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In a plant-microbe symbiosis, the host plant plays a key role in promoting the

association of beneficial microbes and maintaining microbiome homeostasis

through microbe-associated molecular patterns (MAMPs). The associated

microbes provide an additional layer of protection for plant immunity and help

in nutrient acquisition. Despite identical MAMPs in pathogens and commensals,

the plant distinguishes between them and promotes the enrichment of beneficial

ones while defending against the pathogens. The rhizosphere is a narrow zone of

soil surrounding living plant roots. Hence, various biotic and abiotic factors are

involved in shaping the rhizosphere microbiome responsible for pathogen

suppression. Efforts have been devoted to modifying the composition and

structure of the rhizosphere microbiome. Nevertheless, systemic manipulation

of the rhizosphere microbiome has been challenging, and predicting the

resultant microbiome structure after an introduced change is difficult. This is

due to the involvement of various factors that determine microbiome assembly

and result in an increased complexity of microbial networks. Thus, a

comprehensive analysis of critical factors that influence microbiome assembly

in the rhizosphere will enable scientists to design intervention techniques to

reshape the rhizosphere microbiome structure and functions systematically. In

this review, we give highlights on fundamental concepts in soil suppressiveness

and concisely explore studies on how plants monitor microbiome assembly and

homeostasis. We then emphasize key factors that govern pathogen-suppressive

microbiome assembly. We discuss how pathogen infection enhances plant

immunity by employing a cry-for-help strategy and examine how

domestication wipes out defensive genes in plants experiencing domestication

syndrome. Additionally, we provide insights into how nutrient availability and pH

determine pathogen suppression in the rhizosphere. We finally highlight up-to-

date endeavors in rhizosphere microbiome manipulation to gain valuable

insights into potential strategies by which microbiome structure could be

reshaped to promote pathogen-suppressive soil development.
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1 Introduction

Soil-borne plant pathogens pose a complex and sustainable

challenge to crop production. The soil serves as a nurturing

environment for phytopathogens that cause substantial

production losses. It also shelters beneficial microbes that offer

imminent solutions by combating important soil-borne pathogens

such as Fusarium (Zhang et al., 2022; Sapkota et al., 2023),

Verticillium (Lazcano et al., 2021; Zhao et al., 2021b), Ralstonia

(Wang et al., 2019; Yang et al., 2023), Rhizoctonia (Carrión et al.,

2019) and nematodes (Silva et al., 2022).

Soil suppressiveness to phytopathogens is mainly attributed to

the activity of soil-residing microorganisms (Carrión et al., 2019).

According to Baker and Cook (1974), pathogen-suppressive soil is

defined as the “inhospitality of certain soils to some plant pathogens

where either the pathogen cannot establish, they establish but fail to

produce disease, or they establish and cause disease but diminish

with the continued culture of the crop.” Pathogen suppression in

soils is further classified into two major categories, general

suppression, and specific suppression (Weller et al., 2002). General

suppression is caused by an integrated collaboration of all microbes

residing in the soil. It is effective against a wide range of soil-borne

pathogens, but its effect cannot be transferred to conducive soils

(Weller et al., 2002; Cook, 2014). It is generally regarded as a

cumulative natural soil attribute that cannot be deteriorated or lost

in the absence of a plant (Corke, 1975). Specific suppression is the

result of a single microbe or a community of microbes targeting a

single pathogen or pathogens in the same genus (Corke, 1975;

Weller et al., 2022). Specific suppression can be transferred to

conducive soils when inoculated with 0.1%–10% or less (w/w)

suppressive soil (Weller et al., 2002; Cook, 2014; Weller et al., 2022).

The rhizosphere is a narrow zone of soil surrounding living

plant roots where the residing microbes and their activities are

influenced by the plant through root exudates (Curl and Truelove,

1986). It is a principal site for complex plant-microbe interactions,

and it may also serve as a platform for interspecific plant

interactions (Zhou et al., 2023). Hence, the rhizosphere

microbiome population structure, composition, and function offer

valuable knowledge of the underlying interactions between plants

and their associated microorganisms that cause pathogen

suppression. Scientists argue whether changes in the microbiome

structures are causal factors leading to diseases (Li et al., 2023a) or if

they are merely consequences of diseases (Kuang et al., 2023). Yet

more investigations are needed to determine this phenomenon,

numerous studies have demonstrated that the enhanced pathogen

suppression in the rhizosphere is the result of changes in

microbiome composition (Carrión et al., 2019; Chen et al., 2020a;

Chen et al., 2022; Hong et al., 2023; Khatri et al., 2023b; Wang et al.,

2023c; Zhu et al., 2023). Nevertheless, limited efforts have been

devoted to systematic manipulation of the rhizosphere microbiome

however, more insights have been gained through simplification of

the core microbiome and developing synthetic microbial

communities (Hong et al., 2023; Zheng et al., 2023).

Biomolecular networks between the host plant and the

associated microbes are determinants in microbiome functioning;
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a comprehensive analysis of various factors involved in the system is

crucial. From the ‘holobiont’ perspective, the intricate microbial

interactions become more complex due to the combined effects of

biotic and abiotic factors. So, it is challenging to predict the resulting

microbiome structure and function when a certain factor undergoes

alterations. The application of high-throughput sequencing

techniques and metagenomic tools is instrumental in studying

structural and functional dynamics; however, the influence of

other factors could result in poor estimation of the microbiome

structure and functions if their effect is not properly estimated.

Moreover, a substantial portion of the soil microbes are not

culturable (Youseif et al., 2021); hence, rhizosphere microbiome

manipulation may also rely on deploying indirect monitoring

strategies of microbes using factors that govern their assembly.

Numerous factors that influence pathogen suppression in the

rhizosphere through microbiome modifications have been

identified so far in various studies. While each factor may offer

unique benefits, it is crucial to recognize that the rhizosphere system

is intricate and interconnected. Hence, modifying a single factor

may not result in a substantial benefit in pathogen suppression, and

alterations in other factors could potentially reverse the microbiome

composition and structure. This may consequentially result in the

loss of gained microbial functions. This highlights the need for a

comprehensive understanding and analysis of additional factors to

achieve consistent and predictable results.

In this context, we consolidate various factors that influence

pathogen-suppressive rhizosphere microbiome assembly through

comprehensive explorations of current research. Thus, we point out

crucial factors that play key roles in pathogen-suppressive

microbiome assembly. We give particular emphasis on pathogen

infection, domestication, soil pH, and nutrient availability. We also

provide a comprehensive overview of their role in rhizosphere

microbiome modification and highlight strategies by which

successful microbiome manipulations for pathogen-suppressive

soil development could be attained. With our exploration, we aim

to gain valuable insights into potential inputs for shaping the

rhizosphere microbiome structure and functions systematically.

This will substantially contribute to future research efforts

targeting pathogen-suppressive soil development.
2 Soil suppressiveness to
phytopathogens in the rhizosphere

The rhizosphere microbiome population provides an additional

layer of protection to the plant’s immune system, which is termed

the first line of defense (Weller et al., 2002; Carrión et al., 2019). In a

broad view, rhizosphere microbes can provide protection in two

ways; directly by confronting pathogens (Woo et al., 2023), or

indirectly by inducing the host to protect against pathogens through

various mechanisms (Carrión et al., 2019; Liu et al., 2021).

The cumulative effect of complex interactions among microbes

inhibited in the soil helps determine whether the soil promotes

disease suppression or fosters disease development (Weller et al.,

2022). A wide range of microbial communities are involved in soil
frontiersin.org
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suppressiveness. The bacterial communities usually receive greater

attention regarding soil suppressiveness (Carrión et al., 2019; Khatri

et al., 2023b). The fungal communities are also important

contributors to pathogen suppression (Khatri et al., 2023a).

Moreover, recent studies have revealed the detrimental effects of

phage communities on soil suppressiveness (Wang et al., 2019;

Pratama et al., 2020; Yang et al., 2023). The presence and absence of

root-knot nematodes in the rhizosphere have also revealed

considerable differences in fungal and bacterial community

diversities (Silva et al., 2022). Additionally, synergistic damage

inflicted by nematode–fungus combinations has been associated

with shifts in rhizosphere microbiome composition (Back et al.,

2002). Other microbes such as oomycetes and archaea, including

arbuscular mycorrhizal fungi and other biotrophic entities in the

rhizosphere assist in suppressive soil development (Philippot et al.,

2013). Hence, broader microbial interactions shall be considered in

suppressive soil development.

To promote soil suppressiveness, beneficial microbes in the

rhizosphere can be enriched by promoting their assembly (Chen

et al., 2020a; Leite et al., 2023; Wang et al., 2023c; Wantulla et al.,

2023) or transferring pathogen-suppressive microbes into

conducive soils (Zhao et al., 2021b; Shao et al., 2022; Sritongon

et al., 2023). These enrichments have shown a great potential for

improving plant health through minimized disease pressure.

Furthermore, beneficial microbes play an early warning role,

triggering plants to recruit beneficial microbes by using a “cry-for-

help” strategy when they are provoked by phytopathogens (Carrión

et al., 2019).
3 Rhizosphere microbiome assembly
and homeostasis

The relative abundance, community structure, and network of

the microbiome vary in different parts of plants (Zhang et al., 2022;

Sapkota et al., 2023). However, the most abundant microbial

assembly is found in the rhizosphere (Wang et al., 2022b) as

plants expense up to 40% of plant-fixed carbon through root

exudates to promote microbial assembly (Weller et al., 2022).

Plants use pattern recognition receptors (PRRs) to detect

microbial molecular features such as MAMPs. Then, plants

distinguish between beneficial and pathogenic microbes though

they both have the same MAMPs (Zhou and Zhang, 2020), and

allow association with beneficial microbes while eliciting immune

responses to pathogenic ones (Teixeira et al., 2019). Efforts have

been made to explain the underlying mechanism in how plants

distinguish between commensals and pathogens, yet it is not fully

understood. Since commensals do not cause cell damage, their

association could be promoted due to the absence of multiple PRR

expressions (Zhou and Zhang, 2020). It may also be due to the

abil ity of some commensal bacteria that undergo an

immunoregulatory activity to suppress MAMP-triggered

immunity (Yu et al., 2019; Teixeira et al., 2021). Otherwise,

according to Colaianni et al. (2021), root colonization by

commensals could be attributed to non-immunogenic Flg22
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epitope variants, which can evade defense activation. Given

various attempts made, further investigations are inevitable to

fully understand how plants maintain homeostasis in

the rhizosphere.

The associated microbes help plants acquire nutrients and

provide protection against phytopathogens (Bulgarelli et al., 2013;

Trivedi et al., 2020), and the plants in turn provide protection for

the microbial community by maintaining the equilibrium through

MAMPs. Any disruption to this equilibrium can potentially cause

improper microbial assembly that may lead to dysbiosis and causes

negative health effects on plants (Chen et al., 2020b; Lee et al., 2021;

Wang et al., 2022b). As a result, the plant regulates the system and

maintains homeostasis in a mechanism that is not well understood

yet (Zhou and Zhang, 2020). Holistically, the “Holobiont,” which

includes biomolecular networks among the host and the entire

microbiome associated with it (Bordenstein and Theis, 2015) has

been considered a major contributor to the system’s overall stability

(Trivedi et al., 2020).
4 Factors determining pathogen
suppressive microbiome assembly

Several biotic and abiotic factors are involved in rhizosphere

microbiome assembly in the rhizosphere, but pathogen infection,

domestication, soil pH, and nutrient availability are closely

correlated with pathogen suppression. Understanding the

fundamental processes through which these factors influence the

microbiome structure and functions is essential for monitoring and

manipulating the factors systematically.
4.1 Pathogen infection enhances
soil suppressiveness

Under normal conditions, plants recruit microbes for their

proper functioning in the ecosystem. However, they specifically

select and enrich certain microbes when they are under attack by

pathogens (Yuan et al., 2018; Carrión et al., 2019; Li et al., 2022). Up

on infection by phytopathogens, plants use cell surface and

intracellular immune receptors and detect immune signals from

pathogens (Zhou and Zhang, 2020). As a result, they release various

signals to the surrounding environment which is termed a ‘cry-for-

help’ strategy, and eventually, they respond by activating their

defense system (Figure 1). The main mode of communication

involved chemical signals released through the root exudates

(Wen et al., 2023); however, a new breakthrough revealed that

ultrasonic sound signals could also be employed as part of the ‘cry-

for-help’ strategy (Waqas et al., 2023).

Studies have revealed the characteristics of suppressive soils,

specifically the underlying mechanism of “take-all decline” (Cook

et al., 1995); and they discovered the disease decline is the result of

systemic acquired resistance gained through defensive microbe

recruitment (Liu et al., 2021). The phenomenon has not been

considered from this paradigm in the beginning; however, current
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studies have indicated pathogen-induced microbiome recruitment

and its remarkable effect on defensive microbiome assembly

(Carrión et al., 2019; Kuang et al., 2023). The recruited microbes

will induce systematic resistance in plants, while they may also

directly confront pathogens in the system (Figure 1) through the

secretion of secondary metabolites or competition for nutrients and

space (Getzke et al., 2023).

4.1.1 Microbe-pathogen direct confrontation
The plant gains advantages from the recruited microbes, as

these microbes engage in direct combat with pathogens through

different mechanisms. One of the mechanisms is competing with

pathogens for nutrients. Competition for siderophore-mediated

interactions in Bacillus, Enterobacter, and Chryseobacterium

suppress pathogens and prevent infection by depriving them of

access to iron by producing siderophores that the pathogens cannot

use (Gu et al., 2020). Some microbes may compete for colonizing

the roots as in a Pseudomonas fluorescens strain that defends a plant

against pathogens without direct antagonism (Wang et al., 2022a).

The other mechanism of direct confrontation is through the

production of a diverse spectrum of secondary metabolites and

enzymes. Antibiotics in bacteria and mycotoxins in fungal

antagonists are commonly used by beneficial microbes to inhibit

the growth of pathogens in the rhizosphere (Dimopoulou et al.,

2021; Clough et al., 2022; Zaid et al., 2022).

4.1.2 Microbiome-mediated systemic protection
The other important mechanism that recruited microbes

employ to defend plants against pathogen suppression is

indirectly by triggering plants to initiate their defense system
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against the pathogen (Liu et al., 2021). Biopriming seeds with

bioagents activated systemic resistance against seed-borne

pathogens by expressing defense-related genes and lignifying the

cell wall (Yadav et al., 2023). Beneficial microbes can also

systematically induce root exudation of metabolites (Korenblum

et al., 2020) which will in turn serve as a protection against

pathogens. Such plant-microbe communication may extend

further to the neighboring plants (Vlot et al., 2021), and the

inter-plant crosstalk can ultimately enhance pathogen defense

across the surrounding environment.

Beneficial microbes recruited in this manner may ultimately

become part of the core microbiome, and this trait can be inherited

by subsequent generations (Toju et al., 2018) through ongoing crop

cultivation in pathogen-rich environments. As a result, suppressive

soils capable of inhibiting pathogens can be established. In this

context, plants preferably recruit a functional core microbiota

instead of a taxonomic core microbiota, depending on a specific

genotype and environment (Lemanceau et al., 2017; Richardson

et al., 2021). Therefore, pathogen infection is a key factor that plays

a pivotal role in enhancing the plant’s ability to protect itself and

establish a suppressive soil through the recruitment of a

functional microbiome.
4.2 Plant domestication leads to
reduced plant fitness for defensive
microbe recruitment

In a broad sense, domestication may not necessarily involve

human influence in the innate process of natural plant adaptation to
FIGURE 1

Illustration of pathogen infection initiating defensive microbiome recruitment through the cry-for-help strategy. When cell surface receptors such as
pattern recognition receptors (PRR) detect the microbe associated molecular patterns of pathogens (Example: flg22 in bacteria flagellin) the cell
releases chemical signals and nutrients seeking help from surrounding microbes. Microbes recruited in such a way confront pathogens directly or
trigger the plant to activate defense systems such as Jasmonic acid (JA) and Salicylic acid (SA) pathways.
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a particular niche (Purugganan, 2022). But in a narrow sense,

domestication is the selection of plant species from their wild

relatives for their desired characteristics and keeping them for

continued use (Pickersgill, 2007).

The selection of plant genotypes based on desired traits is a

natural means by which humans ensure their survival. However,

because of the influence of various factors connected to

domestication, plants experience domestication syndrome

(Pickersgill, 2007), leading to reduced fitness compared with that

of their wild relatives in different aspects (Figure 2). In this context,

we explore the factors involved in domestication that contribute to

the reduced ability of domesticated plants to establish a beneficial

microbial assembly. We also acknowledge beneficial practices in a

domestication process that assist plants in retaining beneficial

microbes which assist in growth and pathogen defense.

4.2.1 Selection of genotypes for a specific trait
In crop variety development, single or few traits are considered

and capitalized while selecting a genotype from its wild relatives. In

most cases, these traits are associated with yield (Purugganan and

Fuller, 2009; Preece et al., 2017; Izawa, 2022), which in

turn wipes out important pathogen-suppressive genes from

domesticated germplasms.

Genotypes with pathogen defense traits have a higher efficiency

in attracting microbes than susceptible ones (Wen et al., 2023).

Likewise, resistant common bean cultivars for Fusarium oxysporum

have traits that support the higher abundance of specific bacterial

families in the rhizosphere (Mendes et al., 2018b). Cultivar

resistance has also been investigated merely as a function of its

association with beneficial microbial assembly (Mendes et al.,

2018a; Lazcano et al., 2021; Wang et al., 2023a). If such traits

cannot be considered during selection, the selected genotypes will

likely become less efficient in pathogen suppression than their wild

relatives do (Figure 2).

da Silva et al. (2023) pointed out that the taxonomic similarity

of microbes associated with Phaseolus lunatus decreased by 57.6%
Frontiers in Plant Science 05
from wild to domesticated genotypes. Such a decreased diversity of

associated microbes in domesticated genotypes can trigger the

functional loss of a microbial community that contributes to

nutrient acquisition and disease defense. Therefore, further

studies have been suggested to recover the lost traits during

domestication via a “going-back-to-the-roots” approach, which

involves exploiting microbes from indigenous genotypes (Pérez-

Jaramillo et al., 2016).

In this context, resistance breeding using marker-assisted

quantitative trait loci may assist in identifying and retaining genes

responsible for defensive microbiome recruitment. However, the

functional trait trade-offs due to gained resistance shall be

considered during the breeding process to ensure that microbe

association is not compromised (Nelson et al., 2018; Zuccaro and

Langen, 2020). It is also important to fine-tune genes in pathogen-

resistant genotypes that are associated with an increased capacity to

attract beneficial microbes that assist in pathogen suppression (Liu

et al., 2021).

Novel insights have been gained through rhizosphere

microbiome-based genome-wide association studies that revealed

a heritable association between genotypes and rhizosphere

microbiome (Deng et al., 2021; Oyserman et al., 2022). This could

enable the prediction of microbial taxa associated with specific

genotypes. However, other factors could potentially influence this

association as many factors govern microbiome assembly, as

genotypes enrich different taxa in varying conditions (Carrión

et al., 2019; Hong et al., 2023). This may require further

investigations on functional features of the quantitative trait loci

and the associated microbes in contrasting conditions which could

assist in gaining insights into factor-specific key taxa development.

4.2.2 Monoculture
Domesticated crops are typically cultivated in isolation from

other crops to preserve their unique traits and qualities, often as

part of a monoculture system. In modern agriculture, because of

economic motivations following mechanization and the
FIGURE 2

Schematic representation of reduced fitness of domesticated genotypes compared to their wild relatives due to a domestication syndrome they
encountered during the domestication process. Plant domestication process wipes out certain functional genes and reduces the association of
microbes with plants, ultimately triggering functional losses in plant defense systems.
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development of high-yielding varieties and agrochemicals,

monoculture has become a prevailing trend (Power and

Follett, 1987).

In a mono-cropped agroecosystem, microbiome diversity and

function are substantially suppressed (Li et al., 2022), thereby

inducing decreased suppressiveness in the rhizosphere.

Interestingly, a mono-cropped peanut field faces a yield penalty

for the depletion of the overall diversity of microbes in the

rhizosphere even in the absence of diseases (Li et al., 2020). Such

a loss could have been aggravated by the presence of a pathogen. Li

et al. (2023a) also asserted that monoculture is a basic factor

influencing the replant disease observed in Rehmannia glutinosa

by causing a shift in the rhizosphere microbiome structure.

Therefore, monoculture plays a crucial role in domestication,

considerably influencing the rhizosphere microbiome assembly

and ultimately determining soil suppressiveness (Figure 2).

4.2.3 Agronomic practices
Agronomic practices include a wide range of activities by which

growers improve productivity and plant health. The practices

employed, such as preparation, planting techniques, irrigation,

nutrient management, weeding, and harvesting are integral

components of domestication. Notably, each of these practices

exerts a noticeable impact on the assembly of the rhizosphere

microbiome, ultimately influencing both structural composition

and functional dynamics (Bonanomi et al., 2016; Benitez et al.,

2017; Hartman et al., 2018; Legrand et al., 2018; Babin et al., 2019;

Gong et al., 2019).

Agronomic practices can influence the assembly of pathogen-

suppressive microbiomes in either a positive or negative manner,

with the ultimate composition and functioning of the microbiome

being determined by the cumulative effects of various practices

(Chadfield et al., 2022; Fernandez-Gnecco et al., 2022; Morugán-

Coronado et al., 2022). Practices such as intercropping and crop

rotation are widely witnessed to promote plant health through

modification of rhizosphere microbiome (Neupane et al., 2021;

Chadfield et al., 2022; Town et al., 2023; Zhou et al., 2023). On the

other hand, monoculture, intensive tillage, and extensive use of

chemical fertilizers and pesticides have been reported to deteriorate

plant health through modification of microbial diversity in the

rhizosphere (Li et al., 2022; Morugán-Coronado et al., 2022;

Beaumelle et al., 2023).

Tomato plants in potatoonion and tomato intercropping

systems gained systemic resistance to Verticillium wilt disease

through the recruitment of a pathogen-suppressive microbiome

(Zhou et al., 2023). Further examination into the relative

abundances of significantly enriched bacterial communities

revealed the enrichment of pathogen-suppressive Bacillus sp.

which can also induce systemic resistance to tomato plants.

According to Chadfield et al. (2022), a quantitative assessment of

intercropping substantiated a 40% reduction in nematode damage

and a 55% decrease in disease incidence for focal crops.

Crop rotation was also found in association with the

enrichment of potentially beneficial taxa in a 12-year canola

rotation while non-rotated canola was steadily associated with
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common canola pathogens (Town et al., 2023). Hong et al. (2023)

discovered rotation-associated and rotation-unique key taxa from a

paper and eggplant rotation that showed a strong antagonistic

reaction against banana wilt disease.

While certain agronomic practices offer individual benefits, the

cumulative effect of various practices may disfavor the enrichment

of beneficial microbes in the rhizosphere. Consequently,

domesticated crops may retain a diminished ability to attract

beneficial microbes compared with their wild counterparts (da

Silva et al., 2023; Luo et al., 2023; Yue et al., 2023).

4.2.4 Extensive use of chemicals
Domestication does not necessarily involve the use of chemical

fertilizers and pesticides. However, the utilization of pesticides and

chemical fertilizers has remarkably increased since the green

revolution, leading to consequential outcomes on the rhizosphere

microbial community (Newman et al., 2016; John and Babu, 2021;

Sangiorgio et al., 2022), despite substantial achievements in

transforming global food production (Pinstrup-Andersen and

Hazell, 1985). Regardless of the goals of reducing the effects

through optimum utilization (Tilman, 1998), chemical fertilizers

and pesticides are being used extensively, and they continue to

chronically affect the soil microbiome (Wang et al., 2023b).

Chemical pesticides disrupt the natural equilibrium through

their strong effect on the diversity of the soil microbes (Beaumelle

et al., 2023) and alter the key microbial taxa, ultimately affecting

plant health (Yu et al., 2023). Meanwhile, the application of

inorganic nutrients reduces the reliance of the soil microbiome on

plant-derived carbon sources (Ai et al., 2015), indicating a potential

decrease in the soil–microbiome association with plants (Figure 2).

(Francioli et al., 2016) showed that long-term fertilization affects the

microbial community structure and activity. Hence, a partial

replacement of inorganic chemicals with organic amendments

(Cai et al., 2017; De Corato et al., 2019; Shi et al., 2023) improves

soil suppressiveness and plant health in the rhizosphere. Chemical

fertilizers may not necessarily reduce the total microbial abundance

in the rhizosphere; however, the effect is the alteration of the

microbial composition resulting in functional disruption in the

rhizosphere microbiome (Yu et al., 2023). Therefore, the usage of

chemical fertilizers and pesticides in domestication is one of the

driving factors for changes in microbial community structure and

function; it also determines soil suppressiveness to phytopathogens.
4.3 Soil pH and nutrient availability
determine defensive microbial assembly

Symbiotic microbes are biotrophic entities that rely on nutrient

availability in the rhizosphere (Spanu and Panstruga, 2017). Hence,

to establish a relationship with soil microbes, plants provide

nourishment to these microorganisms by expending their own

fixed carbon (Figure 3), which is released through root exudates

(Bais et al., 2006; Weller et al., 2022). The root exudates in turn

shape the structure and function of the soil microbial community by

monitoring nutrient availability and using other chemical signals
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(Zhao et al., 2021a). Francioli et al. (2016) indicated that total

organic carbon and pH are major factors determining microbial

abundance and structure in the rhizosphere, while nitrogen and

phosphorus are minor driving factors for microbial assembly in the

rhizosphere. As a result, reduced carbon deposition suppresses

microbial diversity and function (Li et al., 2022).

Soil pH plays a very important role in shaping the defensive

microbial assembly. Consequently, a microbiome from acidified

soils demonstrated a diminished ability to defend against pathogen

invasion (Li et al., 2023b). As a result, the treatment of acidity in

soils enhanced soil health through rhizosphere microbiome

modification (Chen et al., 2022). In general, soil pH has a direct

effect on microbial assembly and an indirect impact is through

determining the element availability (Lammel et al., 2018) that

ultimately determines suppressive microbial assembly (Figure 3).

Various investigations into organic and conventional systems

(Bonanomi et al., 2016; Cavicchioli et al., 2019; Obieze et al., 2023)

have revealed variations in microbial composition and diversity.

Moreover, studies have highlighted the taxonomic and functional

changes attributed to organic nutrient amendments (Cui et al.,

2018; Castellano-Hinojosa et al., 2023). Microbial diversity in a

Chinese fir (Cunninghamia lanceolata) monoculture plantation

interacts strongly with dissolved organic matter (Li et al., 2021).

Khatri et al. (2023a) also demonstrated that disease-suppressive

fungal taxa have been selectively enriched in soils through organic

management compared with those enriched through conventional

techniques. This can be attributed to the higher organic carbon

content (18.43 g kg-1) in the organic soil than in the conventional
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one (6.5 g kg-1) as carbon deposition is a determinantal factor of

microbial assembly.

The ginseng replant disease has been successfully alleviated by

the addition of cow dung, which promotes the growth of beneficial

microbes, directly by improving nutritional content (Tagele et al.,

2023). Interestingly, manure amendment has been observed to

enhance the diversity of indigenous bacteria rather than manure-

borne bacteria (Schlatter et al., 2022), suggesting that nutrient or

organic matter amendment plays a crucial role in fostering

microbial diversity (Figure 3). However, long-term manure

amendments can pose a potential risk of antibiotic-resistant gene

contamination through horizontal gene transfer (Yue et al., 2023).

The application of inorganic nutrients positively affects

bacterial species diversity in low-nutrient wetlands (Bledsoe et al.,

2020). Enebe and Babalola (2020) justified this finding and

described the best response of soil microbes for integrated

compost and inorganic fertilizer application, which goes in line

with similar investigations (Francioli et al., 2016; Kumar et al.,

2018). The positive response of soil microbes to inorganic nutrient

applications indicates that microbes utilize nutrients regardless of

their source (e.g., organic or inorganic sources). The direct influence

of nutrient availability on rhizosphere microbiome assembly can be

exemplified by the important role of iron in determining soil

suppressiveness (Elad and Baker, 1985; Scher, 1986). In iron-

deficient environments, microorganisms such as Pseudomonas

compete for iron by producing siderophores, which in turn

suppress the growth of Fusarium (Zhu et al., 2023). Furthermore,

the nutritional status of plants affects colonization efficiency
FIGURE 3

Schematic representation of the direct and indirect influence of pH and nutrient availability in rhizosphere microbiome assembly, and ultimately
pathogen suppression. The plant releases its own fixed carbon and nutrients to establish association with microbes. pH has a direct effect on
microbial assembly and has an indirect effect through determining nutrient availability.
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indirectly, as evidenced by (Hacquard et al., 2016), that plants

activate their defense responses under phosphate-sufficient

conditions while allowing association under phosphate-deficient

conditions. Hence nutrient availability and pH, as demonstrated in

various findings, are key factors that determine pathogen defensive

microbiome assembly in the rhizosphere.
5 Emerging strategies for shaping
rhizosphere microbiome

Changes in the rhizosphere microbiome resulted in various

effects on plant-pathogen interactions in the underground or aerial

niches. Strategies such as soil amendments with nutritive substrates,

microbial strain inoculations, and inoculation with synthetic

microbial communities have been implemented and brought

about considerable results. However, with the advancement of

understanding the microbial world, new advances have been

made in recent times. In this section, we highlight emerging

strategies that could be implemented for shaping the rhizosphere

microbiome toward pathogen suppression.
5.1 Microbiome-mediated strategies

The rhizosphere is generally colonized by various microbes and

the microbiome composition differs greatly between diseased and

healthy plants (Kuang et al., 2023). This implies that pathogens can

be used to shape the microbiome structure in the rhizosphere. As

discussed previously, pathogen-induced microbial assembly is an

emerging strategy that results in a distinct microbial assembly that

can suppress pathogen infection (Carrión et al., 2019; Kuang et al.,

2023). An early warning role discovered in this phenomenon could

be used to trigger plant immunity activation that might be evaded

or suppressed by pathogens during infection. This suggests the way

for the development of suppressive soil development through plant

immunization (Oberemok et al., 2022) using pathogens or their

derivatives. This could be accomplished by shaping the rhizosphere

microbiome so that the defense system can be initiated before real

infections occur.
5.2 Host-mediated strategies

The strong correlation of pathogen-resistant crop varieties with

higher affinity for defensive microbiome recruitment (Wen et al.,

2023) casts a light on a new paradigm of resistance breeding,

targeting genes responsible for microbiome association rather

than just looking for resistance genes in plants (Yue et al., 2023;

Zhang et al., 2023). Searching for lost genes responsible for

defensive microbial assembly in wild genotypes is an emerging

strategy (Oyserman et al., 2022). This will reinforce endeavors for

shaping rhizosphere microbiomes via engineered plant genotypes

that can trigger microbial assembly in the rhizosphere. Host-

mediated strategies may also deploy root exudate engineering of
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the host plant to shape microbial assembly that favors pathogen

suppression in the rhizosphere (Yuan et al., 2018; Kawasaki

et al., 2021).
5.3 Abiotic factor-mediated strategies

Among key factors discussed previously, the agronomic

practices, use of chemicals, soil pH and nutrient availability could

be managed to shape the rhizosphere microbiome towards

pathogen suppression. Through the determination of specific

conditions and combinations of factors, a microbiome could be

reshaped to suppress specific kinds of pathogens. Emerging insights

have been gained to monitor rhizosphere-associated microbes

through plant responses to abiotic stresses (Faist et al., 2023).

Recent findings revealed that the plant adjusts nutrient

availability and rhizosphere pH to monitor microbial recruitment

and immune homeostasis (Liu et al., 2023). This suggests that

rhizosphere microbiome assembly could be reshaped by nutrient

and pH management strategies. Nutrient-driven differences in

microbial assembly across different potato landraces also

highlighted a great potential in nutrient monitoring for shaping

rhizosphere microbiome assembly (Miao and Lankau, 2023).
6 Conclusions and future directions

Pathogen suppression is a highly desired trait in the rhizosphere

microbiome. Over time, research efforts have been dedicated to

enhancing pathogen suppression in the rhizosphere. However,

systematic manipulation and accurate prediction of microbiome

composition and functions after an introduced change targeting

pathogen suppression have been unattainable. The role of biotic and

abiotic factors became a prominent challenge as high throughput

sequencing and metagenomic tools paved the way for deeper

insights into the composition and functional attributes of plant-

associated microbes. Remarkably, pathogen infections can lead to a

complete shift in the rhizosphere microbial structure, and plant

domestication exerts intertwined influences on microbial assembly

and structure. Furthermore, soil pH and nutrient availability

determine the fate of a microbe in the rhizosphere, that is,

whether it will be recruited or rejected. Therefore, future research

endeavors toward pathogen-suppressive soil development could be

made through microbe-mediated manipulations for plant

immunization and defensive microbiome recruitment. Host and

microbe-mediated approaches could also be deployed for microbe-

assisted crop improvement and microbiome breeding, and using

abiotic factor-mediated approaches specific modulation of host-

associated microbes could be attainable to improve pathogen

suppression in the rhizosphere.
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Pérez-Jaramillo, J. E., Mendes, R., and Raaijmakers, J. M. (2016). Impact of plant
domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90,
635–644. doi: 10.1007/s11103-015-0337-7

Philippot, L., Raaijmakers, J. M., Lemanceau, P., and van der Putten, W. H. (2013).
Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol.
11, 789–799. doi: 10.1038/nrmicro3109
frontiersin.org

https://doi.org/10.1038/s41396-021-00993-z
https://doi.org/10.1128/mSphere.00376-21
https://doi.org/10.1094/phyto-75-1047
https://doi.org/10.1186/s13213-020-01591-8
https://doi.org/10.1186/s40793-023-00469-x
https://doi.org/10.3389/fsoil.2022.837508
https://doi.org/10.3389/fsoil.2022.837508
https://doi.org/10.3389/fmicb.2016.01446
https://doi.org/10.1073/pnas.2221508120
https://doi.org/10.1016/j.still.2019.104355
https://doi.org/10.1016/j.still.2019.104355
https://doi.org/10.1038/s41564-020-0719-8
https://doi.org/10.1038/ncomms11362
https://doi.org/10.1186/s40168-017-0389-9
https://doi.org/10.1111/nph.18816
https://doi.org/10.1093/pcp/pcac073
https://doi.org/10.3389/fsufs.2021.644559
https://doi.org/10.1093/plphys/kiab337
https://doi.org/10.1007/s00248-023-02211-z
https://doi.org/10.1016/j.apsoil.2022.104658
https://doi.org/10.1073/pnas.1912130117
https://doi.org/10.1073/pnas.1912130117
https://doi.org/10.3389/fmicb.2023.1141585
https://doi.org/10.1016/j.agee.2018.04.016
https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1186/s40168-018-0482-8
https://doi.org/10.1038/s41598-021-82768-2
https://doi.org/10.1038/s41396-020-00785-x
https://doi.org/10.1016/j.apsoil.2018.08.016
https://doi.org/10.1016/j.apsoil.2023.104818
https://doi.org/10.1016/j.tplants.2017.04.008
https://doi.org/10.1016/j.apsoil.2023.104971
https://doi.org/10.1038/s41467-023-40810-z
https://doi.org/10.3389/fmicb.2021.729344
https://doi.org/10.1186/s40168-022-01287-y
https://doi.org/10.1007/s11104-019-04379-1
https://doi.org/10.1111/nph.17057
https://doi.org/10.1128/mbio.03424-22
https://doi.org/10.1007/s11104-023-06033-3
https://doi.org/10.1007/s11104-023-06033-3
https://doi.org/10.1038/s41396-018-0234-6
https://doi.org/10.1038/ismej.2017.158
https://doi.org/10.1093/jxb/erac453
https://doi.org/10.1016/j.agee.2022.107867
https://doi.org/10.1038/nrg.2017.82
https://doi.org/10.1038/nrg.2017.82
https://doi.org/10.1038/s41598-021-88784-6
https://doi.org/10.1016/j.scitotenv.2015.11.008
https://doi.org/10.1111/plb.13338
https://doi.org/10.1016/j.apsoil.2023.104857
https://doi.org/10.1016/j.apsoil.2023.104857
https://doi.org/10.1038/s41467-022-30849-9
https://doi.org/10.1007/s11103-015-0337-7
https://doi.org/10.1038/nrmicro3109
https://doi.org/10.3389/fpls.2023.1301698
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Andargie et al. 10.3389/fpls.2023.1301698
Pickersgill, B. (2007). Domestication of plants in the Americas: Insights from
Mendelian and molecular genetics. Ann. Bot. 100, 925–940. doi: 10.1093/aob/mcm193

Pinstrup-Andersen, P., and Hazell, P. B. R. (1985). The impact of the green
revolution and prospects for the future. Food Rev. Int. 1, 1–25. doi: 10.1080/
87559128509540765

Power, J. F., and Follett, R. F. (1987). Monoculture. Sci. Am. 256, 78–87. Contribution
from Scientific American, a division of Nature America, Inc.

Pratama, A. A., Terpstra, J., de Oliveria, A. L. M., and Salles, J. F. (2020). The role of
rhizosphere bacteriophages in plant health. Trends Microbiol. 28, 709–718.
doi: 10.1016/j.tim.2020.04.005

Preece, C., Livarda, A., Christin, P. A., Wallace, M., Martin, G., Charles, M., et al.
(2017). How did the domestication of Fertile Crescent grain crops increase their yields?
Funct. Ecol. 31, 387–397. doi: 10.1111/1365-2435.12760

Purugganan, M. D. (2022). What is domestication? Trends Ecol. Evol. 37, 663–671.
doi: 10.1016/j.tree.2022.04.006

Purugganan, M. D., and Fuller, D. Q. (2009). The nature of selection during plant
domestication. Nature 457, 843–848. doi: 10.1038/nature07895

Richardson, A. E., Kawasaki, A., Condron, L. M., Ryan, P. R., and Gupta, V. V. S. R.
(2021). “Root microbiome structure and microbial succession in the rhizosphere,” in
Rhizosphere Biology: Interactions Between Microbes and Plants. Eds. V. V. S. R. Gupta
and A. K. Sharma (Singapore: Springer Singapore), 109–128. doi: 10.1007/978-981-15-
6125-2_5

Sangiorgio, D., Spinelli, F., and Vandelle, E. (2022). The unseen effect of pesticides:
The impact on phytobiota structure and functions. Front. Agron. 4. doi: 10.3389/
fagro.2022.936032

Sapkota, R., Jørgensen, L. N., Boeglin, L., and Nicolaisen, M. (2023). Fungal
communities of spring barley from seedling emergence to harvest during a severe
Puccinia hordei epidemic. Microb. Ecol. 85, 617–627. doi: 10.1007/s00248-022-01985-y

Scher, F. M. (1986). “Biological control of fusarium wilts by pseudomonas putida and
its enhancement by EDDHA,” in Iron, Siderophores, and Plant Diseases (Boston, MA:
Springer US), 109–117. doi: 10.1007/978-1-4615-9480-2_13

Schlatter, D. C., Gamble, J. D., Castle, S., Rogers, J., and Wilson, M. (2022). Abiotic
and biotic filters determine the response of soil bacterial communities to manure
amendment. Appl. Soil Ecol. 180. doi: 10.1016/j.apsoil.2022.104618
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