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As we face increasing challenges of world food security and malnutrition, coarse

cereals are coming into favor as an important supplement to human staple foods

due to their high nutritional value. In addition, their functional components, such

as flavonoids and polyphenols, make them an important food source for healthy

diets. However, we lack a systematic understanding of the importance of coarse

cereals for world food security and nutritional goals. This review summarizes the

worldwide cultivation and distribution of coarse cereals, indicating that the global

area for coarse cereal cultivation is steadily increasing. This paper also focuses on

the special adaptive mechanisms of coarse cereals to drought and discusses the

strategies to improve coarse cereal crop yields from the perspective of

agricultural production systems. The future possibilities, challenges, and

opportunities for coarse cereal production are summarized in the face of food

security challenges, and new ideas for world coarse cereal production

are suggested.
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1 Introduction

Coarse cereals are mainly grain and legume crops other than Rice (Oryza sativa L.), Maize

(Zea mays L.), Potato(Solanum tuberosum L.), Wheat(Triticum aestivum L.), and Soybean

(Glycine max (L.) Merr.), such as Buckwheat(Fagopyrum esculentum), quinoa(Chenopodium
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quinoa Willd.), Oats(Avena sativa L.), Peas(Pisum sativum L.), Mung

beans(Vigna radiata (L.) R. Wilczek), Sorghum(Sorghum bicolor (L.)

Moench), Barley(Hordeum vulgare L.) and Lentils(Lens culinaris

Medik.), among others. These crops are mainly grown in semi-arid

areas, and most of the time they can only rely on rain-fed agricultural

systems, with almost no external input (Rai et al., 2008). Most of these

grains contain unique nutritional and functionally active ingredients

that make a significant therapeutic contribution to human immunity

and the treatment of various chronic diseases, such as weight

management, diabetes prevention, Cancer prevention, Cardiovascular

diseases (CVD), etc (Kaur et al., 2014). Their secondary metabolites or

phytochemicals have antioxidant properties and are rich in high-

quality protein, dietary fiber, vitamins and various minerals

(especially micronutrients) (Bouis, 2000). More importantly, some

compounds are helpful to fight ischemic stroke, cardiovascular

disease, cancer, obesity and type II diabetes (Jones et al., 2000; Jones,

2006). With the increasing awareness of health care, more attention is

being paid to coarse cereals, with promising development of the coarse

cereal industry (Fu et al., 2020).

Globally, the support of environment, society and economy

cannot be separated from the food system (Metabolic, 2017). In

particular, the current global epidemic situation is still severe, and

coupled with unstable global geopolitical risks, global food security

faces serious challenges. Coarse cereals generally have short growth

cycles and are important and, in fact, irreplaceable in restructuring

the cropping industry (Rai et al., 2008). Coarse cereals are also

important for improving dietary structure and promoting

nutritional health. As such, We can consider it they play an

important role in eradicating hunger, ensuring food security, and

improving the accessibility and affordability of healthy diets.

Therefore, strengthening the production of coarse cereals is one

of the most important strategies for ensuring world food security.

In the field of commercial food, the public acceptance of coarse

cereals and related research and development and investment have

been ignored. People are paying more and more attention to food

security and nutrition. In addition, the current population growth

needs more grain output as a stable backing. The development

prospects of these miscellaneous grains will be better and better in

rural or urban markets, poor or rich markets. Coarse cereal plants

are very resistant and adaptable, especially in the face of drought,

making their production and output more stable under today’s

complex and changing natural conditions. In recent years, many

countries have gradually adjusted their planting strategies with a

consideration of these plants’ strong resistance to drought

conditions, leading to a significant increase in harvesting area of

coarse cereals. However, extreme climatic conditions are posing

new challenges to the production of coarse cereals worldwide. To

date, research on coarse cereals has rarely been reported and we lack

an in-depth understanding and strategies related to the

improvement of cultivation conditions and management. This

paper therefore describes the importance of coarse cereals for

world food security, summarizes systematic strategies to increase

their production by analyzing the current status of their production

management, and further lays out future challenges, possibilities

and opportunities for coarse cereal production, while providing new

ideas for coarse cereal production worldwide.
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2 The importance of coarse cereals in
world food security and human health

2.1 Coarse cereals as an important addition
to world food security

The 2022 Global Food Crisis Report, released by the Food and

Agriculture Organization of the United Nations (FAO), indicated

that the global food shortage in 2021 will have affected about 193

million people, involving a total of 53 countries or regions. In recent

years, the global incidence of moderate to severe food insecurity has

been on the rise (Figure 1) (FAO et al., 2022). From 2014 to 2020,

the incidence of moderate food insecurity increased by 4.2%, and

that of severe food insecurity by 3.6%. Since coarse cereals do not

compete with major food crops for land, increasing their cultivation

area has become a preferred option for many countries to increase

production to meet market demand. The harvested area and

production of coarse cereals (Figures 2, 3D) worldwide are

showing continuous increases, suggesting the potential for coarse

cereals to eliminate hunger and ensure food security (Food and

Agriculture Organization of the United Nations (FAO), 2022).

2.1.1 Steady increase in the harvested area of
coarse cereals

According to FAO, the global harvested area of coarse cereals

was mainly distributed in semiarid and arid regions, showing a clear

upward trend over 10 years (Figure 2). For example, from 2011 to

2020, a tremendous increase in the total harvested area of coarse

cereals was noted in Oceania (+22.25%), followed by the Americas

(+8.43%) and Africa (+6.95%). At the same time, in Europe, the

total harvested area decreased by 4.16%.

The cultivation of different coarse cereals in different regions

depends on the cultivation habits and climatic conditions. Therefore,

the total harvest area of different coarse cereals in each country also

varies greatly (Figure 4) (Food and Agriculture Organization of the

United Nations (FAO), 2022). In 2020, many coarse cereals were

grown in Russia, with the largest harvested area, including barley,

buckwheat, and oats. These coarse cereals were also widely distributed

in other countries. For instance, barley was distributed in Australia,
FIGURE 1

Incidence of food insecurity (%).
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Turkey, Canada, Spain, and the Republic of Kazakhstan. Buckwheat

was distributed in China, and oats were grown in Canada, India,

Australia, Spain, Poland, Brazil, the United States, Finland, and

Argentina. Quinoa is mainly distributed in Bolivia, with the largest

harvested area, as well as Peru and Ecuador; and sorghum is mainly

distributed in Sudan, India, Nigeria, Niger, the United States, and

Burkina Faso, with the largest area harvested in Sudan. Mung beans are
Frontiers in Plant Science 03
mainly distributed in China, India, Thailand, Indonesia, and other

countries, with the largest area harvested in China. Peas are mainly

distributed in Canada, with the largest area harvested area, Russia,

China, and India. Lentils are mainly distributed in Canada (largest

area), India, and Australia. The total harvested area of coarse cereals in

2020 worldwide was 51.86 million hectares for barley, 2.25 million

hectares for mung beans, 2.48 million hectares for buckwheat, 5.08

million hectares for lentils, 9.93 million hectares for oats, 8.13 million

hectares for peas, 0.19 million hectares for quinoa, and 40.98 million

hectares for sorghum.

2.1.2 Steady increase in total production and
trade of coarse cereals

The total world import and export value of coarse cereals increased

from 11,244 to 34,487 billionUS dollars from 2000 to 2020 (Figure 3A).

The total world import and export volume of coarse cereals increased

from 79.66 to 121.73 million tons (Figure 3B), an increase of 52.81%.

Among the coarse cereals, barley, with a proportion of 58.19%,

occupies an absolute dominant position in the import and export

trade volume, while the trade volumes of quinoa and buckwheat are

lowest, with a proportion of no more than 0.5%.

According to FAO (Food and Agriculture Organization of the

United Nations (FAO), 2022), the share of total world coarse grain

production in 2020 varied considerably between continents (Figure 3C);

Europe and Asia were the main sources of coarse cereals, accounting for
A

B D

C

FIGURE 3

World total import and export value of coarse cereals (billion US dollars) (A), World total imports and exports of coarse cereals (million tons) (B), The
proportion of total coarse cereal output on all continents in 2020 (C), Total coarse cereal output on all continents from 2011 to 2020 (D).
FIGURE 2

Distribution of harvested area of coarse cereals in global continents.
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32.05% and 29.32% of the world’s total production, respectively. Next,

Africa and the Americas accounted for 18.08% and 16.99%, respectively,

andOceania accounted for the lowest proportion at 8.95%. From 2011 to

2020, the trend for the total global production of coarse cereals by

continent followed a pronounced increase in Africa, the Americas, Asia,

and Europe, while that in Oceania tended to remain the same

(Figure 3D). The increased production in Africa, the Americas, and

Asia was due to an increase in planted and harvested areas. In contrast,

there was an increase in total production in Europe despite a decrease in

harvested area, suggesting that the coarse cereal yield in the region

increased, perhaps due to optimization of planting structures.

Surprisingly, there was an increase in harvested area in Oceania; the

fact that its total production remained the same might be due to the

frequent occurrence of catastrophic climate events and changes in

agricultural policies in Oceania in recent years.

Overall, the total global production and consumption of coarse

cereals have gradually increased in recent years. The enhanced

global yields of coarse cereals indicate increased investment in

agricultural science and technology for these cereals. The closer

attention paid to coarse cereals worldwide has promoted world

trade and indicates that the international status of these crops has

gradually risen with economic development.
2.2 Coarse cereals are important choices
for human food security and a healthy diet

2.2.1 Rich nutritional and functional components
of coarse cereals

Unlike major food crops, coarse cereals are rich in nutritional

components such as dietary fiber, amino acids, flavonoids, and

phytosterols, functional components including polyphenols, glycols,

anthraquinones, and alkaloids, and high-quality proteins, fats, and

carbohydrates (Fu et al., 2020). The nutritional and functional

components of different coarse cereals vary significantly, and are

summarized in Table 1 for barley, buckwheat, quinoa, oats, lentils,

mung beans, sorghum, and peas, with more than 80 nutrients. Some of
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the functional components are very scarce, for example, chiral inositol,

a sugar alcohol that is found only in buckwheat and mung beans (Hao

et al., 2021). These nutritional functional components basically exist in

all parts of the plants. In summary, the nutritional and functional

components of coarse cereals are rich and diverse, providing more

options for product processing and healthy dietary therapy.

2.2.2 The important role of functional
components in coarse cereals

Studies show that all coarse cereals contain functionally active

ingredients that improve immunity and can be used to treat chronic

diseases. Hostetler et al. (2017) summarized the polyphenolic

components (flavonoids and phenolic acids) that are enriched in

coarse cereals, which exhibit antioxidant properties by scavenging

or reducing free radicals in the body. Polyphenolic components also

have hypoglycemic, lipid-lowering and anticancer effects

(Anantharaju et al., 2016). Anthraquinones, present in coarse

cereals, are commonly used in laxatives because of their strong

activity (Malik and Muller, 2016). Zou et al. (2021) concluded that

buckwheat is a medicinal food crop, and its functional components

are effective at reducing the incidence of tumors, atherosclerotic

cardiovascular diseases, hypertension, and diabetes. b-Glucan,
which is highly enriched in oats, can improve immune function

by enhancing metabolism and modulating immune cell responses

(Ji et al., 2003). Vitamin E, which is rich in barley, prevents aging,

protects the skin, and is also effective at promoting blood circulation

(Do et al., 2015).Table 2 shows all the compounds found only in

coarse cereals and their importance to health.
2.2.3 The relationship between coarse cereals
and a healthy diet

According to United Nations International Children’s

Emergency Fund (FAO et al., 2022), the challenges to achieving the

2030 global nutrition goals remain enormous; in 2020, an estimated

149 million (22%) children (under 5 years of age) worldwide

exhibited stunted growth and 45.4 million (6.7%) children under 5
FIGURE 4

Distribution of coarse cereals in various countries in the world in 2020. Unit: million hectares.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1301445
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zou et al. 10.3389/fpls.2023.1301445

Frontiers in Plant Science 05
showed signs of wasting. At the same time, the global cost of healthy

diets has increased significantly, and therefore their affordability has

decreased. In 2020, the population who were not able to afford

healthy diets was approximately 3.1 billion, 112 million more than in

2019. In addition, surveys by FAO (FAO et al., 2022) suggest that the

economic impact of COVID-19 and the measures taken to contain it

have led to higher consumer costs for food. However, the reality may

be even bleaker, because the impact of the COVID-19 outbreak on

human nutritional indicators is still under observation.

In conclusion, coarse cereals have become one of the major food

sources for human health due to their dual roles as functional foods and

healthy dietary supplements. The United States Food and Drug

Administration (FDA) recommends a daily intake of more than 3 g of

b-glucan soluble fiber, which can reduce cholesterol by 23%, and cereals

containing b-glucan are classified as functional foods (Bernstein et al.,

2013; Maheshwari et al., 2019). With the increasing awareness of coarse

cereals and their nutritional and functional benefits, more research on

coarse grains and their application to dietary guidelines are expected.

3 Response mechanisms in coarse
cereals for drought adaptation

Arid and semiarid areas account for about 35% of the world’s

land mass, with a yearly increasing tendency. The reduction in crop
TABLE 1 Nutrition and active compounds of coarse cereals.

Coarse
cereals

Compounds Original
isolation

References

Barley
(Hordeum
vulgare L.)

Polyphenols, minerals,
b-glucan, phenolic acids,
flavonoids, tocopherols,
phytosterols, folic acid

haulm,
malt,
seedling,
seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
whole
plants, flour

(Malik et al.,
2014; Idehen
et al., 2016;

Sterna
et al., 2017)

Buckwheat
(Fagopyrum
esculentum)

Rutin, kaempferol,
quercetin glycosides, 2,6-
dihydroxydaidzein,
sissotrin, glycitin,
genistin, ononin,
catechin, epicatechin,
epicatechin gallate,
epigallocatechin,
cyanidin glycosides,
chiro-inositol

Seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
whole
plants, flour

(Song et al.,
2016; Sytar
et al., 2018;
Borovaya and
Klykov, 2020)

Quinoa
(Chenopodium
quinoa Willd.)

Saponins, phytosterols,
phytoestrogens, phenols,
bioactive peptides,
betaine, tannin,
phytosteroids,
flavonoids, g-
aminobutyric acid,
kaempferol-O-
dilauronosyl-galactosyl
raw sugar, quercetin-O-
glucuronide, ferulic acid,
rutin, tocopherol

Seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
whole
plants, flour

(Paucar-
Menacho et al.,
2018; del Hierro

et al., 2020;
Khan and

Javaid, 2022;
Villacrés

et al., 2022)

Oats (Avena
sativa L.)

b-glucan, avantamide,
linoleic acid,
kaempferol-3-O-
galactoside-6’’-
rhamnocitin-3’’-yun
essence, hespeRetin-7-O-
neoorange glycoside,
ginsenoside re, soybean
saponin ba, gallic acid,
vanilloid, caffeic acid,
syringic acid, p-coumaric
acid, chlorogenic acid,
ferulic acid

Seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
whole
plants, flour

(Jiang et al.,
2021; Klajn

et al., 2021; Wei
et al., 2021)

Lentils (Lens
culinaris
Medik.)

Dietary fiber,
arabinoxylan, single
phenolic compounds,
tocopherols, catechins,
kaempferol, quercetin
derivatives, saponins,
phytosterols, lectins,
defensins, protease
inhibitors, resistant
starch, oligosaccharides,
bioactive peptides,
dietary fiber, minerals,
antioxidants, vitamins,
flavonoids, polyphenols,
phenolic acids

Seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
whole
plants, flour

(Menga et al.,
2014; Shahwar
et al., 2017;

Ciudad-Mulero
et al., 2018;
Herrera et al.,
2019; Galgano
et al., 2021)

(Continued)
TABLE 1 Continued

Coarse
cereals

Compounds Original
isolation

References

Mung beans
(Vigna radiata

(L.)
R. Wilczek)

Polyphenol,
polysaccharide, peptide,
gamma-aminobutyric
acid, flavonoid,
tocopherol, glycine,
neochlorogenic acid,
chlorogenic acid, vitexin,
isovitexin, caffeic acid,
catechin, syringic acid,
p-coumaric acid,
chiro-inositol

Seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
Whole
plants, flour

(Landete et al.,
2015; Xue et al.,

2016; Hou
et al., 2019; Lim
et al., 2022; Ma
et al., 2022)

Sorghum
(Sorghum
bicolor

(L.) Moench)

Carotenoid, vitamin E,
amines, phytosterol,
ranunculin, glycine,
ononin, anthocyanins,
flavonoids, phenolic
acids, stilbene, tannin,
phenol, quinine formate,
quinine
dihydrochloride,
chloroquine

Seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
Whole
plants, flour

(Coulibaly
et al., 2020;
Przybylska-

Balcerek et al.,
2020; Li et al.,
2021; Bianco-
Gomes et al.,
2022; Khalid
et al., 2022)

Peas (Pisum
sativum L.)

Anthocyanin, vitamin c,
phenol, flavonoid,
carotenoid, 5-caffeoyl
quinic acid, epicatechin,
hesperidin, condensed
tannin, rosmarinic acid,
rutin, galangin, moline,
naringin, hesperetin,
pinosson protein,
flavonol glucoside

Seeds,
sprouts,
leaves,
roots, fruits,
grains,
flowers,
roots, stems,
Whole
plants, flour

(Menga et al.,
2014; Saberi
et al., 2018;

Salacheep et al.,
2020; Castaldo
et al., 2022)
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yield caused by drought exceeds the total yield reduction caused by

other environmental factors (Xiang et al., 2020). Approximately 25%

of global agricultural land is affected by drought (Hidri et al., 2016),

making it one of the major abiotic factors limiting crop production.

Coarse cereals have a range of morphological and physiological

responses to different environments. The long-term cultivation of

coarse cereals could promote their adaption to drought conditions by

regulating their morphological and physiological responses to

drought (Sayed et al., 2012; Nxele et al., 2017; Lin and Chao, 2021).
3.1 Distribution of coarse cereals in relation
to climate

By simultaneously observing the global distribution and

production of coarse cereals (Figures 4, 3) and global changes in

precipitation and temperature by country or region (Figures 5, 6),

we found that the harvested area, temperature changes, and total

coarse cereal production show a simultaneous increase, while the

change in monthly average surface precipitation presents an

opposite trend. These trends illustrate that countries or regions

with water scarcity and aridity have larger harvested areas of coarse

cereals. In contrast, countries or regions with high rainfall have

relatively lower harvested areas and total production of coarse

cereals. This may be because the low precipitation conditions are

unsuitable for other major food crops, whereas coarse cereals adapt

well to water deficiency, can be grown in more areas and produce

better yields, making them a better choice for arid or semiarid

regions (Killi and Haworth, 2017).
TABLE 2 Unique functional components in coarse cereals and their
importance to health.

Component Properties References

Fagopyrins Laxative, antibiotic,
antiviral effects,
treatment for diabetes

(Hagels, 2007)

Fagopyritols Against type II
diabetes, polycystic
ovaries development,
and plasma cholesterol

(Khalid et al., 2020)

Rutin Higher antioxidant,
anti-inflammation,
anticancer,
hepatoprotective
activity,
neuroprotective effects

(Choi et al., 2015; Agnihotri
and Aruoma, 2020; Ruan

et al., 2020)

Avenanthramides Anti-inflammatory,
anti-
atherogenic,
antioxidant

(Emmons et al., 1999; Chen
et al., 2004)

d-fagomine Against diabetes,
pathogenic diseases,
cancer, AIDS,
overweight, and
viral diseases

(Amezqueta et al., 2012)

avenanthramides Antioxidant, anti-
inflammatory, anti-
colon cancer,
vasodilation,
antipruritic,
cytoprotection,
cholesterol lowering

(Katz et al., 2001; Saltzman
et al., 2001; Ji et al., 2003; Liu
et al., 2004; O’Moore et al.,
2005; Kurtz and Wallo, 2007;

Guo et al., 2010; Xue
et al., 2021)
FIGURE 5

The global average monthly surface precipitation (From January 2011 to December 2020). Unit: mm.
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3.2 Morphological and physiological
response mechanisms for drought
adaptation in coarse cereals

The required mechanisms to cope with drought in mixed crops

are complex and synergistic. The crop responds to water deficit by

reducing respiration, increasing the activity of its own antioxidant

enzymes and non-enzymatic antioxidant content, and increasing the

content of osmoregulatory substances to improve cell water retention.
3.2.1 Growth period and
morphological adaptations

We found that most coarse cereals can enhance their

adaptability to the environment by altering their growth period or

morphology. Table 3 summarizes the fertility period of different

coarse cereals. The average fertility period of coarse cereals is

around 58-62 days shorter than that of the major food crops. At

the same time, coarse cereals adapt to the environment through

certain morphological changes under drought conditions. Sallam

et al. (2019) found that barley reduces plant height and leaf number

under the condition of water shortage, as compared to controls, and

the thickness of the leaf tissue and diameter of the vascular bundle

in flag leaves are correspondingly reduced to adapt to the drought

conditions. Lentils adapt to drought conditions by leaf drying, leaf

curling and slowed growth rate, thereby reducing water and

nutrient consumption (Akter et al., 2021). Buckwheat flowers and

sets early under drought conditions, with rapid leaf decline and a

shortened reproductive period (Hou et al., 2019).
3.2.2 Physiological response
As shown in Figure 7, water deficiency causes leaf curling and

wilting, and photosynthesis inhibition, resulting in reduced crop

growth. In addition, coarse cereals develop rapid physiological

responses or specific adaptive mechanisms under drought

conditions, making them more drought-tolerant or drought-
Frontiers in Plant Science 07
resistant. For instance, drought limits the operation and

metabolism of photosynthesis in quinoa, but the plant still retains

some of its photosynthetic capacity to maintain its growth and

development; thus, it is strongly drought-tolerant (Killi and

Haworth, 2017). Moreover, its photosystem II is better adapted to

drought and has a relatively more efficient photosynthetic capacity

during the nutritional phase compared to other growth stages

(Fghire et al., 2015). Under drought conditions, coarse cereals
FIGURE 6

Global temperature change in 2020. Unit: °.
TABLE 3 Nutrition and active compounds of coarse cereals.

Item Crops Growth
period (d)

References

Main Crops

Rice 107-135 (Cheng et al., 2018)

Maize 125-131 (He et al., 2020)

Soybean 91-165 (Tan et al., 2021)

Wheat 242-246 (Fujiwara et al., 2010)

Mean / 142-170 /

Coarse
cereals

Barley 80-106 (Hakala et al., 2020)

Buckwheat 56-60 (Jung et al., 2015)

Quinoa 107-158 (Tan and
Temel, 2018)

Oats 83-110 (Jung et al., 2015)

Lentils 126-130 (Singh O.
et al., 2022)

Mung
beans

70-90 (He et al., 2022)

Sorghum 90-110 (Raymundo
et al., 2021)

Peas 60-100 (Garmendia
et al., 2022)

Mean / 84-108 /
"/" indicates that there is no content here.
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such as buckwheat can accumulate more proline to cope with the

adverse effects of water shortage (Yao et al., 2017). Certainly, the

rapid response and changes in hormone levels are also important

regulatory means, and the rapid increase in abscisic acid content in

barley leaves under water deficit inhibits leaf transpiration and

water transport in the root system; thus, early maturation of barley

is induced without altering grain composition—proper grain

development is ensured and maintained (Staroske et al., 2016). In

vivo, 1-aminocyclopropane-1-carboxylate deaminase (ACC

deaminase) mitigates the negative effects of water deficiency by

reducing ethylene levels and increasing relative water content of

lentils (Zafar-ul-Hye et al., 2021). Similarly, mung beans respond

rapidly to drought at the hormonal level, exhibiting promoted

growth via inhibition of ethylene synthesis (Sarapat et al., 2020).

Osmolytes are low-molecular-weight organic compounds or

compatible highly soluble solutes, including amino acids, sugars,

sugar alcohols, and quaternary ammonium compounds (Bilal et al.,

2019). In addition to hormonal alterations, when confronted with a

water-deficient environment, coarse cereals can quickly adapt to the

conditions and satisfy their growth needs by completing

osmoregulation of osmolytes at the cellular level. Under drought

conditions, coarse cereals tend to increase the concentration of

osmolytes, such as proline, inositol, alginates, and betaine, in order

to reduce cellular osmotic pressure and maintain cellular water

retention (Khan et al., 2015).

At present, some drought-induced TFs have been identified

(FtMYB9,FtMYB10,FtMYB13,from FtNAC2 to FtNAC9,FtbZIP5 and

FtbZIP83,FtbHLH3), But it mainly focuses on the changes of gene

regulation of tartary buckwheat under drought (Gao et al., 2016; Gao

et al., 2017; Huang et al., 2017; Yao et al., 2017; Deng et al., 2019; Li

et al., 2019; Sun et al., 2019).Many studies have shown that the gene

encoding LEA protein is induced tomaintain the stability of membrane

and protein, and can alleviate cell damage under water shortage

conditions (Shinozaki and Yamaguchi-Shinozaki, 2007;
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Roychoudhury et al., 2013; Shi et al., 2020). The continuing

conundrum of the LEA proteins. Naturwissenschaften 94:791-

812.Huang et al. conducted the transcriptome analysis of tartary

buckwheat under drought stress for the first time, and confirmed

that LEA protein participated in the response of tartary buckwheat to

drought stress (Huang et al., 2021). Development and flowering time of

barley were correlated with a differential down-regulation of the

flowering promoters s flowering locus T1 and the Barley mads-box

genes BM3 and BM8. The researchers also found that that PPD-H1

Affects developmental plasticity in response to distress in Barley (Gol

et al., 2021). Researchers discovered gene-LOC110713661 and gene-

LOC110738152 May be the key genes for troubleshooting tolerance in

quinoa through transcript ome and metablome association analysis

(Huan et al., 2022).The expression levels of CqCIPK11, CqCIPK15,

CqCIPK37 and CqCBL13 increased significantly under drought stress

(Zhu et al., 2022). On the other hand, the up regulated of PP2C, ABF,

SNR K2, GID1, Jaz, and MyC2 genes may enhance the fault tolerance

of oat (Gong et al., 2022). It is confirmed by experiments that drought

will cause high expression of VrNAC13, so researchers speculate that

this gene can regulate the stress resistance of mung beans (Zhang et al.,

2023). SbNAC9 improves drought tolerance by enhancing scavenging

ability of reactive oxygen species and activating stress-responsive genes

of sorghum (Zheng et al., 2023).
3.3 Synergistic effects of drought and
specific functional components of
coarse cereals

The regulation of secondary metabolites has also been found to

be associated with drought (Hassan and Basahi, 2014). Drought can

promote the formation of secondary metabolites in coarse cereals,

which in turn might be involved in regulating the coarse cereals’

own defense against unfavorable external environmental
FIGURE 7

Main ways of drought stress inhibiting crop growth.
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conditions, allowing for the maintenance of normal growth and

development. In the process of long-term adaptation to adversity,

coarse cereals have formed a synergistic relationship between

adverse conditions and qualitative changes: usually, plants

increase the biosynthesis of functionally active components, such

as phenolic compounds, flavonoids, and anthocyanins, when

exposed to drought conditions (Zahedi et al., 2021). It was found

that secondary metabolites in barley may act as antioxidants,

regulators of gene expression, and regulators of protein function

during conditions of water deficit (Piasecka et al., 2017).

Researchers have also found that drought significantly increases

the total flavonoid content in sorghum (Kamali and Mehraban,

2020). Total flavonoid and rutin contents in buckwheat are also

significantly increased under drought conditions (Meng et al.,

2022). Flavonoids are secondary metabolites with high

antioxidant activity; they scavenge reactive oxygen radicals, which

in turn attenuates the damage caused by reactive oxygen radicals in

buckwheat (Olmo et al., 2014). Unfortunately, the relationship

between the production of many secondary metabolites and

drought or other adverse conditions is still unknown. More

research is needed to determine the roles and feedback

mechanisms of secondary metabolites in the drought response.
4 Management strategies for
enhancing coarse cereal yields

In view of the described characteristics of coarse cereals, this

paper summarizes management strategies aimed at increasing the

yield of coarse cereals in dry areas (Figure 8). Based on the high
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yield and high efficiency of these cereals, we suggest that the

following five aspects be taken into consideration.
4.1 Optimal seed breeding and application

Seeds are the core of agriculture and play an important role in the

harvest of high-quality, high-yielding coarse cereals (Xiang et al.,

2016; Xiang et al., 2019a). In arid and semiarid regions, there is an

urgent need to select and breed drought-tolerant crop varieties and

lines that can produce high yields (Seleiman et al., 2021). Therefore,

germplasm resources with different characteristics must be collected

and mined for superior genes. The following traits have been

suggested as key indicators of drought-tolerant crops: short growth

cycle (Mwamahonje et al., 2021), high root density (Kothari et al.,

2020), high osmoregulatory activity in roots (Haling et al., 2013), high

stomatal conductance (Leybourne et al., 2022), high leaf relative water

content (RWC) (Yamamoto et al., 2000), optimal water utilization

(Guenther et al., 2003), and high plasticity (Gano et al., 2021).
4.2 Proper management practices in
field cultivation

One important approach to enhancing drought resistance in

coarse cereals is to optimize the sowing time, planting density, and

field management for the climatic and environmental conditions

(Table 4). Proper crop rotation, intercropping, and cover cropping

can effectively increase the content of soil organic matter (Turmel

et al., 2011), improve soil physicochemical properties (Lehman
FIGURE 8

Management strategy for increasing production of coarse cereals in arid areas. AMF, arbuscular mycorrhizal fungi.
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et al., 2012), and increase soil fertility (Salehi et al., 2018), by making

full use of space and other resources (Araya et al., 2021). These

measures can improve light-transmission conditions, increasing the

efficiency of light-energy utilization in coarse cereals (Flower et al.,

2012; Xiang et al., 2019b) and contributing to increased yield.

Conservation tillage, which prevents soil erosion and land-

quality degradation (Roohi et al., 2022) is important for the

construction of sustainable agricultural production systems for

coarse cereals. One conservation tillage method consists of

applying soil amendments, including compost (Hinojosa et al.,

2018), chitosan (Hafez et al., 2020), and vermicompost (Benaffari

et al., 2022), which play important roles in promoting the growth of

coarse cereals and their resistance to drought. Other soil

amendments, such as biochar, can improve the soil’s water-

holding capacity and reduce ion and infiltration toxicity (Thomas

et al., 2013). Enzyme activities in the improved soil and soil water-

use efficiency will also increase (Atkinson et al., 2010; Wang et al.,

2014). It has also been suggested that biochar combined with

alternate root-zone drying irrigation may be a sensible way to

maintain crop productivity in arid and semiarid regions of the

world, thereby ensuring food security (Yang et al., 2020).

Chemical regulation is a rapid and easy growth-regulating

measure in the production of coarse cereals; it is an indispensable

tool for improving morpho-physiological processes in these cereals.

Application of exogenous melatonin enhances antioxidant enzyme
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activity, reduces oxidative damage, and improves photosynthetic

capacity and drought tolerance in buckwheat (Hossain et al., 2020)

and oats (Gao et al., 2018). Foliar application of polyamides on

mung bean improved yield by reducing the damage caused by water

deficiency (Babarashi et al., 2021). In addition, exogenous

application of polyamines on mung bean also increased the

photosynthetic rate and induced the accumulation of

osmoprotectants, improving its tolerance to water deficits

(Sadeghipour, 2019). Foliar sprays of jasmonic acid on quinoa

were found to increase yield by 16% compared to controls under

water-deficit conditions (Keshtkar et al., 2022). Canales et al. (2019)

found that salicylic acid can interact with polyamines in a complex

way to build a signaling network that mitigates the adverse effects of

water deficiency on oats (Gong et al., 2022). In addition to these

chemicals, exogenous supplementation of glutathione during

droughts can significantly enhance antioxidant components,

which in turn reduce oxidative damage, indicating its significant

role in improving drought resistance (Nahar et al., 2015).
4.3 Microbial regulation in root
development and soil environment

Microbial regulation can promote plant adaptation to stressful

conditions. Microorganisms secrete viscous and water-absorbing
TABLE 4 Soil environment and planting measures suitable for coarse cereals.

coarse
cereals

buckwheat quinoa oats peas
mung
beans

sorghum barley lentils

soil types loam loam sandy loam loam
Sand,

loam, clay

silt loam,
sandy

loam, clay
sandy loam sandy loam

Soil pH
weakly

acidic-neutral
weakly acidic-
weakly basic

weakly
acidic-neutral

weakly
acidic-
neutral

neutral
weakly acidic-
weakly basic

neutral
Neutral-

weakly basic

Planting
mode

rotate crops rotate crops rotate crops rotate crops rotate crops rotate crops rotate crops rotate crops

Sowing
date

mid-April
mid-April vs.
early May

early March vs
early May

March
to May

early April May to June
late September vs
early October

late April
mid-April

Main
diseases

damping-off,
leaf spot

downy mildew,
root rot

Smut, crown rust,
stem rust

powdery
mildew,
uromyces
viciae-fabae

Leaf spot,
anthracnose,

rust
anthracnose scab, powdery

wilting,
root rot

Main pests aphid
eurysacca

melanocampta
meyrick

aphid aphid pod borer
aphid,

chilo partellus
aphids

pea
leaf weevil

references

(Jonsson et al.,
2009; Wang
et al., 2019;
Song et al.,

2020; Wu et al.,
2020; Shen

et al., 2021; Erol
et al., 2022; Zini
et al., 2022)

(Costa et al., 2009;
Tekin et al., 2017;
Kandel et al.,

2019;
Adamczewska-
Sowinska et al.,
2021; Colque-

Little et al., 2021;
Domingos and

Bilsborrow, 2022)

(Zhao et al., 2010;
Ferrazza et al.,

2013; Benevenuto
et al., 2018; Delin
et al., 2018; Kebede
et al., 2019; Umina
et al., 2020; Jordan-
Meille et al., 2021;
Li et al., 2022)

(Azpilicueta
et al., 2012;
Fazalova and
Nevado,

2020; Abbas
et al., 2022;
Beniwal

et al., 2022;
Woo

et al., 2022)

(Shen et al.,
2010;

Mehmood
et al., 2018;
Indiati et al.,
2021; Hussain
et al., 2022;
Mott et al.,
2022; Tariq
et al., 2022)

(Holou and
Stevens, 2012;
Singh et al.,
2012; Silva
et al., 2015;
Felderhoff
et al., 2016;
Oten, 2017;
Punnuri

et al., 2022)

(Chamanabad et al.,
2009; Tripolskaja et al.,

2013; Ames et al.,
2015; Mirosavljevic

et al., 2015;
Benevenuto et al.,
2018; McKee et al.,
2019; Escudero-

Martinez et al., 2020;
Jordan-Meille
et al., 2021)

(Akhtar
et al., 2010;
Reddy et al.,
2018; Pala,

2019;
Bazghaleh
et al., 2020;
Maphosa
et al., 2022;
Singh M.

et al., 2022)
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macromolecules into plant roots during proliferation (Marulanda et al.,

2009), stimulate plant growth (Miransari, 2014) and reduce

transpiration of water from soil capillary pores (Augé, 2001),

inducing soil insulation, warming, and soil-moisture retention.

Under water-deficit conditions, microorganisms can alleviate the

adverse effects of drought on crops, promote crop growth and

development, improve nutrient- and water-uptake efficiency, and

increase yield (Bolan, 1991; Karagiannidis and Hadjisavva-Zinoviadi,

1998; Liu et al., 2000). Qiao et al. (2011) was the first to report on the

enhancement of drought tolerance by arbuscular mycorrhiza

colonization in peas. It was also found that plant growth-promoting

rhizobacteria combined with arbuscular mycorrhizal fungi(AMF)

improve drought tolerance in peas and lentils (Figueiredo et al., 2008).
4.4 Water-saving production systems

Water-saving production systems are an important strategy for

coarse cereals, and for future development directions toward

increasing their yields in dry areas. On the one hand, these systems

can greatly improve the efficiency of limited water resource

utilization, and on the other, they can facilitate the realization of

increased yield of coarse cereals in dry zones. Unfortunately,

irrigation water-saving systems are currently lacking in dryland

cultivation of coarse cereals (Levidow et al., 2014). Therefore, the

task of exploring reasonable engineering measures for drought

resistance in coarse cereals is daunting. According to Du et al.
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(2015), a fully integrated system of sustainable water allocation is

required, and deficit irrigation can be used rather than improved

agricultural water allocation. Deficit irrigation plays a tremendous

role in controlling the water use of crops at different stages of

cultivation and in actively regulating plant growth, productivity,

and development according to the crop’s physiological response.
5 Conclusion and perspectives

Based on the complicated and changeable situation in the world

today, this review draws up a systematic solution for coarse cereals

(Figure 9). The total global production, harvested area, and total import

and export trade of coarse cereals have been on the rise in the past 10

years, demonstrating the gradually improving status of coarse cereals in

world food security. Coarse cereals contain special functional

components, such as flavonoids, linoleic acid, phenolic acid, and b-
glucan. More importantly, due to their unique nature, different coarse

cereal processing methods may affect or destroy these inherent

functional components. In addition to the need to consider health

aspects and delicious taste during processing, special processing

processes or techniques, especially those that will retain functionally

active ingredients, for example, should be the focus of future research.

This will lead to a deeper consideration and utilization of coarse cereals

to serve for human food security and healthy diets.

In this study, we recognize the advantages and development

potential of coarse cereals in the face of today’s frequent extreme
FIGURE 9

Systemic solution of coarse cereals based on. First, policy support for crude processing of coarse cereals should be increased, followed by more
publicity to expand market demand, as well as systematic cultivation management and selection and breeding of good varieties, without forgetting
financial subsidies for farmers. Following these steps will result in a steady increase in planting area and production, and improved quality of
agricultural products. The resultant wide variety of coarse cereals will increase consumers’ choices for a healthy diet. In addition, the low price of
coarse cereals can facilitate access to healthy diets for vulnerable groups.
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climate change (drought), but development of the coarse cereals

industry still faces the problem of low and unstable resources. There

is still a large gap in production compared to staple grains. Therefore,

research on the production of coarse cereals is also imperative.

Excellent germplasm resources are key to improving the yield and

quality of mixed grains, and science- and technology-led efforts should

be strengthened to cultivate more excellent germplasm resources.

Considering the above, and analyzing the relationship between

“environment–hybridization measures,” variety characteristics and

regional characteristics, we can adjust and develop integrated-

management strategies for hybrid agricultural production, and

enhance the ability of these production systems to increase

production, improve the sustainability of these systems, and increase

the overall benefits of hybrid cultivation. For example, themore specific

functional components (e.g., flavonoids), which are readily produced in

coarse cereals in response to drought, can be considered rapid feedback

indicators of adverse conditions; their formation has a synergistic

relationship with the adverse environment as well as a defensive role

under such an environment. Unfortunately, the synergistic relationship

and the mechanisms of action are both unclear. Therefore, it is

important to clarify these mechanisms for the construction of stress-

resistant cultivation or high-quality cultivation management of coarse

cereals, which may be an important way to enhance stress-resistance

and quality of coarse cereals in the future.

Taken together, the miscellaneous grains industry has great

potential for development, but also faces many challenges, such as a

lack of in-depth research and inefficient agricultural production

systems (Figure 10). The former is needed for proper government

guidance and the formulation of relevant policies, and the latter to help

develop miscellaneous grains for the market, including production,

processing, marketing, economic inputs, and industry chain extension.

Development and strengthening of the miscellaneous grains industry

will enable these grains to play a more important role in providing

healthy human diets and world food security, among others.
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FIGURE 10

Challenges and opportunities faced by coarse cereals in world food security.
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