLUO: fluorescent,

VISFRONT: visible top light, VISBACK: visible back light),

attribute (all, only morpho, only color), set (1-6) and salt

concentration (50 mM, 100 mM, 150 mM, 200 mM, and 250

mM) were performed (Supplementary Table 1). For between sets,

the k-fold cross-validation method with k=10 (Sakeef et al., 2023)

was used on 200 mM only since this concentration is present in all

sets. The k-fold cross-validation prevents underfitting or overfitting

of the model, aligning with the sample size and the split between

testing and training in the various tests (Saharan et al., 2021;

Charilaou and Battat, 2022; Prusty et al., 2022). The portal has

been tested in Firefox and QuteBrowser.
2.12 Evaluation of the prediction process

The performance and effectiveness of the prediction status of

seeds and plates is measured using five metrics commonly used in

benchmarks of machine learning algorithms: accuracy (Equation 1),

sensitivity Equation 2, specificity Equation 3, precision Equation 4

and F1 score Equation 5 (Xu et al., 2022; Yang et al., 2023).

Accuracy   =
S(true   positives)   +  S(true   negatives)

total
(1)

  Sensitivity   =  
S(true   positive)

S(true   positive)   +  S(false   negative)
(2)

Specificity   =  
S(true   negatives)

S(true   negatives)   +  S(false   positives)
(3)

Precision   =  
S(true   positives)

S(true   positives)   +  S(false   positives)
(4)

F1   Score   =  
2  �   Precision  �   Sensitivity

Precision  �   Sensitivity
(5)
2.13 Portal availability

The SeedML portal can be accessed at https://sites.google.com/

view/seedml, where images, additional information, and access to

the portal, including current and future mirrors, can be found.

Alternatively, it is possible to access it directly at http://

mp3.biol.mcgill.ca/seedml. For any inquiries or issues, including

mirror installations, please contact the corresponding authors.
3 Results

3.1 Morpho-colorimetric features under
normal and salt conditions

Morpho-colorimetric seed features were compared between any

concentration of salt and non-salt growing conditions under visible
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back light (VISBACK) and fluorescent light cameras (FLUO). The

area, perimeter, major and minor axis have shown higher values in

the salt group under FLUO (Figure 2). However, this pattern was

not observed in the VISBACK (Figure 3). In both cameras, the

eccentricity has shown higher values in the non-salt group among

all the sets. The color related features in the VISBACK have not

presented defined patterns among the sets. For example, the red

lower quartile feature in the non-salt group is lower in set number 1

and higher in set number 3. The grey intensity peak non-salt value is

higher in set number 2 but it is lower in sets 4 and 6. In the case of

FLUO, a pattern was found in some of the color-related features.

This is the case in the red lower, median and higher quartiles where

the salt group has shown higher values. Almost no signal was

observed from the blue channel. This was expected as the

fluorescent information is represented in the red channel

under FLUO.

The values of the area in non-salt condition groups are

approximately 150 px for sets 1, 2, 4, 5 and M and slightly higher

than 200 px for sets 3 and 6 (Figure 2A), under FLUO. This pattern

is observed for the perimeter, major and minor axis as well

(Figures 2B, D, E). The sets 2, 4 and 5 come from batch A and

set 1 from batch B. The M set is a mix of A and B. Set 3 and 6 are

taken from batch C and D respectively. In the VISBACK images, the

area values for sets 3 and 6 are slightly higher than the other

batches. The non-area related features, circularity, compactness and

eccentricity show the same patterns among the sets under the

VISBACK and FLUO as expected (Figures 2C, F, G, 3C, F, G).
3.2 Pixel to metric conversion agreement
and seed count

The conversion from pixels to metrics was done using the inside

diameter of the petri dish plate at 8.50 cm. The diameter of the plate

under the FLUO is 846.50 pixels (px) giving 99.58 px/cm

(Supplementary Figure 1A). The same diameter under the

VISBACK is 1812 px giving 213.17 px/cm (Supplementary

Figure 1B). The double of the major and the minor axes can be

used as a proxy to the length and width respectively. The average

major and minor axes in the FLUO are the 9.76 px and 5.17 px

giving a length of 1.95 mm and a width of 1.03 mm. In the case of

the VISBACK, the averages are 21.75 px and 10.83 px giving a

length of 2 mm and a width of 1 mm. Our manual calculation using

a ruler on the actual seeds (Supplementary Figure 1C), has shown a

length of 2 mm. The automatic seed count from the images having

0.10 g/seeds per plate revealed that the average number of seeds is

92, (95% CI [89.53, 95.20]) for FLUO, 84, (95% CI [80.46, 88.25])

for VISFRONT and 95, (95% CI [92.54, 99.31]) for VISBACK

(Supplementary Figure 1D).
3.3 Performance of machine learning
algorithms in individual seeds

The accuracy of the 13 pre-selected machine learning

algorithms from the WEKA package (Frank et al., 2016) to
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predict salt status of the seeds was tested using set 1 and 2 on

individual seeds. FLUO and VISBACK images were computed all

together (Figure 4), using one or two plates as training for each

condition. The ZeroR showed an accuracy of 52%, NaiveBayes

74%, MultilayerPerceptron 73%, SMO 73%, IBk 70%, Kstar 71%,

LWL 72%, DecisionStump 73%, HoeffdingTree 73%, J48 72%,

LMT 75%, RandomForest 74%, RandomTree 71% and REPTree

72%. The ZeroR algorithm was not implemented in the portal

because of its low accuracy compared to the rest of

the algorithms.
3.4 Portal performance inside sets using 0
and 200 mM (0-200mM)
salt concentrations

The performance of the portal was evaluated within various

sets, specifically focusing on salt concentrations of 0 mM and 200

mM (0-200mM). This assessment encompassed both the predictive

capabilities of the portal and the type of camera used (fluorescent

and visible light), across different groups. Each concentration of salt

and non-salt plates was subjected to triplicate testing. During the

training phase, either one or three plates were employed, depending

on the specific test. The majority of tests were conducted with just

one training plate per group, which represents the minimum

information necessary for the classification algorithms.

In Figure 5, confusion matrices for the 0-200 mM salt

concentrations, utilizing one training plate for each group, are

presented. Among the 243 plates analyzed, 96 plates were

accurately classified as non-salt, and 130 were correctly identified

as salt (Figure 5A). Only 3 were incorrectly classified as salt, and 14

were misclassified as non-salt when using fluorescent images

(FLUO) with all attributes.

When only color attributes were considered, 2 plates were

wrongly classified as non-salt, and 11 were misclassified as salt.

However, 97 plates were accurately categorized as non-salt, and 133

were correctly identified as salt (Figure 5B). The classification of

plates using solely morphological attributes resulted in 3
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misclassified plates and 96 correctly classified as non-salt.

However, 60 plates were wrongly classified as non-salt, but 84

were correctly identified as salt (Figure 5C). For visible back light

(VISBACK) with all attributes, the portal incorrectly grouped 26

plates as salt and 28 plates as non-salt. Nonetheless, 73 plates were

accurately categorized as non-salt, and 116 were correctly identified

as salt (Figure 5D).

In the color and morphological features of VISBACK images

(Figures 5E, F), 76 plates were correctly classified, and 23 were

misclassified as non-salt. Notably, 109 plates exhibited accurate salt

classification when considering color attributes, surpassing the 86

plates correctly classified using morphological attributes. Conversely,

there were 35 instances of misclassification for color attributes and 58

for morphological attributes. The classification of VISFRONT images

was similar in the number of plates to that of VISBACK. However,

when considering all attributes, VISFRONT achieved higher accuracy

in classifying 5 more plates as non-salt but was 13 plates less accurate

in classifying salt content. The classification results were identical to

VISBACK when using only color attributes. In the case of

morphological attributes, VISFRONT outperformed VISBACK by

accurately classifying 2 more plates as salt but underperformed by 9

plates in the non-salt classification (Figures 5G–I).

Table 5 provides an overview of the five selected metrics

employed to evaluate the portal’s performance across all sets,

using a concentration level of 0 and 200 mM (0-200nM). When

utilizing just one training plate, the FLUO analysis achieved

impressive results, with an accuracy of 0.93, a sensitivity of 0.90, a

specificity of 0.96, a precision of 0.97, and an F1 score of 0.93 across

all attributes. In comparison, the color feature subset yielded slightly

higher results, with an accuracy of 0.94, a sensitivity of 0.92, a

specificity of 0.97, a precision of 0.98, and an F1 score of 0.95. On

the other hand, the morphological subset exhibited metrics of 0.74,

0.58, 0.96, 0.96, and 0.72, respectively.

For VISBACK with all attributes, the system achieved an

accuracy of 0.77, a sensitivity of 0.80, a specificity of 0.73, a

precision of 0.81, and an F1 score of 0.81. In contrast, the color

and morphological tests generated results of 0.76, 0.77, 0.77, 0.83,

and 0.79, as well as 0.67, 0.60, 0.77, 0.79, and 0.60, respectively.
FIGURE 1

Image and data analysis pipeline. Graphical representation of the analysis pipeline implemented in the SeedML portal for plants grown under normal or
salt stress conditions.
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When assessing VISFRONT, considering all attributes, an accuracy

of 0.76, a sensitivity of 0.72, a specificity of 0.83, a precision of 0.86,

and an F1 score of 0.78 were achieved. Using only the color

attributes, the results were 0.76, 0.76, 0.77, 0.83 and 0.79.
Frontiers in Plant Science 07
Meanwhile, employing only the morphological attributes yielded

scores of 0.64, 0.61, 0.68, 0.73 and 0.67, respectively.

These findings suggest that the FLUO analysis outperforms

VISBACK, and in turn, VISBACK outperforms VISFRONT.
A B C D
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FIGURE 2

Morpho-colorimetric features from the back light visible light camera. Means and SEMs of the morpho-colorimetric features under normal and salt
conditions for the 6 sets as well as the mix set (m). (A) Area, (B) Perimeter, (C) Circularity, (D) Major axis, (E) Minor axis, (F) Compactness,
(G) Eccentricity, (H) Red lower quartile, (I) Blue lower quartile, (J) Green lower quartile, (K) Red median, (L) Blue median, (M) Green median, (N) Red
higher quartile, (O) Blue higher quartile, (P) Green higher quartile, (Q) Grey Intensity peak, (R) Higher 16 color class, (S) Higher 32 color class,
(T) Higher 64 color class.
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Moreover, it becomes evident that color attributes exhibit greater

effectiveness than morphological attributes in accurately predicting

the salt status of seeds in plates.

When three training plates were used in FLUO (as presented

in Table 5), the five metrics consistently demonstrated values
Frontiers in Plant Science 08
ranging from 0.96 to 1, whether considered across all sets

collectively or individually. The lowest recorded value, which

was 0.96, occurred in accuracy and sensitivity for set 6, and in

the F1 score for set 1. These results indicate a near 100%

effectiveness in detection.
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FIGURE 3

Morpho-colorimetric features from the back light visible light camera. Means and SEMs of the morpho-colorimetric features under normal and salt
conditions for the 6 sets as well as the mix set (m). (A) Area, (B) Perimeter, (C) Circularity, (D) Major axis, (E) Minor axis, (F) Compactness, (G) Eccentricity,
(H) Red lower quartile, (I) Blue lower quartile, (J) Green lower quartile, (K) Red median, (L) Blue median, (M) Green median, (N) Red higher quartile, (O)
Blue higher quartile, (P) Green higher quartile, (Q) Grey Intensity peak, (R) Higher 16 color class, (S) Higher 32 color class, (T) Higher 64 color class.
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3.5 Portal performance inside sets using
other salt concentrations

To evaluate the performance of the portal and the type of

camera (fluorescent or visible light) across various concentrations,

sets 2 and 4 were tested using 50 mM, 100 mM and 150 mM in

addition to 200 mM of salt versus non-salt under both fluorescent

(FLUO) and visible backlight (VISBACK) images. The performance

metrics are presented in Tables 6 and 7.

For the 0-200 mM concentrations, employing all attributes

resulted in an accuracy of 0.95, a sensitivity of 0.90, a specificity

and precision of 1, and an F1 score of 0.95, with a Fisher’s exact test

p-value lower than 2.2e-16. When testing at 0-150 mM, the metrics

displayed an accuracy of 0.72, a sensitivity of 0.61, a specificity of

0.80, a precision of 0.73, and an F1 score of 0.67, along with a p-

value of 1.815e-4. In the case of 0-100 mM, the performance metrics

indicated an accuracy of 0.77, a sensitivity of 0.51, a specificity and

precision of 1, and an F1 score of 0.67, with a p-value of 4.257e-06.

For the 0-50 mM tests using all attributes, the results included an

accuracy of 0.64, a sensitivity of 0.75, a specificity of 0.54, a precision

of 0.59, an F1 score of 0.65, and a p-value of 0.01.

When considering only the color attributes, the results for 0-200

mM included an accuracy of 0.94, a sensitivity of 0.88, a specificity

and precision of 1, an F1 score of 0.93, and a p-value lower than

2.2e-16. For 0-150 mM, the values were 0.80, 0.71, 0.88, 0.83, 0.77,

and a p-value of 9.294e-08. For 0-100 mM, the results were 0.75,

0.48, 1, 1, 0.66, and a p-value of 4.551e-08. In the case of 0-50 mM,

the values were 0.56, 0.50, 0.61, 0.52, 0.51, and no significant p-value

was observed.

When using only the morphological attributes for 0-200 mM,

an accuracy of 0.94, a sensitivity of 0.88, a specificity and precision

of 1, an F1 score of 0.88, and a Fisher’s exact test p-value lower than

2e-16 were achieved. In the 0-150 mM group, the metrics were 0.74,

0.86, 0.64, 0.67, 0.75, and the p-value was 7.432e-06. For the 0-100
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mM and 0-50 mM groups, the values obtained were 0.74, 0.58, 0.88,

0.82, 0.69, and 1.498e-05, and 0.53, 0.94, 0.19, 0.50, 0.65, and

0.098, respectively.

Table 7 displays the performance metrics for VISBACK in sets 2

and 4. When considering all attributes in the 0-200 mM

concentration range, the metrics included an accuracy of 0.71, a

sensitivity of 0.90, a specificity of 0.52, a precision of 0.66, and an F1

score of 0.76, with a Fisher’s exact test p-value of 3.601e-05. For the

0-150 mM tests, the metrics showed results of 0.73 for accuracy,

0.67 for sensitivity, 0.79 for specificity, 0.73 for precision, and an F1

score of 0.70, with a p-value of 7.798e-05. In the case of 0-100 mM

and 0-50 mM, the metrics values were 0.47, 0.56, 0.38, 0.46, and

0.50, and 0.42, 0.63, 0.23, 0.42, and 0.51, respectively. In both cases,

the p-values were not significant.

When using only the color attributes, the performance metrics

at the 0-200 mM concentrations were as follows: an accuracy of

0.74, a sensitivity of 0.69, a specificity of 0.78, a precision of 0.76,

and an F1 score of 0.72. In the 0-150 mM group, the metrics

displayed values of 0.73, 0.77, 0.69, 0.68, and 0.78, respectively. For

0-100 mM and 0-50 mM, the metrics indicated 0.49, 0.52, 0.43, 0.48,

and 0.51, and 0.60, 0.83, 0.40, 0.55, and 0.66, respectively. Notably,

only 0-200 mM and 0-150 mM presented significant p-values (p<

0.01). The performance metrics when considering only the

morphological attributes exhibited an accuracy of 0.82, a

sensitivity of 0.64, a specificity and precision of 1, and an F1

score of 0.78. In the 0-150 mM group, the values were 0.60, 0.63,

0.80, 0.61, and 0.46. For 0-100 mM, the metrics indicated values of

0.61, 0.36, 0.36, 0.86, and 0.47, and for 0-50 mM, the values were

0.44, 0.44, 0.45, 0.41, and 0.42. Only the 0-200 mM group showed a

significant p-value (p< 0.01).
3.6 K-fold validation portal performance
among groups

The performance of the portal and the type of sensor was

performed using the k-fold validation technique which is normally

used to test machine learning algorithms with a k equal to 10 (Sakeef

et al., 2023), on fluorescent images (FLUO). The salt concentration

chosen was 0-200 mM since it is present in all the sets. Out of 93

plates, 30 were well classified as non-salt and 51 as salt against 9

misclassified as salt and 3 as non-salt for all attributes (Figure 6A).

Using only the color attributes, 33 and 52 were well classified as non-

salt and salt and 6 and 2 misclassified as salt and non-salt (Figure 6B).

In the case of only morphological attributes, 29 and 50 were well

classified against 10 and 4 respectively (Figure 6C).

An accuracy of 0.87 was attained using all attributes,

accompanied by a sensitivity of 0.94, a specificity of 0.76, a

precision of 0.85, and an F1 score of 0.89. When exclusively

employing color attributes, an accuracy of 0.91 was achieved,

along with a sensitivity of 0.96, a specificity of 0.84, a precision of

0.90, and an F1 score of 0.93. In the case of using only

morphological attributes, results included an accuracy of 0.84, a

sensitivity of 0.90, a specificity of 0.74, a precision of 0.83, and an F1

score of 0.88. Significance (p< 0.01) in all cases was shown using

Fisher’s exact test (Table 8).
FIGURE 4

Performance of machine learning algorithms on individual seeds.
Mean accuracy and SEMs for selected machine learning algorithms
in set 1 and 2 under normal and salt conditions shown together.
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TABLE 5 Performance descriptors within groups in 0 versus 200mM.

Set Camera Attributes Training
Plates*

Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

1-6 Fluo All 1 0.93 0.90 0.96 0.97 0.93

1-6 Fluo Color 1 0.94 0.92 0.97 0.98 0.95

1-6 Fluo Morpho 1 0.74 0.58 0.96 0.96 0.72

1-6 VisBack All 1 0.77 0.80 0.73 0.81 0.81

1-6 VisBack Color 1 0.76 0.77 0.77 0.83 0.79

1-6 VisBack Morpho 1 0.67 0.60 0.77 0.79 0.60

1-6 VisFront All 1 0.76 0.72 0.83 0.86 0.78

1-6 VisFront Color 1 0.76 0.76 0.77 0.83 0.79

1-6 VisFront Morpho 1 0.64 0.61 0.68 0.73 0.67

1-6 Fluo All 3 0.98 0.97 1 1 0.98

1 Fluo All 3 0.97 0.93 1 1 0.96

(Continued)
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TABLE 4 Description of the machine learning algorithms.

Classifier Description Reference weka packages

ZeroR
A rule algorithm that predicts the majority class in case of normal data or the

average value.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

rules/ZeroR.html

NaiveBayes Implements a standard probabilistic naive Bayes algorithm using estimator classes.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

bayes/NaiveBayes.html

MultilayerPerceptron
Implements a type of artificial neural network algorithm which can be expressed as

standard mathematical functions.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

functions/MultilayerPerceptron.html

SMO
Sequential minimal optimization. This class implements a support vector classification

that can be expressed as standard mathematical functions.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

functions/SMO.html

IBk (lbk) Implements a k-nearest-neighbour classification algorithm.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

lazy/IBk.html

Kstar Implements the nearest neighbour algorithm with a generalized distance function.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

lazy/KStar.html

LWL Implements a general algorithm for locally weighted learning.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

lazy/LWL.html

DecisionStump Implements a decision tree using only one level for splitting.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/DecisionStump.html

HoeffdingTree Implements a Hoeffding tree algorithm.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/HoeffdingTree.html

J48 Implements a C4.5 decision tree learner algorithm.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/J48.html

LMT
Logistic model trees. It builds classification trees with regression functions at

their leaves.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/LMT.html

RandomForest Implements the algorithm for building a forest of random trees.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/RandomForest.html

RandomTree
Given a number of random features for each node, this class builds a tree

without pruning.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/RandomTree.html

REPTree Implements a fast tree learning that reduces the error pruning.
https://weka.sourceforge.io/doc.dev/weka/classifiers/

trees/REPTree.html
(Witten et al., 2011; Smith and Frank, 2016).
frontiersin.org

https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/rules/ZeroR.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayes.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/bayes/NaiveBayes.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/MultilayerPerceptron.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMO.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMO.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/IBk.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/IBk.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/KStar.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/KStar.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/LWL.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/LWL.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/DecisionStump.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/DecisionStump.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/HoeffdingTree.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/HoeffdingTree.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/J48.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/J48.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/LMT.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/LMT.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomTree.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomTree.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/REPTree.html
https://doi.org/10.3389/fpls.2023.1303429
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Vello et al. 10.3389/fpls.2023.1303429
3.7 Alternative applications of SeedML

To assess the usability of the portal for working with various

types of data, a series of side-view images of Camelina plants were

captured and analyzed using this portal. The parameters for

quantifying and qualifying pods per plant were adjusted through

the user interface section “seed detection setup”. Manual counting

was also completed to evaluate performance. The strength of the

relationship was assessed using the Pearson coefficient (r=0.90),

revealing a strong positive correlation (Figure 7).
4 Discussion

The morpho-colorimetric seed features using the fluorescent

light images displayed a greater sensitivity to salt than the visible

light images (Figures 2, 3). In fact, the area-related features showed

higher values in the fluorescent images under salt conditions as well

as the lower, median and higher quartiles of the red intensity value.

This may be explained by the fluorescence emission intensity which
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increases with the increase in concentration of salt (Adenier et al.,

1998; Sharma et al., 2018). A variation in the morpho-colorimetric

seed features was also observed among the sets. This variation may

be attributed to differences in the chemical composition of seed oil

(Dogruer et al., 2021), which could be influenced by variations in

growing conditions, including watering regimes. It has been shown

that seed oil content can change in response to factors such as

nitrogen fertilizer, suggesting that soil content including the

prevalence of salts may play a key role in seed oil composition (Li

et al., 2017).

The conversion from pixels to the metric system is important

not only for the purpose of comparing and sharing information, as

it does not depend on the image, but also for validating the results of

seed detection. This feature is included in the portal. We used the

measurements of the plate in both cameras to calculate the

conversion and we compared seeds manually measured using a

ruler (Supplementary Figure 1). Our manual observation and pixel-

converted calculation both yielded a length of 2 mm, which aligns

with the measurements reported by Francis and Warwick (2009).

Additionally, the portal calculated a width of 1 mm, half of the
TABLE 6 Performance descriptors within groups in set 2 and 4 using one training plate for each condition group under fluorescent light
images (FLUO).

Concentration Attributes Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

p-
value*

0-200nM All 0.95 0.90 1 1 0.95 < 2.2e-16

0-150mM All 0.72 0.61 0.80 0.73 0.67 1.815e-4

0-100mM All 0.77 0.51 1 1 0.67 4.257e-06

0-50mM All 0.64 0.75 0.54 0.59 0.65 0.01098

0-200mM Color 0.94 0.88 1 1 0.93 < 2.2e-16

0-150mM Color 0.80 0.71 0.88 0.83 0.77 9.294e-08

0-100mM Color 0.75 0.48 1 1 0.66 4.551e-08

0-50mM Color 0.56 0.50 0.61 0.52 0.51 0.3616

0-200mM Morpho 0.94 0.88 1 1 0.88 < 2e-16

0-150mM Morpho 0.74 0.86 0.64 0.67 0.75 7.432e-06

0-100mM Morpho 0.74 0.58 0.88 0.82 0.69 1.498e-05

0-50mM Morpho 0.53 0.94 0.19 0.50 0.65 0.09707
fr
* Fisher’s exact test.
TABLE 5 Continued

Set Camera Attributes Training
Plates*

Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

2 Fluo All 3 1 1 1 1 1

3 Fluo All 3 0.98 0.97 1 1 0.98

4 Fluo All 3 1 1 1 1 1

5 Fluo All 3 1 1 1 1 1

6 Fluo All 3 0.96 0.96 1 1 0.98
* Training plates per condition group. (Fisher’s exact test p<0.01 for all cases). Fluo, fluorescent images; VisBack, Visible back light images; VisFront, Visible top light images.
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length, in line with the findings of Fleenor (2011). An amount of

1000 seeds weighs between 0.8 to 2.0 g (Ehrensing et al., 2008),

meaning that the number of seeds expected in 0.1 g is in the range of

50 to 125 seeds which has been corroborated in our analysis with an

average of 92, 84 and 95 normally distributed between 60-140.

The machine learning algorithms evaluated on the classification

of individual seeds were taken from the WEKA package (Frank

et al., 2016), namely ZeroR, NaiveBayes, MultilayerPerceptron,

SMO, IBk, Kstar, LWL, DecisionStump, HoeffdingTree, J48, LMT,

RandomForest, RandomTree and REPTree (Figure 1, Table 4). All

of them show an accuracy equal or greater than 70% except for the

ZeroR which showed an accuracy of 52% (Figure 4). For this reason,

the ZeroR algorithm was not implemented in the portal since it did

not significantly contribute to the classification process.

The consensus achieved by the machine learning algorithms

analyzing morpho-colorimetric features in the image analysis

process, in conjunction with the universally accessible user-

friendly web interface and a wide range of customizable
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parameters, endows the portal with exceptional performance. The

outputs may be tailored to accommodate various types of images, to

inform on a wide range of data sets. Most of the analyses were

conducted using a different plate for training in each group or set, as

it represents the minimum information that can be provided.

However, a three-plate training approach was implemented to

uphold this principle. The best performance, achieved using the

one-plate training method, was observed in the case of the

fluorescent light images, with scores of 90% or higher in all five

effectiveness metrics. This was followed by the visible light back

images and then by the visible light top images. In the case of three-

plate training, almost 100% classification performance was obtained

in the five metrics (Figure 5, Table 5). This demonstrates the

robustness of the algorithms implemented in the portal, as well as

the effect of salt on fluorescent light reflectance (Adenier et al., 1998;

Sharma et al., 2018). Furthermore, utilizing color attributes alone

resulted in an overperformance compared to using only

morphological attributes (Table 5).
A B C

D E F

G H I

FIGURE 5

Confusion matrices for 0 and 200mM. Reference (real) versus prediction plots for sets 1 through 6 using one training plate for each condition (salt/
non-salt) and set with n=3 for. (A) FLUO, all attributes. (B) FLUO, color attributes. (C) FLUO, morphological attributes. (D) VISBACK, all attributes. (E)
VISBACK, color attributes. (F) VISBACK, morphological attributes. (G) VISFRONT, all attributes. (H) VISFRONT, color attributes. (I) VISFRONT,
morphological attributes. (FLUO, Fluorescent images; VISBACK, visible back light images; VISFRONT, visible top light images).
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The reduction in salt concentration resulted in a decrease in the

effectiveness of the classification. This effect was observed in two

sets of fluorescent light images where lower concentrations were

available (Table 6). This finding supports the influence of salt on

fluorescent reflectance and may indicate a lower concentration of

salt within the seeds when grown in less saline soils. In 0-200 mM,

the F1 score is 0.95 compared to 0.65 in 0-50mM. This may

represent a correlation between the seed salt content and the

fluorescent seed reflectance.

The k-fold validation is a widely used method to estimate the

performance of machine learning algorithms on many performance

indicators, in this case, accuracy, sensitivity, specificity, precision

and F1 score (Refaeilzadeh et al., 2009). A k value equal to 10 was

used since it is the most acceptable value for testing these kinds of
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algorithms (Refaeilzadeh et al., 2009; Sakeef et al., 2023). The 0-200

mM concentrations were selected from sets 1 to 6 (Figure 6,

Table 8). This allows us to test the performance of the prediction

process among groups growing in different conditions using

fluorescent light images. Surprisingly, an accuracy of 0.87 and

0.91 was achieved with all and color attributes only and a

sensitivity of 0.94 and 0.96 respectively even though the

fluorescent reflectance is also affected by the oil composition

which is affected by the growing conditions (Boschi et al., 2011;

Li et al., 2017; Cober and Malcolm, 2019; Dogruer et al., 2021).

The SeedML portal offers a versatile solution for addressing

various phenotypic questions using plant images. As an illustrative

case, this research showcases the automated counting of pods in

side-view images of Camelina. This data is crucial for evaluating
A B C

FIGURE 6

K-fold validation confusion matrices. Reference (real) versus prediction plots among groups using one training plate for each condition (salt/nonsalt)
with a k=10 for 0 and 200mM. (A) All attributes, (B) Color attributes, (C) Morphological attributes.
TABLE 7 Performance descriptors within groups in set 2 and 4 using one training plate for each condition group under visible back light
images (VISBACK).

Concentration Attributes Accuracy
Equation 1

Sensitivity
Equation 2

Specificity
Equation 3

Precision
Equation 4

F1 score
Equation 5

p-
value*

0-200mM All 0.71 0.90 0.52 0.66 0.76 3.601e-05

0-150mM All 0.73 0.67 0.79 0.73 0.70 7.798e-05

0-100mM All 0.47 0.56 0.38 0.46 0.50 0.6561

0-50mM All 0.42 0.63 0.23 0.42 0.51 0.3616

0-200mM Color 0.74 0.69 0.78 0.76 0.72 7.328e-06

0-150mM Color 0.73 0.77 0.69 0.68 0.78 4.174e-05

0-100mM Color 0.49 0.52 0.43 0.48 0.51 1

0-50mM Color 0.60 0.83 0.40 0.55 0.66 0.0264

0-200mM Morpho 0.82 0.64 1 1 0.78 2.628e-11

0-150mM Morpho 0.60 0.36 0.80 0.61 0.46 0.1251

0-100mM Morpho 0.61 0.36 0.36 0.86 0.47 0.03802

0-50mM Morpho 0.44 0.44 0.45 0.41 0.42 0.4959
fr
* Fisher’s exact test.
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yield production and would otherwise demand significant human

resources and time if handled manually. In this case, achieving the

objective was accomplished by simply adjusting parameters through

the user interface. A high Pearson correlation coefficient (r = 0.90)

was obtained, indicating the effectiveness of this analysis. It should

be noted that this was just one illustrative example and the SeedML

portal can be used to perform a wide range of image-based

phenotyping analyses.

In this study, the capability of combining fluorescent and

visible light images with image analysis and machine learning

algorithms to assess the color-morphological characteristics of

Camelina seeds to predict the soil’s salinity status has been

demonstrated. An easy to navigate portal was devised and

designed to be accessible to individuals with minimal computer

skills and compatible with any device, including smartphones. The

utility of the portal in addressing other phenomics analyses along

with its implications in oil assessment and quality control have

been illustrated. The findings of this research may positively

inform related studies in the context of agricultural innovation

and related fields such as animal feed production, in response to

climate change. SeedML may further aid in the development and

implementation of new quality control tools within the agri-food

industry, enhancing productivity and sustainability in the

manufacturing process.
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